
PACIFIC JOURNAL OF MATHEMATICS
Vol. 31, No. 1, 1969

ON THE ZEROS OF THE SOLUTIONS OF THE
DIFFERENTIAL EQUATION

y{n\z) + p{z)y{z) = 0 .

RINA HADASS

In this paper sufficient conditions for disconjugacy and for
nonoscillation of the equation y{n)(z) + p(z)y(z) — 0 are given.
For n = 2m a theorem ensuring that no solution of this equa-
tion has two zeros of multiplicity m is obtained. Here the
invariance of the equation under linear transformations of z
is used.

In [6] Nehari considered the equation

-l){z) + + Po(z)v(z) = 0 ,

where the analytic functions Pi(z), i — 0, •••, n — 1 are regular in a
given domain D, and obtained a disconjugacy theorem for bounded
convex domains and a nonoscillation theorem for the unit disk. Equa-
tion (1) is called disconjugate in a domain D, if no nontrivial solution
of (1) has more than (n — 1) zeros in D. (The zeros are counted by
their multiplicity). The equation is called nonoscillatory in ΰ , if no
nontrivial solution has an infinite number of zeros in D.

In this paper we obtained related results for a special case of (1);
i.e., for the equation

( 2 ) y^(z) + p(z)y(z) = 0 ,

where the analytic function p(z) is regular in the unit disk.
Section 1 deals with the invariance of equation (2), where p(z) is

analytic in a general domain, under the linear transformation

( 3 ) ζ , adbc^0 ,
cz + d

(Theorem 1). The invariance of

( 4 ) y"(z) + p(z)y(z) = 0

played an important role in Nehari's results on this second order
equation [3; 5].

In § 2 we obtain sufficient conditions for disconjugacy and nonoscil-
lation of equation (2) in the unit disk (Theorem 2 and Theorem 4
respectively). From Theorem 2 and the invariance of (2) under the
linear transformations (3) we get a sufficient condition for the discon-
jugacy of (2) in non-Euclidean disks (Theorem 3).
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In § 3 we deal with equations of even order n = 2m, and obtain
a condition on p(z), which ensures that no solution of (2) has two
zeros of multiplicity m. For the proof of this Theorem 5 we apply
Theorem 1 and the method used in [5].

1* Invariance under linear transformations*

THEOREM 1. The equation

(2) #1L + p(Z)y(Z) = 0

is transformed by the linear mapping

(3') ζ = a z + b , αd-δc = l ,
cz + d

into an equation of the same form

(2') -ξ^L + PSQwtf) - 0 .
etc,

Here

( 5 ) W l(ζ) = (α - cζ)»-ιw(ζ)

and

( 6) P,(Q

where

(7) w(ζ) = y(z) = yl d ζ - b

\ — cζ + a

and

(8) P(ζ) = p(z) = p( d ζ ~ b

\ — cζ + a

Proof. It is easily verified that

Applying this and (5)—(8) to equation (2) we obtain
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ηj^Γ + P(z)y(z) = - 0 - + p(z)^(ζ)(α - cζ)1-

which proves the statement of our theorem.
The assumption ad — bc = l in (3') was made just for convenience.

In the general case (3), formula (6) has to be replaced by

p(O= , ( α ~ c P"'I TO-
(ad — bc)~n

The converse of Theorem 1 is also true: the only transformations
ζ = ψ(z), which leave the form of equation (2), for n ^ 3, invariant
are the linear transformations (3). This follows from a theorem of
Wilczynski [11, p. 26], For n = 2 equation (4) is invariant for any
univalent transformation ζ = ψ(z); however if ψ(z) is not linear, the
connection between p(z) and P^ζ) is more complicated than (6).

2» Disconjugacy and nonoscillatiom

THEOREM 2. Let the analytic function p(z) be regular in | z | < 1.

< 9 ) I p(z) I < V± , I z I < 1 ,
( l l z Q d + l i r 1

equation

< 2 ) !/<•>(*) + ^ ) τ / ( ^ ) = 0

i s disconjugate in \z\ < 1.

We remark that for n — 2, (9) becomes

| g ( s ) l ^ , 2 „ , | 2 | < i ,
1 — I Z I

which is a condition of Pokornyi [8; 5] for disconjugacy of equation
<4) in the unit disk.

In the case of equation (2) and | z \ < 1, the general theorem
[6, p. 328] gives that

— 1)1 J l C I =

implies the disconjugacy of (2) in | z \ < 1.
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Using [4, p. 127, Ex. 8] this corollary to Nehari's theorem follows
from Theorem 2.

As the function fn(r) — nl/(l — r)(l + r ) ^ 1 is monotonic decreas-
ing in 0 ^ r ^ (n — 2)/n, it follows by the maximum principle that,
for n > 2, (9) is equivalent to

Proof. For proving this theorem we use "divided differences"
[6; 7, Chapter 1]. We denote by [z,zu ,zk] the k — th divided
difference of ?/(£), i.e., we set

[z, z l y , zk\ , fϋ — Δ, , n .
« - zk

If C is a closed contour in the unit disk, such that z, zt, , zn

are in the interior of C, then it follows from the definition that

[Zy Zlf * * ' , Zn\ — — ~ I -—
27Γ^ )c (Γ —

v(O
(ζ - z)(ζ - Zί) (ζ - *„)

The right hand side is defined also when some of the z'β coincide and
may thus serve as a definition of the left hand side also in that case
(where the divided differences would have to be defined with the help
of derivatives). Clearly then [z, zu « , 2 j is continuous in all its ar-
guments. Moreover, if y{zx) = = y(zn) — 0, we obtain

(10)
\Z) #!, * # * , Zn\

v(z)

Π

To prove the theorem, assume now, by negation, that (2) has a
nontrivial solution y(z) which vanishes at the ^-points zl9 , zn of
the open unit disk E. These n points cannot all coincide, as y(z*) —
y'(z*) = - = y[n~l)(z*) — 0 implies y = 0. Therefore there are at least
two distinct points. Let H be the convex hull of the points zu , zn.
H is therefore either a segment or a convex polygon.

Let z be any point in H; we use now Hermite's formula for the
divided difference of y{z) [7, p. 9]

(11) [z, zl9 , zn] = \ j y{n)(toz + t,zL + + tnzn)dtx dtn ,

where the integral is extended over the n dimensional simplex of
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volume 1/nl given by

(12) ti ̂  0 i = 0, , n Σ ί< = 1 .

We remark that formula (11) is proved in [7, p. 9] only made the
assumption that all the 2 s are distinct. As however both sides are
continuous in z19

 m ,zn, this formula is valid also in the case where
some of the z s coincide. The point ζ = toz + + tnzn, where the t{

satisfy (12), belongs to the convex hull of the n + 1 points z, z19 zn,
and as ze H, it follows that ζ e H.

From (10), (11) and (2) it follows that

[viQviQdt,... d ί n ,
J

where ζ = ί0̂  + ίA + + iw«w e Jϊ. Let ζ0 be a point, or one of the
points, in which | p(z)y(z) \ attains its maximum in H. (This maximum
is positive, otherwise p(z)y(z) = 0, and as y(z) φ. 0, it follows that
p(z) = 0. Equation (2) becomes y{n)(z) = 0, which is clearly discon-
jugate). As

(14) \p(Qy(Q\^\p(z)y(z)\, zeH,

it follows by (13) that for every z e ϋ ,

Choosing now z = ζ0 and using #(ζ0) ̂ 0 we obtain

(15) I P ( C O ) I Π I C O - ^ I ^ W ! .
i = l

We prove that for ζ0 satisfying (14),

(16) Π I Co — «• I < (1 — IColKl + ICol)"-1;

(cf [10, Th. 2)].

Let us assume first that the convex hull H of z19 * ,zn is a
polygon. Then, by the maximum principle, ζ0 is on the boundary of
H. Therefore ζ0 is on a segment, the endpoints of which are two of
the n given points z19 , zu. We denote these points by z19 z2 Clearly,

i = 3, , n .
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Denoting by z?, z* the endpoints | z* \ = \ z* | = 1 of the chord deter-
mined by z1 and zz, we obtain

(18) I Co - «L 11 Co - βk I < I Co - «χ* 11 Co - «»* I .

As the product of the segments of a chord through ζ0 depends only
on Cot we have

| C o - « i * I I C o - « l = ( l - I C o l ) ( l + ICol).

This and (18) give

(19) I Co — «L 11 Co — «. I < (1 — I Co l)(l + I Co I) .

(17) and (19) imply (16).
If H is a segment and ζ0 one of the points of the segment in

which I p{z)y(z) | becomes maximum, then we denote by zίf z2 the end-
points of H and by z?,z* the endpoints of the corresponding chord.
(17) and (19) hold and therefore (16) is again valid.

(15), which followed from the assumption that (2) is not discon-
jugate in \z\ < 1, and (16) imply

(20) IP(Co) I ̂  > TΛ . , m , . . ^ ,
JLJLI Co — s» I

which contradicts assumption (9). This contradiction concludes the
proof of the theorem.

For the proof of the next theorem it is convenient to state some
simple consequences of Theorem 2. The transformation ζ = z/p maps
\z\ < p on ICI < 1, and equation (2) is transformed into (2') with
Pi(C) — pnp(z). As (2) is discon jugate in | z \ < p if (2') is discon jugate
in I ζ I < 1, we obtain a sufficient condition for disconjugacy of (2) in
I z I < p, namely

Using the minimum of the function nl/(p — r)(p + r)71"1 for 0 ^ r<p,
we obtain another, weaker, sufficient condition for disconjugacy of (2)
in I z I < p ,

We remark that for p — 1, n — 2 the value of the constant in (21) is
2. The exact constant in this case is π2/A [3, Th. 2].

THEOREM 3. Let the analytic function p(z) be regular in \ z \ < 1
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and assume that there exists p, 0 < p < 1, such that

(22) I p(z) I (1 - I z \T ^ {n

 w !

l r l (-

39

equation (2) is disconjugate in every non-Euclidean disk of radius

Proof. Let <o satisfy (22) and let G be a given disk in | z \ < 1
with non-Euclidean radius 1/2 log [(1 + ρ)/(l — p)]. By mapping the
unit disk on itself, G can be mapped onto a disk Gλ given by | ζ | < p.
Equation (2) is transformed into (2'). As for linear mappings ζ = ζ(z)
of the unit disk on itself

dζ
dz

_ 1 - ι c ι
1 - U I

we obtain

(23) ( l -

a - icir
From (23) together with (22) it follows that

nl ( n y (1 - p2γ

which for \ζ\ < p gives

(n- I)"-1 \2p) ( 1 - | ζ | 2 ) κ

n\
' (n - l)n~ι \2p

By (21), this is a sufficient condition for disconjugacy of (2') in Glf

\ζ\ < p, and therefore (2) is disconjugate in G. Theorem 3 is thus
proved.

This theorem can be stated as follows: if

(24) I p(z) I (1 — I z \2)n ̂  C < oo , I z I < 1 ,

then equation (2) is disconjugate in every non-Euclidean disk of radius
1/2 log [(1 + pQ)/(l - pQ)], where pQ = g-ι(C) and

g(p) is a monotonic decreasing function. Therefore the smallest C
satisfying (24) gives the biggest non-Euclidean radius.

For n = 2 non-Euclidean disks of disconjugacy were considered in
[2] and [9].
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THEOREM 4. Assume that the analytic function p(z) is regular
in I z I < 1. Let n >̂ 3 and let C be a positive constant. If

(25)

equation (2) i s nonoscillatory in \z\ < 1.

In the case n = 2, equation (4) is nonoscillatory in
there exists x1? 0 < xι < 1, such that

< 1, if

(26)

Proof. Assume that equation (2) has a solution with an infinite
number of zeros in the unit disk. We can then find a sequence of
zeros zu z2, tending to z* on the boundary, | z* | = 1. For any p,
0 < p < 1, let (?(/?) be the intersection of the disk | z — z* \ < p with
the unit disk. Any G(p) contains an infinite number of zeros. Denote
n of these zeros by zί9 •••,«». As in the proof of Theorem 2, we de-
note the convex hull of these n points by H and choose ζ0 e H such
that (14) holds. We choose zi and z2 as in that proof; (15) and (19)
are again valid.

If n ^ 3, then clearly

I ζ0 - Zi I < 2p i = 3, , n .

Using this and (19) we obtain

(27) Π I Co - zt | < (1 - I Co |)(1 + I Co l)(24oy-2 < (1 - I Co | ) 2 - > - * .

From (15) and (27) it follows that

(28) P(Q I >
n\

For any given C, we can find p such that

(29) > C .

From (28) and (29) we obtain a contradiction to our assumption (25),
which completes the proof of the first part of the theorem (n ^ 3).

For n = 2, we choose /> such that p = 1 — # lβ (15) and (19) imply

(30) I p(ζ 0 ) I >
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As a?i < I ζ01 < 1, (30) contradicts (26), which completes the proof of
the second part of Theorem 4 (n — 2).

By [9, Th. 1] the condition

I p(z) I ̂  - — ί - — , \z\>x0, 0 < x0 < 1
( 1 — \Z\ )

is sufficient for nonoscillation of (4) in | z | < 1; hence the second part
(n — 2) of Theorem 4 follows from this theorem.

Nehari has given a nonoscillation theorem for the general equation
(1) in any bounded convex domain. In the case of the unit disk and
the special equation (2) his sufficient condition becomes

(31) \\mΓ\p{reiθ)\dθ
r-*l JO

This sufficient condition (31) implies our condition (25). (See [4, p. 127,

Ex. 8]).

3* Equations of even order n = 2m nonexistence of solutions
with two zeoros of multiplicity m.

THEOREM 5. Let the analytic function p(z) be regular in \z\<l.
The equation

(32) y«»\z) + (-ir+1p(z)y(z) = 0

has no solution having two zeros of multiplicity m in | z | < 1 if

(33) \p(z)\£P(\z\),

where P(x) is a function with the following properties:
( a ) P(x) is positive and continuous for — 1 < x < 1;
y k) j JΓ \ — <\j) — x \w) f

( c) (1 — x2)2mP(x) is nonincreasing if x varies from 0 to 1;
( d ) the differential equation

(34) u{2m\x) + (-l)m+1P(x)u(x) = 0

has no solution with two zeros of multiplicity m in — 1 < x < 1.

Proof, (cf. [5]). Suppose the theorem is false and there exists
a solution of (32) with zeros of multiplicity m at a and β(\a\ < 1,
β\<l,aΦβ). The circle passing through a and β and orthogonal

to I z I — 1 is divided by | z \ — 1 into two arcs. We denote the arc
inside | z \ < 1 by C. Without loss of generality, we may assume that
C is in the upper half plane and symmetric with respect to the ima-
ginary axis. The linear transformation
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(35) z = ζ + fP , 0 ^ p< 1 ,
1 - ^pζ>

maps I z | < 1 on | ζ | < 1 and C on the linear segment — 1 < ζ < 1.
With the aid of Theorem 1 and (23), equation (32) is transformed into
the equation

(36) w<*->(ζ) + (-l)m+1q(ζ)w(ζ) = 0 ,

with

(37)

It follows
tion (c) it

(1

1*01 l**)l

from (35) that I
follows that

- 1 z \JmP{\ z \ ) S

dz 2t

dζ

VII
( i -

n

', if

P(2)

- 1

ζ ypfl

i (1

(1

< ζ

CD

—
—

<

>

12

IC
1.

2\2m

2\2m

He

1 < c < l .

Combining this with (33) and (37) we obtain

(38)

Thus, our assumption that (32) has a solution with two zeros at
a and β of multiplicity m implies that (36) has a solution w(ζ) pos-
sessing two zeros of multiplicity m a t α and δ, — l < α < δ < l . Let
w(ζ) be this solution. Multiplying equation (36) by w(ζ) and integrat-
ing from a to 6 along the real axis, we obtain

w{2m)(x)w(x)dx + ( - l ) w + 1 \h q(x) | w(x) |2 dx = 0 .

Integrating by parts m times and noting that all the integrated parts
vanish, we get

Γ w{m)(x)wim)(x)dx = Γ q{x) I w(x) \2dx .
Ja Ja

By (38) and assumption (b) it follows that

(39) \b I w'm){x) I2 dx ^ Γ P(x) I w(x) |2 dx .
Ja Ja

If we write w(x) = σ(x) + ir(a?), both α* and τ have zeros of multipli-
city m at α and b and we have | w{m) |2 = [σ(m)]2 + [τ ( m )]2. (39) becomes

(40) ({[σ^(x)Y + [τw(x)]2}dx ^ f& P(a;)[σ2(^) + τ\x)]dx .

Let now λ be the lowest eigenvalue of the real differential system
given by
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(41) U{ΐm\x) + (-ϊ)m+1XP(x)u(x) = 0

with a 5Ξ x 5Ξ δ, — l < α < δ < l , and the boundary conditions

u(a) = u'(a) = . . . = »'—1J(α) = 0

u(b) = u'(b) = . . . = ttim-1!(6) = 0 .

As σ and τ are admissible comparison functions for this problem, it
follows by Rayleigh's inequality that

λ \" P(x)σ\x)dx ^ Γ [σίm)(x)Ydx

!;
λ P(a;)r2(x)d* ^ [r(

Combining (42) with (40) we obtain

(43) Γ {[<7(w)(#)]2 + [τim)(x)]2}dx ^ — Γ {[ί7(w)(^
Jα X Jα

Hence, λ ^ 1. If λ = 1, then equation (41) becomes (34), and the first
eigenfunction of the corresponding system contradicts assumption (d).
If λ < 1, we take a <c <b and consider equation (41) for a^x ^ c,
with the boundary conditions

u(a) = v/(a) = ... = u{m-l){a) = 0

u(c) - u'(c) = . . . = ^ (w"X)(c) - 0 .

Let Xp(c) be the first eigenvalue of this system. By the minimum
characterization,

(44) re >

I Pv2(x)dx

where the minimum is taken over the class of all functions v(x) in
Cm (or Dm) satisfying

v(a) = v'{a) = . . . = v^-^ia) = 0

v(c) = v'(c) = . . . = v{m~l)(c) = 0 .

Hence, λp(c) is increasing as c goes from 6 to a. From (44) it follows
that

(45) Xp(c) ^ λ*(c) ,

where k is a constant satisfying

k > P(a ) > 0 in [a, b] .
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Denoting c — a = I and It = x — α, the system

u{2m){x) + (-l)m+1Xku(x) = 0

u(ά) = - = u{m~l){a) = 0

u(c) = = ^(m-1}(c) = 0

is transformed into the system

wv2m)(t) + (-l)m+1Λku(t) = 0

%(0) = . . . = ^"-"(O) = 0

u(l) = . . . = ^ " - " ( l ) = 0 .

Denoting the first eigenvalue of this system by Ak, it follows that

(46) Λk = X

From (45) and (46) it follows that as c goes to a (I—>0), Xp(c) tends
to oo. Hence, there exists a value c19 a <cx<b, such that λ(c:) — 1,
and we again obtain a contradiction to our assumption (d). This com-
pletes the proof of Theorem 5.

For m = 1 Theorem 5 reduces to [5, Th. 1].
We bring now some examples. For m — 2, i.e. for the differen-

tial equation of the fourth order,

yi4)(z) - p(z)y(z) = 0 ,

the following functions may serve as examples in Theorem 5 :

(47) P,(x) = (0.753 τr)4 = 31.28

( 4 8 ) P2{x) = (i-x2γ

and

(49) P,(s) - — * ± — .

Px(x), P2(x) and Ps(x) clearly satisfy assumptions (a), (b), (c) of the
theorem. In order to show that Px{x) satisfies assumption (d), we con-
sider the equation

= 0 ,

which has u(x) = CΊ cos kx + C2 sin kx + C3 cos hkx + C4 sin hkx as ge-
neral solution. The requirement u(±l) — uf(±l) — 0 implies tan hk =
±tan&, the smallest solution of which is k = 2.3550 = 0.753 TΓ. The
equation

?Λ(4)(&) - (0.753 π)4u(x) = 0
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has therefore a solution with double zeros at ± 1 ; in other words, the
first eigenvalue λx of the system

u^{x) - λ(0.753 π)4u(x) = 0

u(±l) = u'(±l) = 0

equals 1. As for any α,6, — 1 < α < 6 < 1, the eigenvalues of the
system

u{i)(x) - λ(0.753 πYu(x) = 0

u(a) = u'(a) = u(b) = u\b) = 0

are greater than the eigenvalues of (50), the system (51) cannot have
an eigenvalue equal to 1. Px(x) thus satisfies assumption (d).

The following inequalities due to Beesack [1, p. 494]

S I f l Q-,,2

V"*dx > — — dx , veD" , v(±l) = v'(±l) = 0
-i j - i ( l — x2y

unless v = A(l — x2f12, and

v"2dx>\ —=^-—dx , veD", v(±l) = v'(±l) = 0
-i J-i ( 1 — X2)2

unless v — A(l — x2)2, imply that P2(x) and PB(x) satisfy assumption (d).

The author wishes to thank Professor B. Schwarz for his guidance
and help in the preparation of this paper. The author wishes to thank
the referee for his helpful remarks.
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