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THE ASYMPTOTIC BEHAVIOR OF THE
KLEIN-GORDON EQUATION WITH

EXTERNAL POTENTIAL, II

JOHN M. CHADAM

Let Uo(t) and U(t) be the one-parameter groups governing
the time development of solutions of the Klein-Gordon equation,
"Qφ — m2φ, and the perturbed equation, Πφ = m2φ -f V(x)φ,
respectively. In a previous work the author obtained sufiScient
conditions on the potential V(x) which guaranteed the existence
of the wave operators, W±: = s — lim U(—t)U0(t) as t —> ±oo.
Here it is shown that if, in addition, the associated (Schrodinger)
wave operators, Wξ.: = s — lim eii«

2r+v-j)te-nm*i-*)t a s ^-^oo,
are complete and the Invariance Theorem is valid then the
W± are also complete and are isometries. Finally, these results
are used to show that the scattering operator, W^}W-9 is
unitarily implemented in Fock space.

The similarity between the wave operators W± and Wi observed
in [1] as far as their existence theories are concerned, is clearly
reaffirmed in their completeness theories. Indeed, the proof of the
above results is based on the development of an explicit relationship
between these wave operators. Connections of this sort were observed
by Birman [3, p. 114, §5] for abstract differential equations of the
form φtt + Aφ — 0. Sufficient conditions for such a relationship in
this more general framework were obtained by Kato [4, §§ 9, 10] and
used to study both potential and obstacle scattering for the wave
•equation [4, § 11].

In this investigation of the Klein-Gordon equation the argument
will be directed so as to take best advantage of the above general
results of Kato. However some generalizations will be necessary in
order to establish the cited results on the Lorentz-invariant as well
.as the finite-energy solution spaces of the Klein-Gordon equation.
Because a specific equation is being considered some simplification of
Kato's arguments will also be possible.

1Φ Preliminaries* In this section the concepts discussed above
are given precise definitions. Some related results which are directly
used in the proofs of the main theorems are also included in summa-
rized form.

Suppose Δ is the Laplacian in three dimensions and A2 is the self-
adjoint realization of m2/ — A on L2(E3). Throughout this paper V is
taken to be a real-valued function of three (space) variables and in
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LP(E3) for some 2 <̂  p <̂  oo.1 With these hypotheses on V it is a
fairly standard result that the perturbed operator, A2 + V, is self-
ad joint with D(A2 + F ) = D(A2) = D(J). This self-ad joint realization
of A2 + V will be denoted by B2.

So that fractional powers of the above operators can be compared
we ask that the perturbation satisfy a restriction on the size of its-
negative part:

( i ) || F_ ||, < M(q) for any q ^ 3/2 (including oo) where M(q) is
a constant depending only on q and m.

REMARK. More specifically M(q) = constant. m{2~2g)h where the
constant is that appearing in the Sobolev inequalities [6, p. 125]. The
precise value of M(q) is inessential in what follows. All that is needed
is that the g-norm of F_ is sufficiently small for at least one q ^ 3/2.

PROPOSITION 1.1. For perturbations V, as above, satisfying con-
dition (i), the self-adjoint operators Ad,B° satisfy

( 1 ) raθ\\φ\\ ^\\Aoφ\\^C{\\Beφ\\^Ci\\A°φ\\

for all φ e D{BΘ) = D{AΘ) and all 0 ^ θ ^ 1. In addition

( 2 ) Cvθ II A - V || fS Cr^ II B~9φ || ^ || A~V II ^ m ^ |l ̂  II

for all φeU(Ez) and all 0 ^ # ̂  1. Ĉ  α^d C2 are constants de-
pending on V,m, p and q.

Proof. [1, Lemma 2.4, Th. 2.5].
In order to discuss the solution spaces of the K — G equation we

shall first write it in its equivalent vector-valued form

as its

φ(t)\

Φ(t)l =

d ί *~p \

at/ \ cp f

formal solution

IΨ(0)\ 1

\<P(O)I \

1 ° u)

cos At

— A sin Aί

Uj

4"1 sin A^

cos At )

|M0)\
'U(O)j

where <p(0), Φ(0) are the Cauchy data at t = 0. Indeed, it is a fairly
well known fact that equation (4) rigorously defines the solution of
the K — G equation on H(A, a) (defined below) in the sense that t —•
UQ(t) is a one-parameter group of unitary transformations on ϋ(A, a)

with infinitesmal generator ( *2 \ J. The solution spaces H{A, a)

1 11 \\p will denote the usual norm in Lp(Ez). However, for notational convenience
J2 will be replaced by | | | | and the associated inner product will be written as (,) .
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are described in the following.

DEFINITION. For each a e R, the complex Hubert space H(A, a)
is the completion of D(Aa) φ D(Aa~ι) with respect to the inner product

= (A"φ19 A*ψd + (A*-1^, A'-'ψt) .

As a direct sum H(A, a) will be written as D[Aa] φ D[Aa-x].

REMARK. Our primary interest is in the finite energy (H{A, 1))
and the Lorentz-invariant (H(A, £)) solution spaces of the K — G
equation. We shall handle both simultaneously by proving the main
results on H(A, θ) for all 0 ^ θ ^ 1. For θ in this range it can be
checked that the above completion is only required in the second
summand of H{A,Θ). In fact, except for the norm, D[Aθ~ι] is iso-
morphic to the Sobolev space Wθ~lt\Ez) and hence contains non-L2(i?3)
elements.

Condition (i) insures that B2, like A2, is a nonnegative (self-adjoint)
operator. For this reason the above discussion can be repeated with
A replaced by B to obtain the dynamical propagators U(t) on the
solution spaces, H(B, θ), of the perturbed K — G equation. The
following observation, which is a direct consequence of Proposition 1.1,
will be convenient in the next section.

PROPOSITION 1.2. With the hypothesis of Proposition 1.1 H(A, θ)
and H(B, θ) are isomorphic as linear spaces for each 0 ^ θ ^ 1 and
the norms satisfy

(5) i fJI-l l^^ll-lk^^H-li,,,

where Kx and K2 are constants depending on C1 and C2. It follows
that U0(t): H(B, θ) -> H(B, θ) and U(t): H(A, θ) -> H(Ay θ) are uniformly
bounded.

The above result allows us to form products of the finite-time
propagators even though they were defined on a priori different spaces
and hence define the wave operators.

DEFINITION. The (free-to-physical) wave operators W± are given by

W± = s- limU(-t)Uo(t)
ί->±oo
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whenever this strong limit exists on all of H(A, θ).

REMARK. The existence of the strong limit is demanded on all
of H(A,Θ) because the generator of U0(t),(^2

 τ

Q\ is spectrally
absolutely continuous (c.f. Lemma 2.2 to follow). For notational
convenience the ^-dependence of W± is deleted since the conditions
obtained are valid for all 0 <* θ ^ 1.

If one further restriction is made on V,
(ii) VeLp(Es) for any 2 ^ p < 3,

then the following existence theorem can be proved [1, Th. 4.1].

THEOREM 1.3. If V is real-valued and satisfies conditions (i)
and (ii) then W± exist on if (A, θ) for each 0 tί θ ^ 1.

2* Main results* In this section the isometric nature and the
completeness of W±: H(A, θ) —> H(B, θ) will be established for pertur-
bations which satisfy the additional conditions

(iii) Wί- s - l im^^ eiBUe~iAH are complete;
(iv) Wί = s — lim^±oo e

iφlB2)te~iφu2)t for φ as in Invariance Theorem.*
The method of proof will be to establish a relationship between W±

and Wί by using the ideas concerning identification operators proved
by Kato [4, §§ 9,10]. Indeed the proof will be directed so as to take
best advantage of these general results of Kato.

We begin by considering the transformation Γ(A, θ): H(A, θ) —>
L2(E3) © U{EZ) formally defined by the equation

1 (A? iA6

This transformation, which is the analog of one considered by Birman
[3, p. 114, § 5] and Kato [4, p. 335, 8.9], will provide us with a unitary
operator which "diagonalizes" U0(t) in an operationally convenient way.

LEMMA 2.1. For each 0 ^ θ S 1,

Γ(A, θ): D{AΘ) φ D{Aθ~ι){(Z H(A, θ)) — L\EZ) © L2(E3)

defined above has a unique unitary extension

Γ(A, θ): H(A, θ) -> L2(E3) φ L\E'6) .

In addition

2 The strongest version of condition (iv) required is with φ(λ) = λ9/2, 0 ^ θ ^ 1.
This is not an operationally weaker condition, however, since the full Invariance
Theorem [5, p. 544-7] must be used to determine conditions on V for it to occur.
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Γ(A, θ) U0(t)Γ(A, θ)~ι = e~iAt 0 eiAt .

Proof. For Φ = (φΛ e D{AΘ) 0 DiA6"1), a straight-forward compu-
xPzJ

tation using the defining equation gives 11 Γ{A, Θ)Φ \\ — \\ Φ \\Ayθ.
3 Further-

more

Γ(A, Θ)(D(AΘ) 0 D{AΘ~1)) = R(A°) 0 R{AΘ) = L2(EZ) 0 L\EZ) .

Thus the isometry Γ(A, θ) has a unique extension to one with domain
the H(A, ̂ -closure of D(AΘ) 0 D{Aθ~ι) (i.e., all of H(A, θ)) and range
L2(E3) 0 L2(E3). This unitary extension is

w h e r e

is the unitary transformation defined by Aθ~ιφ = Aθ~ιφ for all
φeL2(E3) c D[AΘ~1]. A simple algebraic computation shows that

Γ(A, θ)U0(t) - {e~iΛt 0 eiAt}Γ(A, θ)

on a suitable dense set from which the relation (6) follows by con-
tinuity.

Before applying the above to the problem at hand we shall obtain
a more precise description of the absolutely continuous part of the

generator of U0(t) (i.e., of ( _ j2 \) on H(A, θ)j since it is at the

basis of the completeness problem for W±. In particular we shall

relate the subspace of absolute continuity of ( _ -Λ2 \ J to that of A

by means of an adaption to the present situation of a result of Kato
[4, p. 355, Lemma 8.1].

LEMMA 2.2. Let PAiθ and QA denote (the projections in H(A, θ)

and L\E3) onto) the subspaces of absolute continuity of ( . . 2 \ j

and A respectively then the following conditions are equivalent:

( a ) ΦePA,θ;
( b ) Γ(A,θ)ΦeQA@Qt;

( c ) Aθφx G QA and Ad~^2 e QA.

Proof. Since QA is a closed linear subspace of L2(E3) [5, p. 516,

3 The norm (|| | I 2 + I H I 2 ) 1 / 2 in L 2 ( ί 3 ) Θ W 3 ) is also denoted by | | |l since t h e r e
is no possibility of confusion.
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Th. 1.5] (b) and (c) are clearly equivalent. Suppose E(X) and e(X) are

the spectral projections for A and ( _ ^ 2 1Q) respectively. Then

equation (6) is equivalent to f(A, θ)e(S)Γ(A, θ)~ι = {E(S) 0 -E(S)}

for all Borel sets SuR. Thus

II e(S)Φ \Uo = || {E(S) 0 -E(S)}Γ(A, Θ)Φ \\

from which the equivalence of (a) and (b) is immediate.

REMARK 1. Because m 2 l — A is spectrally absolutely continuous,

A and hence (_ Λ2 \ ) J is likewise. This motivates the definition

of W± in the previous section.

REMARK 2. Clearly if condition (i) is satisfied (so that Bθ is a
nonnegative self-ad joint operator for each 0 ^ θ g 1), the above two
results can be proved with A replaced by B. In general, however, B
will not be spectrally absolutely continuous so that PB>Θ Φ I.

Returning to the main problems we now indicate how the above
may be used to provide a connection between the quasi-relativistic
wave operators W± and the nonrelativistic wave operators W±. This
will be accomplished by comparing each to the wave operator

Wί:= s - lim U(-t)Γ(B, Θ)-T(A9 θ)U0(t) .
t-+±oo

The requirement that the identification operator [4, p. 343,1.2 and
p. 346, Definition 3.1] Γ(B, Θ)~T(A, θ)eB(H(A, θ), H(B, θ)) is satisfied,
since Γ(A, θ) and Γ(B, θ) are unitary.

THEOREM 2.3. // the perturbation V satisfies conditions (i) and
(iv), then

( a ) W± exist if and only if Wl exist)
( b ) W± are complete if and only if W± are complete.

Proof. Relation (6) for A, and the corresponding one for B can
be used to obtain

Γ(B, θ)U(-t)Γ(B, θ)-ιΓ(A, θ)U0(t)f(A, θ)"1

Because the Γ-operators are bounded with bounded inverse, standard
results on strong limits can be used on the above equation to give

Γ(B, θ)WίΓ(A, θ)-1 = s - lim {eiBte~iAt 0 e~iBteiAt}
( 7 )

- Wl 0 Wξ .
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The last equality follows from the invariance condition (iv). This
establishes part (a). Similarly, part (b) follows from (7) and the
equivalence of the first two statements in Lemma 2.2.

REMARK. The existence and completeness of W± are equivalent
to the same questions for the more familiar wave operators,

s- ,
t-*±oo

since the associated prewave operators are identical. In particular,
the existence of the latter is assured for potentials which satisfy
condition (ii) [5, p. 534-5]; the completeness follows if Ve L\E") Π L2(E")
[5, p. 546, Example 4.10], The proof of the completeness shows that
condition (iii) and (iv) are closely related. It is interesting to dis-
tinguish them, however, since the latter is used for other purposes
(e.g., in equation (7) and in a more essential manner in Lemma 2.5
to follow).

All that remains then is to show that W± = W±. This will
require condition (i), (iv) and the existence of W± (e.g., condition (ii))
in an explicit way. We now state this as a theorem, the proof of
which is rather lengthy, and as a result, will proceed as a sequence
of lemmas.

THEOREM 2.4. // V satisfies conditions (i), (ii) and (iv) then
W± — W± in the sense that the existence of one implies the existence
of the other and their equality.

Proof. A straightforward application of Theorem 4.2 of [4] shows
that sufficient conditions for the equality of W± and W± are

( a ) Γ(B, θ)~ιΓ(A, θ) and Ie B(H(A, θ), H(B, θ)), and
( b) s - lim^±ββ (Γ(B, Θ)-Ύ(A, θ) - I)U0(t) - 0 on H(A, θ).

The first part of (a) has already been noticed to be true if condition
(i) is satisfied. The second part follows from Proposition 1.2 which
likewise requires condition (i). In addition U0(t): H{A, θ) —> H(B, θ)
is uniformly bounded by K2 (c.f. Proposition 1.2). Thus it suffices to
establish (b) on a dense subset of H(A, θ); say D(A)@L\E"). For

(Γ(B,θ)-ψ(A,θ)-I)Uβ(t)Φ

1 / B~β B~» \ /A" iA6~l\ (I 0

)-iA'-Ί w irm)φ

0 \ίφo(t)

'-'A'-1 - I)\φt{t\
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where φo(t) is the solution of the K — G equation with Cauchy data
φu φ2 at t = 0, and Φ0(t) is its time derivative. Thus

\\(Γ(B,θ)-T(A,θ)-I)U0(t)Φ\\l,β

= U&ίB-Ά' - I)φo(t)

= || (A, - 2 ? > 0 ( ί ) II2 +

The last equation follows from Proposition 1.1 (i.e., D(A) =
D(B) c D{Aβ) = D{Be)) and the fact that D{A) φ U(ES) is invariant
under U0(t). Thus (b) is implied by || (A0 - B°)<po(t) || and {{(A1*-1-
B^Φoit) 11 — 0 as t -> ± oo.

We now reduce the conditions, step-by-step, to one which is much
more amenable [4, p. 361, Condition 10.2 and Th. 10.5]. Let

a n d

LEMMA 2.5. Under the hypothesis of Theorem 2.4, \\Aθφ0(t) —
Bθφ±(t)\\ and \\ AΘ-ιφ0(t) - B°-^±(t)\\ tend to zero as t-+±oo.

Proof. As previously observed the hypothesis implies the existence
of Wl which, by the invariance condition equals s — l im^^ e

iBθte~iAθt

for each θ ̂ > 0 (in particular for 0 <̂  θ ̂  1). Now

Aθ<p0(t) = Aθ(cos Atφί + A~ι sin Atφ2)

= i-β-^^AVi + iA^-1^) + —eίAt(Aθ

φi - iAθ~ιφ2) .
A Li

But the existence of Wl implies that s - l inw^ (e~iΛt - β~ίjBί W|) =
0 and Wl Aθ — Bθ Wl (using the invariance condition and the fact that
QA = I). It is clear then that

+ l.eiBI(BβWξφί - iBe-lW^

tends to zero as t —> ± oo. A straightforward algebraic computation
shows that the term in braces is Bθφ±(t). This establishes the first
part of the lemma and the second part can be proved similarly.

By writing
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|| (A° - BΘ)φ0(t) II - II AVo(ί) - B°φ±(t) + B°φ±(t) - BVo(t) II

^ II A'φo(t) - B°φ±{t) II + \\B\φQ{t) ~ φ±(t)) \\ ,

it is clear that || (A0 - Bθ)φ0(t) || — 0 as £ -> ± oo if || B°(φo(t) - φ±(t))\\ ~>
0 as t -> ± oo. Similarly 11 (A'-1 - B°~^0(t) 11 -> 0 as £ — ± co if

I I S ^ Φ o W - ^ ^ l l - O as t — ± o o .

LEMMA 2.6. Under the hypothesis of Theorem 2.4,

11 B'(φo(t) -φ±{t))\\ and \ \ B°~ι(φΌ(t) - φ±(t)) 11 -> 0

a s t~>±oo if || J?(^0(ί) - 9>±(ί)) || -> 0 as ί -> ± oo.

Proof. Since Φ e D(A) 0 L2(£;3), φo(*) and <p±(t) 6 D(A) - D(B) [8,
p. 614, Th. 2.1]. But || B°f \\ = || B°~ιBψ \\ £ {mCτΎ~ι\\ Bψ \\ for all
ψeD(B) by Proposition 1.1, which establishes the first part. The
second part follows directly from the existence of W± and (iv). To
see this write

φQ(t) = — A sin AtφL + cos Atφ2

( 1 0 ) = ~e-iAt(Aφι + iφ2) + ̂  ei

Δ Δ

and

(11) φ±(t) - ~e-iBtWi(Aφi + iφ2) + ±
Δ Δ

Thus || Φo(t) - Φ±(t) || -> 0 as ί ~^ ± oo if 8 - lim ( e ^ 4 - e~i5i TΓ|) - 0
as έ-^+oo which follows from conditions (ii) and (iv). The proof is
completed by again observing that

II B^iΦoit) - Φ±(t)) || ^ (mCT1)0-1 II Φo(t) - Φ±(t) || .

LEMMA 2.7. 11B(φo(t) - φ±(t)) \\~+0ast-^±ooif\\ Ve~ίmWίψ \\->
Oαs ί - > ± o o /or all ireD(A2).

Proof. This is essentially condition (e) of Theorem 10.5 of [4].
A careful examination of the proof shows that it suffices to have
s - linv_±oo Ve~iBt = 0 on {Wίψ; ψ e D(A2)} rather than on all of
D(B2) Π QB. Condition (iv) is used in the present formulation but in
a rather inessential way.

LEMMA 2.8. Under the hypotheses of Theorem 2.4,

|| V(e~iBtW£ - e-iAt)ir\\-+0
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as ί—>±co for all γeD(A2).

Proof. Since ψ e D(A2), eriAt^ and erim Wlγ e D(A2) = D(B2)
[8, p. 614, Th.2.1]. Now

where q — 2p(p — 2)~ι. The last term is estimated using inequalities
of the Sobolev type [6, p. 125] to obtain

|j (e-imWs _ e-iAt)γ | |? ^ c o n s t a n t || (-Δ)(e-iιnWi - e-iAt)-f \\>

where 7 = 3(2p)"]. The result will now follow if it can be shown
that the first term on the right in (12) is uniformly bounded in t and
the second tends to zero as t —> ± co. The second requirement follows
from the existence of W± and the invariance condition provided 7 < 1
or p > 3/2 which is guaranteed by the hypothesis. Turning to the
second requirement,

\\{-Δ){e~imWi - β - ^ ) t | | ^ \\A\e~imWί - e-iΛt)γ\\

^ \\A2e~ίmWhϊ\\ + ||A%H; .

To show that the first term on the right of the above inequality is
bounded recall [1, Th. 2.1] that if VeLp(E3) for any p ^ 2, there
exist constants a < 1 and b, such that for γe D(A2),

b\\χ\\

Hence

(13)

Applying (13) to the above and using well-known properties of
one obtains

which proves the lemma.
Clearly, the above result reduces the proof of Theorem 2.4 to

showing that || Ve~iΛtψ || —• 0 as t —* ± ̂  for all i/r G J9(A2).

LEMMA 2.9. 7/ FeL^fi 3) /or any 2^ p < co, tfeβw j| Ve-ιΛt^ \\ ~>
0 α.s ί-^±oo /or αίi f e ΰ ( i 2 ) .

Proof. We first show that it suffices to prove the result on a core
of A2 (i.e., a set ^'cfl(A2) such that for each feD(A2), there exists
a sequence {i/rK} c v̂ ' such that || A2(^ — ψn) \\ + || q/r — Λ>?/ |! —> 0 as
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n—> co), If ψ and ψn are as above then the observation follows from

||Fe-^%HI - \\Ve-iA\ψ-ψn + ψ%)\\
^ || Ve~iΛt{f - ψn)\\ + \\Ve-iAtψn\\

£\\A*e~^(ψ-ψn)\\ + I I F e - ^ H

^ | | A 2 ( t ~ t.)ll + II Ve~iAtφn\\ .

Of course, the above computation requires VeLp(E'0) for any p ;> 2
so that || Vχ|| ^ ||A2χ|| for all χeD(A2).

In particular take ^ = $$C?(E'S) (i.e., the image under Fourier
transformation of CT(E3)). i f is a core for A2 if and only if CΓ^3)
is a core for Λf*2+W2 [5, p. 300]. The latter condition is true since
Mk2+m2 maps C?(E*) onto C7(E'd) [5, p. 166, 5.19]. All that remains
then is to show that || Ve~iΛtψ \\ -* 0 as t —> ± co for all α/r e ^ . Now

where g - 2p(p - 2)-1. But || e~iAtf | | r - 0(| ί |-8«w-u/'») a s | ί | --, oo
for each 2 ^ r ^ oo and each i/r e c ^ by a variant of Proposition 4.2
of [1] which is a direct consequence of a result of Segal [7, p. 95,
Lemma 3]. Thus the decay is established i f g > 2 o r 2 < ^ p < CO ,

The above results can be used in a fairly obvious manner to prove
the result indicated at the beginning of this section; namely,

THEOREM 2.10. // conditions (i)-(iv) are satisfied then the W±

are complete.

REMARK. A careful examination of the above proofs shows that
condition (ii) is used only to show that W± exist. Thus the above
theorem is valid if condition (ii) is replaced by the weaker condition

(ii)' Wί exist.
Indeed the same change gives an alternate formulation of the existence
Theorem 1.3. This result is more appealing from the viewpoint of
the similarly of W± and W± but the proof requires the very restrictive
condition (iv). It is interesting however, that condition (i) is present
in both versions.

One further result which follows from the above is the isometric
nature of the W±. More specifically,

THEOREM 2.11. // conditions (i), (ii)' and (iv) are satisfied then
for each 0 ^ θ ^ 1, W±: H(A, θ) -> H(B, θ) are isometries.

Proof. Theorems 2.3 and 2.4 give



30 JOHN M. CHAD AM

(14) W± = Γ(B, θ)~ι{ Wl 0 Wξ}Γ(A, θ) ,

from which the result immediately follows since the /"-operators are
unitary and the Wl are isometries.

3* Application* In this section the preceding results will be
used to show that the scattering operator, S — W+]W_, is unitarily
implementable in the free representation of the quantized Klein-Gordon
field with mass m. We shall introduce only the most basic concepts
here and direct the reader to [2] and the references therein for a
more detailed and systematic discussion.

The unique, relativistically invariant, classical dynamical system
associated with the K — G field in three space consists of the real
Hubert space Hr(A, | ) (the real part of H(A, i)) and the nondegenerate,
skew-symmetric bilinear form Re(/ , )̂ ,i/2 where J= (Λ Q )• A
transformation on Hr(A, i) which preserves the above form is called
symplectic. It is well-known that the symplectic transformations form
a group. By means of a straightforward algebraic computation [e.g.,
2, p. 391, Lemma 3.4], it can be shown that both U0(t) and U(t), and
hence the prewave operators W{t), are symplectic. In addition, it is
not difficult to show that strong limits of symplectic operators are
likewise symplectic. Thus W± and S are symplectic in the above sense.

A quantization of the above classical K — G field is basically a
map Φ —> Q(Φ) from Hr(A, i) into unitary operators on a complex
Hubert space <%f which satisfy the Weyl (exponentiated) form of the
commutation relations. The most familiar of these, and the one with
which we shall deal, is called the Fock-Cook quantization. It will be
denoted by Qo on βgrQ. If T: Hr(A, i) -> Hr(A, i) is symplectic then
Φ-+Q0(TΦ) is another quantization. If it is unitarily equivalent to
the Fock-Cook quantization, T is said to be unitarily implementable
(in the free representation of the K — G field with mass m). This
situation occurs if and ond only if T, as an operator on Hr(A, J), is
bounded with bounded (everywhere defined) inverse such that T*T — I
is Hilbert-Schmidt [2, p. 388, Corollary 2.3].

THEOREM 3.1. S is unitarily implementable in the free represen-
tation of the K — G field with mass m if conditions (i)-(iv) are
satisfied.

Proof. Since W± are complete, D{W+ι) - R(W+) = R(WJ = PB,m,
and hence S is well defined on H{A, J). In addition, since R(W^) =
D(W+) = iί(A, i), the image of H(A, i) under S is all of H(A, ί) .
Furthermore, the isometric nature of W±: H(A, I) —* H(B, I) implies
that S: H(A, i) —» H(A, i) is an isometry, and hence unitary. Thus
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S: Hr(A, i) —> Hr(A, £) is orthogonal and the required conditions for
unitary implementability are satisfied trivially.
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