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THE FROBENIUS RECIPROCITY THEOREM AND
ESSENTIALLY BOUNDED INDUCED

REPRESENTATIONS

WILLIAM L. ARMACOST

Let G be a locally compact group with continuous unitary
representations Ri acting on the Hubert spaces H(R%), i = l,2.
Suppose that R2 is irreducible. A closed subspace of H(Ri),
called the null space coming from R± at R2 and denoted
F(Rί; R2), is defined. Write <0%fc for the conjugate space of
the Hubert space Sίf. The following theorem is proved.

THEOREM 1. Let G be a compact group with closed sub-
group H. Let M, L be irreducible unitary representations of
G, H, respectively. Let UL be the induced representation of
L, and let MH be the restriction of M to H. Then the
following are equivalent:

(a) The classical Frobenius Reciprocity Theorem.
(b) H(M) ® F(MM; L)c = F(UΣ; M) ® H(L)C.

When G is not compact, both (a) and (b) may fail. A
non-Hilbert Banach space induced representation (WL) is
defined. Let G be a locally compact group with closed sub-
group H. Let M, L be irreducible unitary representations
of G, H, respectively, where H(L) is separable. Spaces F0(WL;
M)®*H(L)C (shown to equal F(UΣ; M) ® H(L)C when G is
compact) and QF(Mff; L) shown to equal F(MH) L) when L is
compact) are defined. The following generalization of (b) is
shown.

THEOREM 2. Let G, H, L be as above. Then

H{M) (g) QFiMu; L)c = F0(WL; M) ®* H(L)e .

As these results indicate, the purpose of this paper is to establish

yet another generalization of the Frobenius Reciprocity Theorem

(PRT). The genesis of our approach is two-fold. The idea of employ-

ing the null space was suggested by Blattner's study [1] of the

Glimm projection-valued measure. The notion of defining a non-

Hilbert Banach space induced representation seemed natural in light

of the work of Moore [8] and Kleppner [7].

We recall the following basic concepts. Suppose G is a locally

compact group (we denote its neutral element by e). Endowing G

with right invariant Haar measure, one uses the familiar notions of

convolution and * to define two Banach algebras, L^G) (= the

Li-group algebra of G with norm denoted by 11 | [x) and C*(G)

31



23 WILLIAM L. ARMACOST

(= the C*-group algebra of G with norm denoted by || |l*) L e t R
be a unitary (always assumed continuous) representation of G, and
denote always by H(R) the Hubert space on which R acts. In terms
of such a representation R of G, we define nondegenerate con-
tinuous ^representations (denoted by R again) of LX{G) and C*(G)
in the usual way. The representation theories of Lλ(G) and C*(G)
mirror that of G. The reader is referred to [1] for a precise state-
ment of these facts.

1* The null space* Suppose Ssf is a C*-algebra. The Jacobson
structure space of jy, written J^* , is defined to be the space of
kernels of irreducible nondegenerate * -representations of j y endowed
with the hull-kernel topology. If R is a *-representation acting on
the Hubert space H{R), Glimm [5] has shown that there exists a
unique projection-valued measure E(R; •) on the Borel field generated
by the topology of J ^ * such that if C is a closed subset of jy*,
E(R; C) is the projection on the manifold

F(R; C) = {v e H(R): R(a)v = 0 for all a e Π Q

E(R; •) takes its values in the center of the von-Neumann algebra
generated by R(J^).

Let G be a locally compact group with unitary representations
Rly R2; suppose R? is irreducible. Regarding Rx and R2 as re-
presentations of C*(G) as well as of G, we consider the space
F(RX\ Cl {Ker R2}), where Cl {Ker R2} is the closure in the structure
space topology of the point-set containing the kernel of the repre-
sentation R2, Ker R2. Because Ker R2 e Cl {Ker R2}, we have

F{RX\ Cl {Ker R2}) = {v e H{Rλ): Rx{f)v = 0 for all fe Ker R2) .

The projection EiR,; Cl {Ker R2}) will be called the null projection
coming from Rx at R2, and will be denoted by E(Rλ; R2). The space
F(Rγ\ Cl {Ker R2}) will be called the null space coming from Rt at
R2 and will be denoted by FiR^ R2).

LEMMA 1. Let G be a compact group. Let Rγ be a unitary
representation of G which contains a unitary irreducible representa-
tion R2 of G exactly n times. Then F(Rγ

m, R2) = nH(R2).

Proof. For a compact group, the fact that Rx contains R2

exactly n times means that R1 is unitarily equivalent to a discrete
direct sum of representations as follows: Rλ = nR2 0 (®αiϋ«), where
each Ra is an irreducible unitary representation of G disjoint from
R2. For veHiR,), write
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v = (Bΐ=1Vi 0 ((BaVa), Vi e H(R2), va e H(Ra) ,
whence

,; R2) = ©?=1 {Vi e H(R2): R2{f)v, = 0 for all fe Ker R2}

)a {va e H(Ra): Ra(f)v = 0 for all fe Ker R2}. Since the first n
summands clearly sum to nH{R2), we need only show that for each α,
the spaces F(Ra; R2) consist of zero only. Because E(Ra\ R2) com-
mutes with Ra(f) for all feC*(G), Schur's lemma implies that
E(Ra; R2) is either the zero operator or the identity operator Ia on
H(Ra). If E(Ra; R2) = Ia, then H(Ra) = F(Ra; R2), so that Ker Ra a
Keri22. This implies (see Fell [4], p. 378) that KerRa = KerR2,
which in turn implies (see Glimm [6], p. 583) that R2 ~ Ra. This
contradiction means F(Ra; R2) = {0}, as we wanted.

Let G be a locally compact group with unitary representation
R, and irreducible unitary representation R2, Since we will deal
with the Li-group algebra of G, let Kerx denote the kernel of a
*-representation of L^G). The closed subspace F^R^ R2) of H(R^)
defined by F^R,; R2) = {veH{Rx): R,(f)v = 0 for all feKer.R,} will
be called the L^null space coming from R1 at R2. The projection
E(R,; R2) on F^R,; R2) commutes with R,(f) for all fe LX{G). The
results of Fell and Glimm cited in the proof of Lemma 1 can be
shown to remain valid when C*(G) is replaced by Lt(G) if R2 is of
finite degree. If G is a compact group, the fact that all of its
irreducible representations are of finite degree will therefore mean
that Lemma 1 remains true vjhen FiR^ R2) is replaced by F^R^ R2).

Suppose now that G is a compact group with closed subgroup
H. Let L be an irreducible unitary representation of H. Let H{ UL)
be the space of all Haar-measurable functions f on G with values in
H(L) such that (i) f(xΎ) = L(x)f(Ύ) for all xeH, Ύe G, and (ii)
\ ll/00!l2ώ7< co. As usual, let UL, the induced representation of
JG

L, be the representation of G acting on H(UL), where (UL(Ύ)f)(7') =
/(7'7) for all feH(UL), 7, YeG. Suppose M is an irreducible
unitary representation of G; let MH be the restriction of M to H.
Suppose UL contains M exactly n times. By Lemma 1 and the FRT,
we have F(UL; M) ~ nH(M) and F(MH; L) ~ nH{L). Using a trivial
dimension argument, we have

* H(M) (8) F(MH; L) = F(UL; M) 0 H(L), where α(g)" denotes the
algebraic tensor product. Since H(L) and H(M) are finite-dimensional,
it is clear that * implies the FRT. Letting ^fc be the conjugate
space of a Hubert space ^f (so that dim ^f = dim έ%fc), we get

THEOREM 1. Let G be a compact group with closed subgroup
H. Let M, L be irreducible unitary representations of G, H, re-
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spectively. Then the following statements are equivalent:
(a) The Frobenius Reciprocity Theorem,
(b) H(M) ® F(MH; L)c ~ F(UL; M) <g) H(L)\
(c) H{M) <g> F^MH, L)C ~ F,( UL; M) ® H(L)C.

2. Essentially bounded induced representations* It is quite
easy to see that statements (b) and (c) of Theorem 1 are false if
we abandon the assumption that G is compact. Indeed, let G be the
group of real numbers under addition and let H = {0}; let M be any
character of G and let L be the irreducible identity representation
of H. Then UL is the right regular representation of G acting on
L2(G) and F(UL; M) is the trivial subspace of L2(G) having dimen-
sion zero, whereas F(MH; L) has dimension one. However, if one
considers the right regular representation of G acting on L^G)
instead of L2{G) one can define in the natural way a space "F(UL; M)"
having dimension one. We therefore define a new type of induced
representation; we argue in Proposition 1 below that this definition
is reasonable by re-examining the case when G is compact.

DEFINITION 1. Let G be a locally compact group with closed
subgroup H. Let L be a unitary representation of H and let
Loo(G; H{L)) be the Banach space of all Haar-measurable essentially
bounded functions from G to H(L) (for / in LJβ; H(L)), let ||/||» =
ess sup ||/(7) ||). Let B(WL) be the Banach space consisting of all g in
LJfi; H{L)) such that g(xΎ) = L(x)g(7) for all xeH, 7 e G. Define
a representation WL of G on B{WL) by the rule (WL(Ύ)g)(Y) = g(Ύ'7)
for all geB(WL), 7, 7'eG; WL is called the L^-ίnduced representa-
tion of L acting on B(WL)

It is clear that B(WL) is invariant under WL, and that WL maps
G into the isometries on B(WL). It should be noted that WL is not
in general a strongly continuous representation of G. We can define
WL as a representation of L,(G) by the rule that for feL^G), WL(f)
is the operator on B{WL) sending g e B(WL) to WL(f)g e B(WL), where

(WL(f)g)(a) = \ fy
JG

for all aeG. Because || WL(f)g (^ <£ \\f\\t \\g lU, the representation
/—• W^if) is a strongly continuous representation of LX(G). Note
that since in general | | / | | * ^ ||/||i> it does not seem to be the case
that one can similarly define a strongly continuous representation of
C*(G). It is for this reason that we will have to concern ourselves
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with Lt(G) at the expense of C*(G).
As Lco((?; H{L)) can be regarded as the dual of L^G; H(L)) (defined

in the natural way) when H(L) is separable, WL can be shown to be
a weak-"" continuous representation of G when in fact H{L) is separable.

3* The case G is compact* Let G be any locally compact group
with closed subgroup H. Let ikf, L be irreducible unitary represen-
tations of G, H, respectively. Let us define a space FX{WL) M) in
the natural way:

FX{WL\ M) = {ge B(WL): WL(f)g = 0 for all fe Ker M} .

When G is compact, we have the following result.

PROPOSITION 1. Let G, H, M and L he as in Lemma 1. Then
M) = F^W M).

Proof. Since H(L) is finite-dimensional, we can write (relative
to some basis of H(L)) every g e H( UL) as a "column-vector valued"
function g = (gk), where gkeL2(G), k = 1, -- , r = dimiϊ(L). It
plainly suffices to show that F^U1", M) gΞ F^W1", M), so we will be
done if we establish that if g = (gk) e F^U1-; M) then each ^ is in
fact continuous (and hence in L^iG)).

We have FX{UL) M) = {ge H(UL): UL(f)g = 0 for all feKe^M}.
Let m = dimH(M)o There exist m2 continuous functions hi3 on G
of the form fc^(τ) = (M(Ί~ι)un v3) (ui9 v3 e H{M), i, j = 1, , m) such

that KerxM = {fe L^G): I fCt)hiά(Ί)dΊ = 0, i, j = 1, , m). Clearly,
if g — (gk) e H{ UL) and if each gk is a linear combination of the
continuous functions h\3 (where K3{Ί) = hi3 {Ί~1)), then UL(f) = 0 for
al l/eKe^M. Conversely, we will show that if g = (gk) e F^U1", M),
then each gk is indeed a linear combination of the functions h'i3.

If g = (gk)e F^U1", M), then UL(f)g = 0 whenever in particular
f e Ker2ikT(= L2(G) n Ke^ikf). Hence, for fe Ker2 M, k = 1, , r, we

have 1 fθ)gk{^~ι)dΊ = (f°gk)(a>) = 0 for almost all αeG, and since
the convolutions fogk are continuous we have (f°gk)(a) = 0 for all
aeG. Letting a = e, we infer that if UL(J)g = 0 for feKer2M,
then ^/^^(T-OdT = 0, & = 1, , r.

Define, for each hi3, gkeL2(G), linear functionals Fi3, Fk on L2(G)
as follows:

•" . . - . . - ΐ,./ = 1, . . - , m

ft = 1, •••, r .
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Hence Ker Fk 3 Π™;=i Ker FiS, k = 1, , r. We conclude that there
exist constants ckij such that for k = 1, •••, r, we have

whence #* = ΣΠ;=i CMMO*
 a s w e wanted to show.

For purposes of generalization, we extract the following corollary
from the above proof.

COROLLARY. Let G, H, M and L be as in Lemma 1. For any
u, v in H(M) let gUyV be the function on G defined by gu,v(7) = (M(7)u, v)
for all 7 6 G. Let SM be the linear span of all such functions gUιV.
Let Sr

M be the collection of all functions g mapping G into H(L) (with
r = dim H(L)) which can be written (relative to some fixed basis of
H(L)) as column-vector valued functions with entries gu

 m ,gr in
SM. Then

F,(UL; M) - Fλ(WL) M) = {ge Si: g(x7)

= L(x)g(7) for all xeH, 7 e G} .

4. The space F0(WL; M) ®* H(L)C. Let G be a locally compact
group and let H = {e\. If M is an irreducible unitary representa-
tion of G and if L is the trivial irreducible representation of H, one
calculates Fλ(WL; M) to be the space

F,(WL; M) = ίge LJβ): ί f{7)g(7~ι)d7 - 0 for all fe L,(G) such that

\f{7)(M(7~ι)u, v)d7 = 0 for all u, v e H(M)j .

Elementary considerations thus show that F1(WL\ M) is just the
weak-* closure in L^G) (= the dual of LX(G)) of the space SM =
l i n e a r s p a n {gu>v e L^(G): gu,υ(7) = (M(7)u, v),u,ve H(M)}. B e c a u s e t h e
weak-* closure of such a space is a very difficult thing to deter-
mine precisely, we feel constrained to consider the simpler space
SM( = F1(WL;M) when M is of finite degree).

Let us now suppose that H is any closed subgroup of G with
irreducible unitary representation L of finite degree r. We define a
space FQ(WL; M) as follows:

Fo( WL; M) = {ge Sr

M: g(x7) = L(x)g(7) for all xeH, 7 e G} ,

where Si is as in the corollary of Proposition 1. Of course, when
G is compact, F,(UL; M) = F,(WL; M) = F0(WL; M).

Suppose 3ί?z is a pre-Hilbert space with inner product ( , ) .
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Define a new pre-Hilbert space £ίfo

c as follows: (1) the underlying
space of <^ c is S^\ (2) if v e Sίf*, the corresponding member of
έ%fj is denoted by v; (3) scalar multiplication is given by av = av;
(4) the inner product is given by (ΰ, v) = (v, u). When ^ J is a
Hubert space, β£%c is just the conjugate space of 3(f^ Let Sίf^ 3(fz

be pre-Hilbert spaces containing the elements u, v, respectively.
Define an operator u 0 v of rank 1 from <%t into <%f by (u 0 v)w =
(w, v)% for all w G <%?. The space of linear combinations of such
operators is just the space of linear operators of finite rank mapping
<%? into Jgf, and is isomorphic to the algebraic tensor product of Sίfγ

and ^ c ; we denote this space by ^ ( g ) ^ c .
We thus see that Fo( WL; M) 0 H(L)C can be regarded as the

space of all matrix-valued functions N on G such that the matrix
entries of N are functions in SM and such that N(xΎ) = L(x)N(Ύ) for
all xeH, ΎeG. If e19 , er is an orthonormal basis of iϊ(L) and if
iVGFo(^z;Ar)(g)ii(L)c, then the matrix entries of N, (N(-)eif e,),
i, j = 1, , r, have the form

A;

Since the collection of all these vkij is finite, we can write

ei,ej = it(M( )vk,u'kiJ) ,

where the % are linearly independent and independent of the particular
indices i, j. These considerations lead naturally to a definition.

DEFINITION 2. Let G be a locally compact group with closed
subgroup H. Let M, L be irreducible unitary representations of
G, H, respectively, where H(L) is separable. Define the space
F0(WL; M) ®* H(L)° to be the space of all functions N on G such
that:

(a) For all 7 e G, N(J) is a trace-class operator on the Hubert
space H(L).

(b) N(xΎ) = L(x)N(Ύ) for all x e H, Ύ e G.
(c) There exists an orthonormal basis (ONB) {̂ } of H(L) and a

finite collection of linearly independent elements vly "m,vn in H(M)
such that

ei, e3) = Σ W K , ̂ i ) , i, i = 1, 2, .

It is clear that F0(WL; l ί ) ®* ^(L)" = F^W", M) (g) if(L)c when
L is of finite degree.
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We will need a few more definitions and results. If £tf is a
Hubert space, let £^(3ίf) be the space of all the bounded linear
operators mapping £ίf into itself and let ^fγ{^f) be the subspace of
£f{^f) consisting of all the trace-class operators in ^{^f). If Tr
denotes the usual trace functional and if T'e Jzf^&ίf), the functional
A—>Ύv(TA) on J*f(<%?) is continuous in the ultra weak topology of

(see [2]).

LEMMA 2. If G is a group with irreducible unitary represen-
tation R and if T e ^i{H{R)) satisfies Tr (TR(Ύ)) = 0 for all TeG,
then T = 0.

Proof. By the von Neumann density theorem, the space 21 =
linear span {R(7): Ύe G} is ultraweakly dense in ^f(H(R)). Since
Ύr(TA) = 0 for all Ae%, the ultraweak continuity of Tr(T ) implies
Ύr(TA) = 0 for all Ae^(H(R)). Therefore Tr(TT*) = 0, so that
T = 0.

We finally recall the following special form of the principle of
n-fold transitivity: Let G be a group with irreducible representation
R and let 31 = linear span {R(Ύ): Ύe G}. Let v19

 m ,vn be a collection
of linearly independent elements of H(R) and let v be any other
element in H(R). Then there exist operators Ak e SI such that
AkVi = dikv, i, k = 1, •• , n, where δik is the Kronecker delta.

PROPOSITION 2. Let G be a locally compact group with closed
subgroup H. Let M, L be irreducible unitary representations of
G, H, respectively, where H(L) is separable. Suppose N is a function
mapping G into j^l{H{L)) such that N(xl) = L(x)N(Ύ) for all x e H,
Ύ e G. Then the following two statements are equivalent:

( i ) There exists A e H(M) ® H(M)e such that Tr (N(Ύ)) =
Tr (M(Ύ)A) for all ΎeG.

(ii) NeF0(WL;M)®* H(L)C.

Proof, (a) (i) => (ii). Writing A in the form A = Σ?=i^iΘ^<>
where vί9 , vn are linearly independent elements in H(M), we have,
for all ΎeG,

Tr (N(Ύ)) = ± (M(Ύ)vi9 u%) .

Let v be any element of H(M). By the principle of w-fold transitivity
there exist operators Av>k, k = 1, , n, of the form ^papM{Ύv) such
that AVykVi = δtkv. For k = 1, •••, n, ΎeG, we define operators
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N(v, k; 7) = Σ P CLPN(ΎΎP) satisfying conditions (a), (b) of Definition 2.
We have

Tr (N(y, k; 7)) = ± (M(xΎ)Av,kvi9 u,) = (M(Ύ)v, uk) .

Hence, for all x e H, we see that

Tr ( ( g N(vi9 i; 7 ) ) L ( X ) ) - ±{M(xΊ)v^ ut) - Tr (N(Ύ)L(x)) .

Lemma 2 implies N( ) = ΣΓ=i M v » ^ •)•
Let {e<} be an ONB of ίί(L). We will have shown that N

satisfies (c) of Definition 2, if, for each k = 1, •••,%, it is the case
that (iSΓ̂ fc, Λ; )βi»βy) = (M( K , ^ ), where ukijeH(M). To show
this, observe that for all veH(M), xeH, 7e(?,

Tr (iV(i;, k; Ύ)*L{x)) = Tr (JV(v, k; x~ι7)) = (M(Ύ)v, M(x)uk) .

Hence, for xp e H and scalars bp, we have

Tr (N(V- k; eY Σ bpL(%p)) =

By the von Neumann density theorem, the space of operators of the
form *ΣipbpL(xp) is ultraweakly dense in J*?(H(L)). Choose a sequence
of operators Anij (of the form Σ P bnpL(xnp)) such that >l%ίJ —-> ΐ?^-
ultraweakly (where ί7 o is defined by E'iie^ = δίme0» Let wΛlV =
Σ P bnpM(xnp)uk. Since Tr (ΛΓ(̂ , k; β)*Anii) = (ιι;wii, v) for all i; e iϊ(M),
the ultraweak continuity of the trace functional implies that

(wnij - wmij, v) I —> 0

as n,m—*oo; i.e., {wnij} is a weak Cauchy sequence. Since H(M)
is reflexive and thus weakly complete, there exists ukij e H(M) such
that

(ukίj. M(Ύ)v) - lim (wnij1 M(7)v) = lim Tr (N(v, k; y)*Anij)
n—>co n—>oo

= Tr (N(v, fc; 7)*^-) = iV(^, fc; 7)*βi, β,) .

This is,

; 7)6*, ^ ) - (M(Ύ)vk, ukij) .

(b) (ii)=>(i). If NeF0(WL;M)(&* H(L)% there exist linearly
independent elements vt, * ,vn in H(M), an ONB {β, } of H(L), and
elements uΛ ί J e H(M) such that

, w«i) , i, i = 1, 2, .
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Exactly as in (a), use n-ΐold transitivity to define, for all veH(M),
k = 1, > -,n, functions N(v, k; •) e F0(WL; M) <g>* H{L)C satisfying

(N(v, k; )e<, ed) = (M( )v, ukij) , i, j = 1, 2, .

Let Em be the projection on the space spanned by elf * -,em; since
H(L) is separable, these Em converge ultra weakly to the identity
operator on H(L). We see that

Tr (N(v, k; e)Em) = Σ ( ^ ^*«) - (v, w*w) ,

where the ukm = ΣΓ=i%ϋ must converge weakly to an element uk in
ίZ"(Λf) and Tr (N(v, k; e)) = (v, uk). For v = M(Ύ)vk (so that iV(^, k; e) =
N(vk, k; 7)) we see that

Tr (N(vk, k) 7)) = (M(Ύ)vk, uk) = Tr (M(J)(vk (g) wA)) .

Letting A = Σϊ=i i>Λ (g) wA e iϊ(M") ® H{M)% we have, for all T G G ,
Tr (N(Ύ)) = Tr (ΣLi i^fe, k; 7)) = Tr ι

5* A quasi-null space* Let G be a locally compact group with
unitary representations Rx and i?2, where i?2 is irreducible. We will
define a subspace QF(Rι\ R2) of H(Rι)1 called the quasi-null space
coming from Rι at R21 as follows: QFiRΰ R2) = {ue H{R^): for all
ΎeG and all veHiRj), there exists an operator T(u, v) e ^%H(R2))
such that (R^u, v) = Tr (T(u, v)*ii2(7))}. If u G Q ί 7 ^ ; i?2), we have
for all veHiRJ and all feL(G) that

(iW/K v) = f fWRtf-1)^ v)dΎ

for all/e C*(G). Thus/eKeri2a

implies j?^/)^ = 0. We see that QF(RL; Rz) S

PROPOSITION 3. Leέ G he a locally compact group. Let R1 be a
unitary representation of G and let R2 be an irreducible unitary
representation of G such that R2(f) is a compact operator for all
fe C*(G). Then QF(Rλ; R2) = FiR,; R2).

Proof. Let u e F(R,; R2). We have {Rι{f)v,, v) = 0 for all v e
and for a l l/e Ker i?2. For any veH(R2), the continuous functional
Fu,v on C*(G) defined by Fu,v{f) = (î 1(/)^6, v) therefore induces a
continuous functional FltV on the quotient space C*(G)/Ker R2. As
R2 is compact, the mapping /—• R2(f) maps C*(G) onto £/p

c{ΈL{R2))
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(= the space of compact operators on H(R2)), and thus induces an
isomorphism

Rl C*(G)/Ker R2 = J^C(H(R2)) .

Since S^C{H{R2)) is a C*-algebra this isomorphism is an isometry
([3, pp. 18, 82]). For fe C*(G), let /* denote its equivalence class
in C*(G)/Ker R2. Using the well-known fact that the dual of ^fc(H(R2))
is J^(H(R2)) ([3, p. 82]), we conclude that there exists a trace-class
operator T(u, v)* such that FL,υ{p) = Tr (T(u, v)*R\{β)) for all /*e
C*(G)/Ker R2; i.e., (R1{f)u, v) = Tr (T(u, v)*R2{f)) for all fe C*(G). A
simple convergence argument shows that (i2x(7)^, v) = Ύr (T(u, v)*R2(Ύ))
for all ΎeG; i.e., u

REMARK. When R2 above is of finite degree, one shows by a
similar technique that QFiR^ R2) = F^R^ R2).

6* A Frobenius reciprocity theorem* Let G be a locally
compact group with closed subgroup H. Let M, L be irreducible
unitary representations of G, H, respectively. For A e H(M) (g) H(M)%
write A = Σ?=i^ί® <̂> where v19 •••, vn are linearly independent in
H(M). Let us observe the equivalence of the following two statements:

( i ) For each ΎeG, there exists TA(Ί) e ^fγ{H{L)) such that
Ύτ(M(%Ί)A) = Ύr(TA(Ύ)L(x)) for all xeH.

(ii) AeH(M)®QF(MH;L)c.
To show (i) ==> (ii), note that for all x e H, 7 e G,

Tr {M(x~ιΊ)A) = Σ (ilfίa?-^)^, w*) = Tr (

As in the proof of Proposition 2, use %-fold transitivity to find, for
all veH(M), k = 1, - -, n, operators of the form ^vavM(lp), for
which

(M(x)uk, v) = Tr (T(uk, v)*L(x) ,

where

T(uk, v) = Σi apTΛ(Ύp)

Conversely, for A=Σ?=i ' y i®^i with u19 , uneQF(MH; L), if we
let TA( ) = Σ?= 1 Γί^i, Λί( M) statement i follows.

It is easy to see that TA( ) in i is unique. Indeed, if T'A{ ) also
satisfies i, the fact that Ίτ({TA(Ί) - TA(Ύ))L(x)) - 0 for all xeH,
Ί e G, implies, by Lemma 2, that TA = TA. It follows that the map
A —• TA is linear.
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THEOREM 2. Let G be a locally compact group with closed
subgroup H. Let M be an irreducible unitary representation of G
and L an irreducible unitary representation of H, where H(L) is
separable. Then the linear map A—>TA maps H(M) (g) QF(MH; L)c

isomorphically onto F0(WL; M) (g)* H{L)C.

Proof. The map A—> TA{ ) is injective, since TA{ ) = 0 implies
Tr (M(Ύ)A) = 0 for all 7 e G; by Lemma 2, A = 0. Let A e H(M) <g)
QF(MH;L)C. For all x,yeH, 7eG, we have Tr (TA(x7)L(y)) =
Ύτ(M(y)M(x7)A) = Ύγ(L(x)TA(Ύ)L(y)). By Lemma 2, TA(xy) = L(x)TJy).
B y P r o p o s i t i o n 2 , t h e f a c t t h a t ΊT (TA(Ύ)) = T r (M(Ύ)A) f o r a l l J e G
implies that TAe F0(WL; M) <g>* H(L)C.

To see that A->TA is surjective, let Ne FQ( WL; M) ®* H{L)C.
By Proposition 2, there exists A e H(M) (g) H{M)C such that for all
xeH, 7 G G , Tτ(N(Ύ)L{x)) = Tτ(N(xΎ)) = Tτ(M(xΎ)A), so that by
the equivalence of statements (i) and (ii) preceding this theorem, we
have AeH(M)(g)QF(MH; L)c. By the uniqueness of TA we must
have N = TA, as we needed to show.

We have already noted that when L and M are of finite degree,
we have F0(WL; M) = F1(WL; M) and QF(MH; L) = F(MH; L) = F1(MH; L).
Indeed, if L is compact, QF(MH; L) = F(MH; L). Further, if G is
compact, F^W; M) = FX{UL\ M) - F(UL; M). In light of Theorem 1,
we have a complete generalization as well as another proof of the
classical Frobenius Reciprocity Theorem.

It is to be hoped that this approach somehow lays bare the
skeleton of the structure of this reciprocity situation, and, moreover,
that the quasinull space yields some information as the manner in
which an irreducible representation is contained in some other
representation.

The author wishes to express his gratitude for the help and
guidance given him by R. J. Blattner, under whom this work was
developed as a part of the author's doctoral dissertation at the Univer-
sity of California, Los Angeles.
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