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STOCHASTIC INTEGRALS IN ABSTRACT WIENER SPACE

HUI-HSIUNG Kuo

Let W(t, ώ) be the Wiener process on an abstract Wiener
space (i, H, B) corresponding to the canonical normal dis-

ff

tributions on H. Stochastic integrals \ ξ(s, ω)dW(s, ω) and

S t Jo

(ζ(s, ω), dW(s,ω)) are defined for non-anticipating transfor-
0

mations ξ with values in &(B, B) such that (f(ί, ω) — I)(β)c
Z?* and ζ with values in H. Suppose X(t, ω) = Xo +

V Γ
I ζ(s, ω)dW(s, ώ) -f \ σ(s, ω)ds9 where u is a non-anticipating
Jo Jo
transformation with values in H. Let /(£, x) be a continuous
function on R x B, continuously twice differentiate in the
indirections with D2f(t, x) e ^(H, H) for the x variable and
once differentiable for the t variable. Then fit, X(t,ω)) =

*(«, ω)ΌAs, X{s, ω), dW(s, ω))

<Df(s,X(s,ω),σ(8,ω)> + τ> trace[ξ*(s,ω)D2f(s,X(s,ω))ξ(s,ω)]}ds,

where < , > is the inner product of H. Under certain assump-
tions on A and σ it is shown that the stochastic integral

rt rt

equation X(t, ω) = x0 + \ A(X(s, ω))dW(s, ω) + \ σ(X(s, ώ))ds
Jo Jo

has a unique solution. This solution is a homogeneous strong
Markov process.

1* Introduction* The notion of stochastic integral introduced
by K. Ito [5; 8] is well-known nowadays [10]. Its generalization to
infinite dimensional space has been investigated and used for the study
of differential equations of diffusion type. See, for instance, [1] and
[2]. The purpose of this paper is to define and study stochastic
integrals with respect to standard Wiener process in an abstract
Wiener space [3; 4]. We will generalize Ito's formula [7] and study
the stochastic integral equation. We remark that our work is quite
different from that of [1] and closely related to that of [2] How-
ever, we have a more general space and weaker assumptions than [2].

2* Abstract Wiener space* In this section we give a brief re-
view of the notion of an abstract Wiener space and establish notation
at the same time. Let H be a real separable Hubert space with
norm and inner product denoted by | | and < , > respectively. Let
μt(t > 0) be the cylinder set measure on H defined by / (̂C) —

(2πt)-nl2 [ exp{-\x\2l2t}dx, where C = P-\D), D is a Borel set in the

image of an π-dimensional projection P in H and dx is Lebesgue
measure in PH. A measurable norm on H is a norm || || on iίwith
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the property that for every ε > 0 there exists a finite-dimensional
projection Po such that μ^xe H; \\Px\\ > ε}) < ε whenever P is a
finite-dimensional projection orthogonal to Po. Denote by B the com-
pletion of H with respect to || | |. Let i be the inclusion map from
H into B and j the embedding (by restriction) of B* into i ϊ * . Hence-
forth we will make the identifications H* = H and J5* Ξ ji?*. Thus
B* a Ha B and <α, #> = (a?, #) for all a? in B* and 7/ in H, where
(,) denotes the natural pairing of B* and B. The triple (i, if, 2?) is
called an abstract Wiener space. It is shown in [3] that μt o ί~\ defined
on the cylinder sets of B, has a unique countably additive extension
pt to the Borel field of B.

Define for x in B and E a Borel subset of B, pt(x, E) — pt(E — x).
It is remarked in [4] that pt(x, •), t > 0, are the transition probabi-
lities for a Markov process with continuous sample paths starting at
the origin in B. Throughout this paper Ω will denote the space of
continuous functions ω from [0, 00) into B vanishing at 0. Then
there is a unique probability measure & on the σ-field ^ generated
by the coordinate functions such that if 0 = t0 < tι < < tn then
o)(tj+1) — co(tj), 0 <£ j ^ n — 1, are independent and the jth one has
distribution measure ptj+1-tj We denote by g3 the expectation with
respect to (Ω, &>). The process W(t) given by W(t)(ω) = ω(t) is called
a Wiener process with state space J5.

r
In the sequel we will use the notation θr — \ Wx^pSdx)* It is a

JB

consequence of a theorem proved recently by Fernique that θr < co
for 1 <; r < co. Thus we have, for instance, g"(|| W{t) — W(s)\\2) =
\t- s\θ2.

We will assume the following on (i, H, B): There exists a sequence
QTO of finite dimensional projections such that (1) Qn{B) c J3*, (2) Qn

converges strongly to the identity both in B and in H. It follows
by the Principle of Uniform Boundedness that there exists a finite
constant a > 0 such that \\Qn\\B,B = sup^ 0 ||Q f t#||/IMI < a for all n.

3* Stochastic integrals*

NOTATION. ^ = <7-field generated by TΓ(s), O^s^ ί . &(Xy Y) =
the Banach space of all continuous linear operators from a Banach
space X into another Banach space Y. .^{H, H) — the Banach space
of all trace class operators of H. &2(H, H) = the Hubert space of
all Hilbert-Schmidt operators of H. Norms in ^ ( X , Y), ^{H, H)
and &2(H, H) are denoted by || \\ZtY, || ||i and || ||2 respectively, c
will always denote a constant such that \\x\\ lί c\x\ for all a? in H.

REMARK 3.1. Every bounded operator from B into B* is a trace



STOCHASTIC INTEGRALS IN ABSTRACT WIENER SPACE 471

class operator of H (p. 10 in [9]). In fact we have \\S\\, ^ θ2\\S\\BtB*
for all Se&(B, J5*). A map from B into itself with image in J3*
will be called skinny.

DEFINITION 3.1. By a non-anticipating skinny transformation
(n.a.s.t.) we mean a stochastic process ζ(t, ω) (te[0, c°), ωeΩ) with
state space &(B, B*) with the properties that ζ is (ί, Λ))-jointly measu-
rable and for each t ^ 0 ζ(t, •) is .^-measurable, ζ is said to be
simple if there is a partition {0 = t0 < ^ < <tn} such that ζ(ί, ω) —
ζ(ίΛ α>) for tj^t< ίi+1, i = 0, 1, , w - 1, and ζ(ί, ω) - ζ(ί, ω) for

By using the same technique of Lemma 7.1 in [8] we can easily
prove the following

LEMMA 3.1. Let ζ be a n.a.s.t such that for each 0 < Γ < co

&\T\\ζ(t,ω)\\BlB*dt< - .
Jo

Then there exists a sequence ζn of simple n.a.s.t. such that for each
0 < T < co

lim gf Γ||ζ(f, ω) - ζn(t, ω)\\BfBdt = 0 .
n—>oo J o

Let ζ be a simple n.a.s . t . with jumps a t 0 < tλ < t2 < < tn.

Suppose g 7 Γ|I ζ(s, ω) \\% BΛs < oo for each 0 < T < o o . We define
Jo

stochastic integral Iζ of ζ with respect to W(t) as follows:

ΣCfe )(T7fe1, α>) - W(tk, ω))

+ C(ίΛ ω)(W(t, ω) - W(th ω))

if tό<Lt< tj+ι, j = 0, 1, , w.

Here we use the convention that ί0 = 0, ίn+1 = oo.

ζ(s, ω)dΐΓ(s, ω) .

0

REMARK 3.2. We will consider Iζ as a stochastic process with
state space H.

LEMMA 3.2. Suppose ζ is a n.a.s.t. Then we have
(i) for s< t, &(\ζ(s)(W(t) - W(s))\2) = (ί - s)^(||C(s)Ilϊ).
(ii) /or s < ί < u < t ; , %?<ζ(s)(W(t)- W(s)), ζ(u)(W(v)-W(u))> =0.

Proof. We prove ( i ) only since (ii) can be proved similarly. Let
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{Qn} be the projections given in the end of §2. Define a sequence of
random variables /„ on Ω by

fm = \QmZ(s)(W(t) - ΐF(β))I".

So

/ . ^ \ζ(s)(W(t) - TO)I2 < c||ζ(β)(T7(t) - TO) Hi-

^c\\ζ(s)\\l,B,\\W(t)- W(sW.

Since ζ is non-anticipating, we have

ϊf(\\ζ(s)\\l,B,\\W(t) - W(sW) = ϊ?(\\ζ(s)\\B,B,) ϊ?(\\W(t) - W(sW)

= (t-s)θ2%>(\\ζ(s)\\B,B.).

Thus /„ is dominated by an integrable function. Obviously /„ con-
verges to \ζ(s)(W(t) — TΓ(s))|2 a.e. By the Lebesgue dominated con-
vergence theorem,

gΓ(|ζ(β)(TF(t) - W(s))\> = lim
m-*o

Now

&(\QmZ(s)(W(t) - W(8))\*) = gr

= Σ

We will prove below that

( 1 ) &{(W(t) - W(s), ζ*(s)eί)
2} = (ί - s) £ iΓί(ζ*(β)βΛ e,)2}

Then

Σ (« - «) Σ

which yields the desired conclusion when m —> oo.
Let us prove now the assertion (1). Define gn = (Qn(W(t) — W(s)),

ζ*(s)ej)\ Then gn converges to (W(t) - W(s), ζ*(s)^ )2 a.e. Further-
more gn is dominated by an integrable function since:

gn ^ WQnWIΛ W{t) - TΓ(8)|Π|C*(«)||

^a*\\ W(t)- W(s)\\2\\ζ^s)\\%>BA\ej\

Therefore by Lebesgue's convergence theorem,
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- W(s), ζ*(s)ejf} = lim ί?{Qn(W(t) - W(s)), ζ*(s)ejY} .

Assertion (1) follows immediately by noting that

= (t-s)±ί?{(ζ*(s)ehekf}
k=l

by a simple calculation.

PROPOSITION 3.1. The stochastic integral Iζ has the following pro-
perties:

( 1 ) Iζ is continuous in t for almost all co.
( 2 ) Iζ is a martingale with respect to {^ft}
( 3 ) ^ { s u p 0 S i S r I Iζ{t, ω) I > a} g (l/α2)ίf {| Iζ(T, ω) |2}

( 4 ) &{Iζ(t, ω)} = 0, &{\Iζ(t, ω)\η = g-('||ζ(β, ω)\\tds
J

( 5) Iaζ1+βζ2 — oclζl + βlζ2y where ζx and ζ2 are n.a.s.t. and a, β e R.
( 6 ) Iζ is non-anticipating.

Proof. (1), (2), (5) and (6) are obvious, while (3) follows from
(1) and (2) by Doob's inequality. Therefore we need only show (4).
Without loss of generality we may assume that t — tj+ι for some j .
Thus

Iζ(t, ω) = ±ζ(tk, ω)(W(tk+1, ω) - W(tk9 ω))

\Iζ(t, ω\2) = t t <Cfe ω)(W(tk+ί, ω))
& = 0 m —0

- W(tk, ω), ζ(tm, ω)(W(tm+1, ω) - W(tm,

Apply Lemma 3.2 and we obtain

if(|If(t, ω) |2) = Σ (ί*+ι - tk)&{\\ζ.{tk, ω)||i)

Finally using the same argument used in the proof of Lemma
3.2 we see immediately that g7 < Iζ(t, ω), h > = 0 for all he H.
Hence

Using Lemma 3.1 and applying the same technique used in
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Theorem 8 of [8], we can easily show the following.

THEOREM 3.1. For every n.a.s.t. ζ such that gf\ \\ζ(t, ω)\\2

B B*dt<
Jo

for each 0 < T < °o, we can determine a stochastic process

Iζ(t, ω) = \\(s, ω)dW(s, ω)
Jo

such that the properties (l)-(6) of Proposition 3.1 hold.

DEFINITION 3.2. By a non-anticipating transformation (n.a.t.) we
mean a stochastic process ξ{t, ω)(t e [0, oo), ω e Ω) with state space

, B) such that ζ(ί, ω) = ξ{t, ω) — I in a n.a.s.t.

DEFINITION 3.3. If ξ(t, w) is a n.a.t. such that

£, ω) - 7| | |> Λ dΐ < - for each 0 < T < oo ,

then we define the stochastic integral Iξ of ξ with respect to W by
Iξ(t, ω) = TΓ(ί, 6>) + Iζ(t, ω), where ζ = ξ - 7.

PROPOSITION 3.2.

gr{||Ie(ί, ω)||2} ^ 2(1 + c)2(l + ^ 2 )^Γ(1 + ||ζ(s, ω)\\t)ds .
Jo

Proof. Direct computation.

DEFINITION 3.4. By a non-anticipating vector (n.a.v.) we mean a
stochastic process σ(t, ω) (te[O, oo)9ωeΩ) with state space H such
that σ is (t, ω)-jointly measurable and for each t Ξ> 0, σ(t, •) is ^ C -
measurable. σ is said to be simple if there is a finite partition of
[0, co) such that σ is a constant random vector (i.e., with values in
H) on each interval of the partition.

LEMMA 3.3. Suppose σ is a n.a.v. such that for each 0 < T< °°

I σ(t, ω) \2dt < oo. Then there exists a sequence of simple n.a.v.

σn such that σn e JB* and for each 0 < T< oo, gf \ \σ(t, ω) - σ Λ(ί, ω)|2dί ->
Jo

0 a s ^ —> co.

Proof. The same argument in Lemma 7.1 [8] shows that there
is a sequence ^ of simple n.a.v. such that for each 0 < Γ < oo,

if Γ| 57Λ(ί, α>) - <7(ί, ω) \2dt -> 0 as w -> oo.
Jo

Let {ê } be an orthonormal basis of H lying entirely in B*. Let



STOCHASTIC INTEGRALS IN ABSTRACT WIENER SPACE 475

Pn be the orthogonal projection onto the span of eίy , en. It is easy
to see that σn = Pj]% is a desired sequence.

Let σ be a simple n.a.v. in J5* with jumps at 0 < tλ< ••• < ίn.
The stochastic integral Jσ of σ with respect to W is defined as follows.

Jo(t, ω) = Σ ( σ f e , <*>), T7(ί4+1, ω) -
A 0

+ (σ(ίΛ ω), W(t, ω) - W(th ω)), ί, ^ ί < ίi+1

where ί0 = 0, tn+1 = oo.

NOTATION. Jσ(ί, ω) = \ (σ(s, ω\ dW(s, ω)) .
Jo

REMARK 3.3. Recall that (, ) is the natural pairing of B* and
B. Hence Jσ is a stochastic process with values in R.

Parallel to Iζ the stochastic integral Jσ has the similar Properties
and extensions. We will omit the proof since it is routine.

CT

THEOREM 3.2. For every n.a.v. σ such that gM \σ(t, ω)\2dt < co
Jo

for each 0 < T < oo we can determine a stochastic process Jσ(t, (θ) =

\ (σ(s, ω), dW(s, ω)) such that
Jo

( 1 ) Jσ is continuous in t for almost all ω
( 2 ) Jσ is a martingale with respect to {^/ft}
( 3) ^ { s u p o ^ r I Jo(t, ω)\>a}^ (l/a?)&{Jσ(T, ω)2}
( 4 ) &Jσ(t, ω) = 0, ίf{Jσ(£, ωf] = c^\\σ{s, ω)\2ds

Jo

( 5 ) Jao1+βa2 = 0CjOl + βJa2 , <*, β € R
( 6 ) Jσ is also non-anticipating.
REMARK 3.4. The reader should not be surprised that we can

determine Jσ such that it is continuous in t for almost all a). Con-
sider for example the simplest case a==heH\B*. The stochastic
process (h, W(t)) = X(t) is not continuous in t. However it has a
continuous version. This can be seen by observing that

ϊf{(X(t) - X(s)Y) = 3(t - sγ\h\* .

4. Ito's formula* Let / be a real-valued function defined in
an open set U of B. We will consider two kinds of differentiability
for / . The Frechet derivative of / at x e U is the element a(x) e i?*
such that

\f(x + y) - f(x) - (a(x), y)\ = o(\\y\\) for small ye B .
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We will always denote a(x) by f'(x). f is said to be of class C1 if
f'(x) exists for every xe U and / ' is continuous from U into £*.
On the other hand, / is said to be Frechet differentiable at x in H
directions (briefly, iϊ-differentiable at x) if there exists an element
b(x) e H such that

\f(x + Λ) - f{x) - <b(x), h>\ = 0(|hI) for small heH.

b(x) is easily seen to be unique and will be denoted always by Df(x).
Note that the existence of f'{x) implies that of Df(x) and ff(x) =
Df(x), but the existence of Df{x) does not imply the continuity of /
at x in j?-topology. Inductively we can define f(n\ class Cn and Dnf.

THEOREM 4.1. (Ito's Formula). Let f(t, x) be a real-valued con-
tinuous function on [0, oo) x B. Suppose

(1) for each x e B, /(•, x) is of class C1 and df/ds is continuous
on [0, oo) x B.

(2 ) for each t^O, f(t, •) is twice H-dijferentiable with D2f(t, x) e
^(H,H) for all xeB.

(3) Df is continuous from (0, oo) x B into H and D2f is con-
tinuous from (0, co) x B into έ%[(H9 H). There exists <?>0 such that

\δ\Df(s, x)\ds < oo, Γ||D2/(s, α?) 11 ids < oo for all x in B.
Jo Jo

S ί rt

ί(s, ω)dW(s, ω) + \ σ(s, ω)ds, where ζ is a n.a.t.
o Jo

and σ is a n.a.v., then
f(t, X(t, ω)) = /(0, x0) + \\e(s, <o)Df(s, X(s, ω)), dW(s, ω))

Jo

< Df(8, X(s, ω)\ σ(s, ω)

+ λ trace [f *(s, ω)D2f{s, X(s, ω))ξ(s, ω)]}ds

where * denotes the adjoint of an operator when it is restricted to H.

THEOREM 4.2. Let f(t, x) be a continuous function on [0, oo) x
J5, C1 in the t variable and C2 in the x variable and satisfying the
condition (3) of Theorem 4.1. Then the same formula as in Theorem
4.1 holds.

Proof of Theorem 4.1 by assuming Theorem 4.2:

Define gn{t, x) = f(t, Qnx), n = 1, 2, . It is easily checked that
each gn satisfies the hypothesis of Theorem 4.2, dgn(t, x)/dt = df(t, Qnx)/dt,
g'n(t, x) = QiDf(t, Qnx) and ff;'(ί, x) - QM)2/(ί, Q%x)oQn. Therefore by
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Theorem 4.2 we have

f{t, QnX(t, ω))

= /(0, QΛ) + Γ(ί*(s, ω)Q:Df(8, QnX(s, ω)), dW(s, ω))
JO

(Ufa, ">)), *(«, ω) >

+ - ί trace [£*(«, ω)Q*°I?f(s, QnX(s, ω))Qj(s, ω)ήds .

Letting n—>^, we get the desired conclusion.
The remainder of this section is devoted to the proof of Theorem

4.2. For the sake of notational convenience, we will prove Proposi-
tion 4.1 only. The proof of Theorem 4.2 follows similarly.

LEMMA 4.1. Let ζ be a n.a.s.t. Then
( i ) for s^t,

&{(ζ(s)(W(t)- W(s)), W(t)- W(s)Y} = (ί-s) 2 ^{ | |ζ(s) | |2

+ (trace ζ(s))2}

(ii) for s sΞ t ^ u £Ξ v,

ί?{(ζ(s)(W(t) - W(s)), W(t) - W(s))} x

x {(ζ(u)(W(v) - W(u)), W(v) - W(u))}

= (v - u) & {trace ζ(u)(ζ(s)(W(t) - W(s)), W(t) - W(s))} .

Proof. Direct computation.

LEMMA 4.2. Let ζ be a n.a.s.t. Assume that ζ(ί, co) is continuous
in t for almost all a) and \\ζ(t, co)\\BtB* ̂  M for all t and a.e. a). πn —
{O = ί o < ί 1 < — < ί Λ = ί} i s a partition of• [0, ί ] . | 7 r n | =

i, ω)),

converges in the mean to \ trace ζ(s, α))(is as | ττw | —> 0.
Jo

Proof. For the sake of convenience we use the notation
ί y + 1 -ί Λ J ^ - W(tί+1, ω) - TΓ(ίΛ ω), SΛ(ί, α>) - Σ^o1 (C(ίy, α>)ΛTFΛ

and iίΛ(ί, ω) = ΣjΓ0

L J ^ trace ζ(ί i ? α>). Note first that since ζ is con-
trace ζ(s, α>)rfs with .^-probability 1 as

0

17Γ̂  I —> 0. Using the assumption in ζ and the Lebesgue dominated
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convergence theorem it is easy to see that Rn(t, ω) converges to

1 trace ζ(s, ω)ds in the mean as |7ΓW|—•(). Therefore to finish the
Jo

proof it is sufficient to show that i ? |S Λ — Rn\
2 —»0 as \πn\ —»0.

?. - RJ = Σ (C(ίΛ ω μ τ Γ Λ //TF,) - J ί y trace ζ(ίΛ α>)

= Σί(C(ίΛ ω)JT7y, JTΓ/) - ^ί, trace ζ(ίΛ ω)}2

+ 2 Σ {(C(<t, G>)JTTi, AWd - AU trace ζ(ί4, α>)}

. {(ζ(ίΛ ω μ τ Γ Λ z/TΓy) - ΔU trace ζ(ίΛ α>)} .

Applying Lemma 4.1, we obtain

&\Sn-Rn\* = 'ΣΔqi

3=0

n—ί

Θ2M
2 Σ Δ$i ^ 02M

2t I πn I —> 0 a s | τr% | —> 0 .

PROPOSITION 4.1. If f is a real-valued function of class C2 on
B, then

f(W(t, ω)) = /(0) + \\f'(W(8, ω)), dW{s, ω))
Jo

+ — Γ trace f"(W(s, ω))ds .
2 JO

Proof. Obviously the integrals have continuous versions. There-
fore it suffices to prove the equallity for each fixed t. Because / is
C2, we have

- f(v) = (f'iv), χ-y) + γ(/"

Recall that (, ) is the natural pairing of 5* and B. Note that f'(y) e
J3* and f"(y) e &(B, J5*) for all yeB. We may assume that
\\f"(y)\\BtS* ^ Λf for all yeB. Let ττΛ = {0 = ί0 < ίx < . . . < tn = t}
be a partition of [0, t] and 1^1 = maxog^n-i (ίy-i — ί, ).

Using (1) we obtain

, ω)) - /(0) - Σ/(W(t j+ι, ω)) - /(Ifft , ω))
3=0

n—1

= Σ (/W(ί/, ω)), l^(ίy+i, ω) - W(tit ω))Σ
3=0
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( 2 ) , Q>))(W(ti+ι, ω)

( i )

+ Σ k
1=0 2

- W(ts, ft))), W(tj+l, ω) - W(th ft))]

Σ>o(\\W(tj+1, ft))- W(th ft)) ||2)

(f'(W(ti, ω)), W(tj+ι, ω) - W(tj, ω))

- (f'(W(s, ω)), dW(s, a)))

= if Σ \ti+\f'(W(ti, o))) - f'(W(s, ω)), dW(s, ft)))

j - 0 i = 0 J ί j Jti

Now use (4) of Proposition 3.1 to conclude that the above quantity is
equal to

Σ Γi+1
, ω))\*ds

^ Σ Λ ft))

as

Therefore Σ?=}(/Wfe ^W. W(tJ+1, ω) - TΓ(ίy, ω)) converges to

S t

(f'(W(s, o))), dW(s, ω)) in the mean as \πn\ tends to zero.
o

(ii) By Lemma 4.2,

| ts+1, ω) - W(t, , ω)), W(j+lf ω) - (W(th ω))
3=0 2

S t
trace f"{W{s, co))ds in the mean as \πn\ tends to

0

zero.
(iii) It is easy to see that

W(ts+ι, ω) -

Therefore

+ i ~ ίy)2 ^ ( ^ - θl)t\πn\ -> 0 a s \πn\ -+ 0 .
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converges to 0 in the mean as | πn \ —> 0.
Finally, choose a subsequence of partitions such that the con-

vergence in ( i ) , (ii) and (iii) is in the sense of almost sure. Then
the desired conclusion follows immediately from (2).

5* Stochastic integral equation* Let A be a map from [t0, oo) X
B, t0 ^ 0, into &(B, B) such that (A(t, x) - I)(B) c J3* and σ a map
from [tQ, oo) x B into H. Consider the stochastic integral equation

(3) X(t, ω) = v(ω) + Γ A(s, X(s, ω))dW(s, ω) + Γ σ(s, X(s, ω))ds

where v is ^#ίo-measurable.
Our objective is to seek a solution. In order to make the integrals

meaningful, this solution must be non-anticipating with respect to

THEOREM 5.1. Assume that A and σ satisfy the following condi-
tions
( i ) A(t, x) — I is continuous in t from [tQ, oo) into &(B, B*) for
each xeB. σ(t, x) is continuous in t from [tQ, oo) into H for each
xeB.
(ii) There exists a constant K such that for all t ^ ί0 and x, y e B,

\\A(t,x)-A(t,y)\\2^K\\x-y\\

\σ(t,x)-σ(t,y)\£K\\x-y\\

(in)

Then there exists a unique non-anticipating continuous solution of (3).

REMARK. Obviously it is sufficient to consider the case to^t^T<
o o .

We will assume this in the following proof.

Proof. Let 21 be the Banach space of all non-anticipating stochastic
processes X(t, ω) with state space B satisfying sup ί o S ί s Γ S?(||X(ί, ω)||2) <
oo with norm

= {sup ^{\\X(t,ωW)Y'>.
t(,St£T

Observe that We St and ||| TF||| = Vθ2T. Define a map Φ in SI by: Xe
St
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Φ(X)(t, ω) = v(ω) + Γ A(8, X(s, ω))dW(s, ω) + Γ φ , X(s, ω))ds .

Note that A(s, X(s, ω)) is a n.a.t. and σ(s, X(s, ω) is a n.a.v.
Therefore the integrals make sense. Moreover Φ(X) is clearly non-
anticipating and the integrals exists by the assumption (ii). Further-
more, by (1) of Proposition 3.1, Φ(X) is a continuous process.

Φ(X)(t, ω) = v{ω) + W(t, ω)- W(t0, ω) + \ (A(s, X(s, ω)) - I)dW(s, ω)

+ 1 σ(s, X(s, ω))ds .
J ί O

Use the inequality (ΣS=i aif = 5 Σ<=i αΐ a n ( i apply (4) of Proposition
3.1, it is easy to check that

|||Φ(X)|||2 ^ 5[a + 2ι/^T + <?K\T - ίo)(l + Γ - ίo)(l + i||X|||2)] ,

where α = gf(||i;(ω)||2). Hence Φ(X)e2ί and Φ maps 31 into itself.
Now let X,

(Φ(X) - Φ(Y))(t9 ω) - Γ (A(8, X(s, ω)) - A{s, Y{s, ω)))dW(s, ω)

+ Γ (σ(s, X(s, ω)) - σ(s, Y(s, ω)))ds .

Hence

&\\{Φ(X)-Φ{Y)){t,ωW

\A(s, X(8, ω)) - A(8, Y(s, ω))\\ds

\σ(s, X(s, ω)) - σ(s, Y(s, ω))\2ds\
J ί O

T - ίo)Γ
Jί

Let a = 2c2K2(l + T - ί0). Then

(4) gΊ|(Φ(X) - Φ(Γ))(ί, ω)||2 ^ a[ &(\\X(8, ω) - Y(s, ω)\\*ds .

Hence \\\Φ(X) - Φ(Y)\\\ ^ [a(T - ίo)]1/2|||X - Γ||| and Φ is a Lip-1 map,
a priori Φ is a continuous map.

Furthermore, using (4) to get for any ra > 1 &\\{Φm(X) —
Φ*{Y)){t, ω)\\% ^ [(α(ί-QYIml)\\\X-Y\\\\ Thus 111Φm(X)-Φm(Y)111 ^
(τ/[α(Γ - ίo]"/m!)HiX - Γ|| |. Let 0 < δ < 1 be fixed. Let JV be such
that (]/[a(T - to)]m/ml)< δ for all m^N. Thus for all m^N,
\\\Φm{X) -Φ {Y)\\\<b\\\X-Y\\\. That is, Φ- is a contraction from
St into itself whenever m ^ N. By the generalized contraction
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mapping theorem, Φ has a fixed point which solves the equation (3)
by the definition of Φ. This solution is a continuous process because
Φ(X) is continuous for every Xe 2t. Finally we show (3) has a unique
solution. Suppose X and Y are solutions of (3). Then Φ(X) = X,
Φ(Y) = Y. Using the same argument in the derivation of the solu-
tion, it is easy to see that X = Y in 2Ϊ. Therefore X(£, ω) = F(£, ω)
a.e for each t. But X and F are continuous, so X(tf ω) = Y(t, ω)
for all t with ^-probability 1.

THEOREM 5.2. Suppose A and σ satisfy the conditions of Theorem

5.1. Then the process X(t) which solves the stochastic integral equa-

tion X(£) = X(0) + ΓA<>, X(S, ω))dW(8, ω) + [σ(s, X(s9 ω))ds is a Markov
Jo Jo

process with transition probability q(t, x9 sy E) = ^{X{s) e E\X(t) =
x}. Moreover, X(t) is homogeneous and satisfies the strong Markov
property if A and σ are independent of t.

Proof. The first part can be shown in the same manner as [6]
and [8]. We show the second part. Let irt>x(s, ω), s^t, denote the
solution of the stochastic integral equation,

Y(s, ω) = x+ [A(Y(U, ω))dW{u) + \σ(Y(u9 ω))du .

Let τ be any stopping time. Then

X(s + τ,ω) = X(τ, ω) + Ϋ+TA{X{u, ω))dW{u) + j*+V(X(^, ω))du

or

[S [' τ, ω))dv .

But W(v + τ) — W(τ) is also a Wiener process in B independent of
^ . Now ψo,x(τ)(s, co) and X(s + τ, ω) are both solutions of the last
equation. By the uniqueness of solution, ψ^z{τ){s9 co) = X(s + τ, ω).
Now let E be a Borel set in B and x e B, then

+ τ)eE\ ^τ) = ίf(ψ OiX(r)(8) e

- q(8, X(τ), E) .

Hence X is homogeneous and satisfies the strong Markov property.

We wish to thank Professor L. Gross and Professor K. Ito for
their conversations and encouragement.
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