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THE EMBEDDING OF HOMEOMORPHISMS OF THE
PLANE IN CONTINUOUS FLOWS

GARY D. JoONES

A study of fundamental regions of the plane under an
orientation preserving, fixed point free, self-homeomorphism
of the plane is made under the conditions that there are
finitely many fundamental regions R; under f, if z€R; —
Int R;, then z€C c R; — Int R; where C is a proper flowline,
and if z; and x; are in Int R;, then 2; ~ 2, mod Int R;. The
topological structure of the fundamental regions is determined.
Using these results, it is shown that in certain cases the
embedding problem can be reduced to a problem of extending
a continuous flow defined on an open set to the closure of
the set.

In the last section, sufficient conditions for self-homeomor-
phisms of the plane and the closed unit disc with one fixed
point to be embedded in continuous flows are given.

Let X be a topological space and let G denote a topological group.
The ordered triple (X, G, 7) is a dynamical system if (1) 7: X X G—X
is continuous, (2) n(n(x, g.), g.) = ©(x, g, + g,), and (3) 7(x, e) = « for
every x€ X. If G is the additive group of real numbers, then (X,
G, 7) is called a continuous flow. If G is the additive group of integers,
then (X, G, 7) is a discrete flow.

This paper is concerned with the following problem. If G is a
given topological group and (X, G*, ©*) is a given dynamical system,
where G* is a subgroup of G with the relative topology, then find a
dynamical system (Y, G, #) such that (1) n(y, g*) for g*eG* is
invariant on a subset Z of Y, (2) Z is homeomorphic to X, and (3)
T on Z X G* is topologically equivalent to 7* on X X G*, i.e. there
is a homeomorphism h: X — Z such that h=(z(h(z), g*)) = 7*(x, g%).
If G is the additive group of real numbers and G* is the additive
group of integers, then the problem is that of embedding a self-
homeomorphism in a continous flow.

If the space X is allowed to be enlarged in order to accommodate
7, the problem is referred to as the wmnrestricted problem. If X =
Y = Z the problem is referred to as the restricted problem [5].

If G is the additive group of real numbers and G* is the integers,
then the unrestricted problem is easily solved [5], [7], [8] for any
topological space X and any self-homeomorphism.

The restricted problem is only partially solved. Fine and Schweigert
[2] and Fort [6] proved that a self-homeomorphism T of an interval
can be embedded in a continuous flow if and only if it is order pre-
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serving. Utz [11] gave a constructive proof of this theorem.

Foland and Utz [5] solved the restricted problem where T is an
orientation preserving self-homeomorhism of a circle. Foland [3] has
shown that if T is an almost periodic, orientation preserving self-
homeomorphism of a closed 2-cell, then T can be embedded in a
continuous flow on the 2-cell. Moreover, if T is almost periodic but
not periodie, then the embedding is unique.

Andrea [1] has given sufficient conditions for a fixed point free
self-homeomorphism of the Euclidean plane to be embedded in a con-
tinuous flow.

2. Fundamental regions of the plane. In this section numerous
properties of fundamental regions of the plane will be given, and using
these properties it will be possible to give a description of the plane
when it consists of # fundamental regions.

In this section f will be a self-homeomorphism of the plane which
is orientation preserving and which has no fixed points.

DErINITION 1. [1]. If » and ¢ are points in the plane, then p ~ ¢
if p and ¢q are endpoints of some curve segment C (the homeomorph
of the closed unit interval) for which f"(C) — « as n— &£ oo.

THEOREM 1. [1] The relation ~ is an equivalence relation.

DerFINITION 2. [1] The fundamental regions of the plane under
f are the equivalence classes of the equivalence relation ~.

DeFINITION 3. If A is a subset of the plane, then 2z ~ y mod A
if # and y are endpoints of some curve segment C C A such that for
every compact set K in the plane there is a natural number N such
that f(C)N K = ¢ when |n| > N.

DEeriNITION 4. [1]. A proper flowline for f is a subset F' of the
plane such that

(@) f(F)=F,

(b) F is a one-to-one continuous image of the real line, and

(¢) F U{e} is a Jordan curve on the sphere R*U {c}.

The following three conditions will be assumed in this section and
in §3.

(1) There exists exactly » fundamental regions R; under f.

(2) If xe R, — Int R;, then x ¢ CC R, — Int R; where C is a proper
flowline.

(3) If x, x,c€Int R;, then z, ~ @, mod Int R,.

We will let R or R with a subscript denote fundamental regions of
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the plane under f.
It follows from the following remark that each fundamental region
is f-invariant.

REMARK 1. [1]. Suppose that {E;} is a finite collection of disjoint
arcwise connected sets. If each f(E;) = E;, then f(E;) = E; for every 1.

REMARK 2.

(a) R is arcwise connected,

(b) R is unbounded, and

(e) if C is a simple closed curve contained in R, then Int (C) C R.

Proof. (a) and (b) follow directly from the definitions. Suppose
that (¢) does not hold. Then there is zeInt C such that x¢R.
Suppose x € S where S is a fundamental region under f. Since f™(z) —
o0, ag m— oo, f*(x) ¢ C U Int C for some n. But f*(x) €S and S is arc
wise connected. Therefore, there is an arc L joining 2 and f™(x)
where L, S. But that is not possible since L N C # ¢.

REMARK 3. If there exists x e R,—Int R;, then ze C, where C is
defined by (2), and C divides the plane into two open half planes H,
and H, such that

(a) =, x,eInt R; implies x, and «, are in the same half plane,

(b) if Int R; # ¢ and if xe C, then there is a neighborhood U of
¢ such that UN H,cInt B; where Int R,Cc H, and (¢) if Int R; = ¢,
then R, = C.

Proof. (a) Let x, and x,c¢Int R, Let z,¢ H, and x,€ H,, By
(8), there is an arc A joining x, and x, such that A c Int R;. Therefore,
AN C # ¢, which is impossible since Cc R; — Int R;.

(b) Let xeC. Let 2, €¢Int R,. Then there is a curve L C R; such
that x, and y are endpoints of L, where yc C, and L N C = {y}. Since
Sf(C) = C and f is fixed point free, there are integers m and = such
that f"(y) and f™(y) are separated on C by =.

If f(L)Nnf™~(L)+ ¢, let L, be the smallest closed subsegment of
Sf™(L) that contains f"(y) such that L, N f™(L) == ¢. Let L, be the
smallest closed subsegment of f™(L) that contains f™(y) such that
L,NL,#+ ¢. If C, is the closed subsegment of C from f™(y) to f™(y),
then C,U L, U L, forms a simple closed curve. Let ¢ = min {d(x, L,),
d(x, L,)}. Then if S = {2: d(z, ) < €}, SN H, is contained in the simple
closed curve C, U L,U L, which, by Remark 2, is contained in R,.

There is an arc KcInt R; such that f*(z) and f™(x,) are its
endpoints. If f*(L)N f™(L) = ¢, let L, be the smallest closed subseg-
ment of f™(L) containing f"(y) such that L, N K = {z,}. Let L, be the
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smallest closed subsegment of f™(L) containing f™(y) such that L,N
K = {z,}. Let K, be the subsegment of K such that z, and z, are its
endpoints. Now C,U K, U L, U L, is a simple closed curve. Let S =
{u: d(z, u) < €} where ¢ = min {d(z, K,), d(z, L,), d(x, L,)}. Then SN H,
is contained in the simple closed curve C, U L, U L, U K, which is con-
tained in R,.

(¢) If xe R;, then by (2) there is a proper flowline C such that
xeC. If ye R, — C then there is a proper flowline C’ such that ye C'.

It CNC # ¢, let L be the closed half line from ¥ containing
f(y) and L the closed half line from y containing f~'(y). Let C, and
C, be the smallest closed subsegments of L; and L; respectively such
that C; N C = {x;} for ¢ = 1, 2. Such segments do exist because C' N
C =+ ¢, y¢ C, and the properties of f. Thus the segment from x, to
2, on C, C, and C, form a simple closed curve and every point in its
interior must be in R;, which is not possible.

If CNC = ¢, we can join C to C’ by a segment A C R; such that
ANC={x} and ANC = {x,}. Let C; be the closed subsegments of
C and C’ respectively from z; to f(x;) for ¢ =1, 2. Let A, be the
smallest closed subsegment of f(A) such that A, N (AU C,) # ¢. Now
C, A, and (AU C,) from x, to A, N (AU C, is a simple closed curve
and the result follows.

REMARK 4. If C, and C, contained in R; are curves defined as in
(2) such that C, # C,, then C,N C, = ¢. Also, if C, is a curve defined
as in (2), then R; is contained in the closed half plane defined by C,
containing Int R,.

Proof. Suppose C,=# C, but C,NC,+# ¢. Suppose yeC, — C..
Let A be a closed subsegment of C, containing y such that «, and x,
are endpoints of A, z, and #,eC,NCy and (A—{x,x})NC.=¢
for ¢ =1,2. Now A together with the subsegment of C, from «,
to x, forms a simple closed curve K. Let z¢the interior of K. Now
™) — o as m — o, thus f™(2) € the interior of f*(K) but f"(z)¢
interior K for some integer n. Now z and f™(z) € Int R; by Remark
2, but z and f"(z) can not be connected by an arc in Int R; which is
contrary to (3).

Suppose there is e R; but in the opposite open half plane, deter-
mined by C,, from Int R;,. Then by the above paragraph and (2),
there is a proper flowline C, such that xeC, and C, N C, = ¢. Now
the proof of Remark 8c can be applied to show that there must be a
point in the same half plane as # which is in Int R;, which is not
possible.

THEOREM 2. [1]. The self-homeomorphism f is equivalent to a



THE EMBEDDING OF HOMEOMORPHISMS 425

translation if and only if it has exactly one fundamental region.

REMARK 5. Let C be a proper flowline of f. Then there is a
homeomorphism ¢ such that g|. = f|. and such that ¢ is topologically
equivalent to a translation.

Proof. Since C is a proper flowline of f there is a selfhomeomor-
phism % of the plane where A(C) = L and where L is the y-axis.
Define T: P— P, where P is the plane, by

T(0, y) = hfh7(0, y), where (0, y)e L
T(z, y) = (@, (RS0, y)),) where (v, y) € L

and where (hfh7(0, y)), denotes the y coordinate of ~f2~*(0, y). Then
T is an orientation preserving self-homeomorphism of the plane with
no fixed points and with exactly one fundamental region. Therefore,
g = h~'Th has this property, g|. = f|., and g is equivalent to a transla-
tion by Theorem 2.

REMARK 6. If R — Int R contains two distinct proper flow lines C,
and C,, then R is the closed strip bounded by C, and C,.

Proof. By Remark 3, if C, and C, are distinct proper flow lines
in R-Int R, then Int R # ¢. Let H} and H? be the two closed half
planes defined by C;. By Remark 4, it can be assumed that R c HZ.
Therefore, C,c H? — C,. Let H} be the half plane containing H;.
Then, R C H; and therefore Rc H; N H:. Let x,e H: N HE — (C, U Cy).
Let B be a closed segment joining C, and C, such that x,e B, BN C, =
{y}, and BN C, = {z}. Since y ~ 2z, there is an arc AC R joining ¥
and z such that f"(4) —  as n— =+ . Let A, be a closed subseg-
ment of A such that A, NC, = {y} and A, NC, = {z}. There is an
integer N > 0 such that if n > N, f*(y,) and f(y,) are separated on
C. by ¥, and f"(z,) and f~"(z,) are separated on C, by z. Since f"(4,) —
co as m— = oo, there is an M > N such that f¥(4,), f~(4.), and the
closed subsegments of C, and C, from f(y,) to f~(y,) and f¥(z) to
f%(z) respectively form a simple closed curve which contains z, in
its interior. But that implies «, ¢ Int R.

REMARK 7. If xe(R; — Int B;) N R,, then there is an arc A joining
a point of R, to x, where A — {z} C R,. Further, if xeC, where C
is defined as in (2), then for every we C, there is a neighborhood U
of w such that UN (H — C)C R, where H’ is the closed half plane
defined by C which contains R,.
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Proof. Let xeC; where C; is defined by (2). Let the closed
half planes defined by C; be H} and H?. Suppose R, H?. By Remark
6, there are at most 2n distinct curves C; defined as in (2). Leta =
ming,c -, (@, C;)}. Consider the open disc S with center at «
and radius a/2. Since we R,, there exists ye R, NS. Suppose ze
SN(H — C;), where z¢ R,. Since (U;R;) NS =S, there exists z,¢
SN(H? — C;) where z,¢ R, — Int R,. But then there would exist a
curve C,, defined by (2), where C, N SN (H? — C;) # ¢, which is not
possible. The proof of the last part is similar to the proof of Remark 3b.

REMARK 8. If C is an arcwise connected component of B — Int R,
then C is a proper flow line contained in exactly one fundamental region.

Proof. Let xeC. Then xe(R; — Int R;) N B, for some funda-
mental regions R; and R,. If Int R; # ¢, by Remarks 3 and 7, there is
a neighborhood U of # such that Uc R; U R,. Thus, R is R; or R,.
Let zeC,, where C, is given by (2). Remarks 3 and 7 imply C,c C.
If weC — C,, there must be an arc in R — Int R from w to C,, which
is not possible by Remarks 8 and 7. If Int R; = ¢ and if R; = R the
result follows from Remark 3. Otherwise if 2€C, then ze R; N R.
Now applying Remark 7, it follows that C, = C.

THEOREM 3. [1] The plane under f can mot have exactly two
Sfundamental regions.

The notation #(R) will be used to represent the number of arcwise
connected components of R — Int R.

REMARK 9. If #(R) = 1, then R is a proper flow line or a closed
half plane.

Proof. If Int R = ¢, then R is a proper line by Remark 2. If
Int R # ¢, then by Remarks 8, 7 and 8, R is an open half plane or a
closed half plane.

Suppose R is not closed. Then R — Int R R,. Thus, there exists
re(R,—Int R) N R. Let xeC, where C is defined as in (2). Let
H? and H! be the closed half planes defined by C. By Remark 2,
it can be assumed that R c H!, and then, by Remarks 3 and 4R,C
H:. Using Remark 5, define g such that g¢|, = f|.. Define F: P—
P, where P is the plane, by

f(x) if xe H!

Flo) = {g(m) if we H: .

Then F' is an orientation preserving self-homeomorphism of the plane
with no fixed points, and the plane under F has exactly one funda-
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mental region, since, by Theorem 3, it can not have two fundamental
regions. Let A be any arc joining ye R to x, where A< H!. Then
f™(A) = F"(A) — « as n— £ . Therefore, v e R, and it follows that
R is closed.

REMARK 10. If #(R) = 2, then R is either an open strip or a
closed strip.

Proof. Let C, and C, be the two arcwise connected components
of R — Int R. It follows that the interior of the strip bounded by
C, and C, is contained in R, and that R is contained in the closed
strip bounded by C, and C..

Suppose ©, ¢ R — Int R. Then x,¢C, or 2,¢C, Suppose x,€C,.
By Remark 8, C,C R.

Using Remark 5, define g; where ¢; agrees with fon C, 7+ = 1, 2.
Define F: P— P, where P is the plane, by

g.(z) if zeclosed half plane defined by C, not con-
taining Int R
F(x) = <f(x) if zeclosed strip bounded by C, and C,
g.(x) if x e closed half plane defined by C, not con-
taining Int R.

Then F is an orientation preserving self-homeomorphism of the plane,
and the plane has at most two fundamental regions under F. There-
fore, by Theorem 3, it has exactly one. It now follows that C,C R.

REMARK 11. If #(R) = 3, then either R is open or else E contains
just one of the components of B — Int R.

Proof. If R contains at least two of the components of R — Int R,
then by Remark 6, #(R) = 2.

Consider the homeomorphism defined in Figure 1. Each point =z
lies on a curve. Let f(x) be in the direction of the arrow along the
curve one unit. The homeomorphism f satisfies (1), (2), and (3), and
(R, = 38 but R, is not open.

REMARK 12. If R, and R, are not separated and R, and R, are
not separated, then R, and R, are separated by R..

Proof. Since R, and R, are not separated, either there exists x, €
(R, — Int R) N R,, or there exists x,¢ (R, — Int R) N R,.

Case 1. Suppose w,¢ (R, — Int R,) N R,. Let x,¢C, where C, is
defined by (2). Let H} and H? be the closed half planes defined by
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FIGURE 1

Suppose for definiteness that R, © H; — C, and then by Remark

3, R,CcH?. By Remark 7, for every we C, there is a neighborhood
U of w such that UN(H; — C,) © R,. Since R,and R, are not separated,
R,c H? — C,. Therefore, R, and R, are separated by R,.

oo e
)

are

Case II. The proof is similar to Case I.

THEOREM 4. Suppose R; and R;., are not separated for i = 1, 2,
n — 1. Then

(a) R; and R, are separated for k=1 — 1,7+ 1,

(b) R, and R, are closed half planes,

(¢) R, ts closed, Ry, s open for k=1,2, «-. and

(d) n 1s odd.

The proof of this theorem follows easily from the above remarks.

The above remarks can be applied to describe the plane if there
n fundamental regions.
For example, suppose the plane P= R, UR,U R,. Since P is

connected, suppose R, and R, are not separated. Then either R, and
R, or R, and R, are separated. Suppose R, and R, are not separated.
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By Remark 12, R, and R, are separated by R,. Thus, by Remark 9,
R, and R; are closed and R; — Int R; = C;, where C; is a proper flowline,
for 7 = 1, 3. Therefore, R, is open.

In the case n = 4, 5, or 6, there are respectively 1, 3, or 4 possible
arrangements of the fundamental regions.

3. Self-homeomorphism of the plane with no fixed points.
In this section it will be shown that in certain cases, the embedding
problem can be reduced to a problem of extending a continuous flow
defined on an open set to the closure of the set. Sufficient conditions
for this extension will be given. Some properties of the homeomorphisms
on the fundamental regions will also be given.

In order to show that an open connected subset B of the plane
is homeomorphic to the plane, it is enough to show that every simple
closed curve in B separates B and at least one of the components has
compact closure in B [12]. Thus, Theorem 5 follows.

THEOREM 5. If R; and R;., are not separated for 1 =1,2, -+, k —1,
then Int (U%..R;) is homeomorphic to the plane.

Proof. By the earlier remarks, we can assume that R, and R,
have nonempty interior, for otherwise R, or R, & Int (U%.,R;). By (8),
Int R; is connected. Since R; and R;., are not separated, suppose for
definiteness that there exists x ¢ (R; — Int B;) N B;;,. By Remarks 3
and 7, there is a neighborhood U of such that Uc R, ,UR;,UR;,,if 11
or R; U R;,, if © = 1. Therefore, x€Int (U4, R;). Thus, Int (U: R))
is connected.

Let B be a simple closed curve such that Bc Int (Uf_ . R;). Let
xcInt B. Since f(z) — o as n — oo, it follows that there is an integer
n such f(z)¢ BU Int B. But, since z ~ f"(x), there is an arc A4,
where ACR; if v € R; and where A joins z and f"(z). Therefore, {z}
and AN B are in the same fundamental region. Thus, BU Int Bc
Int (U, R;). It follows that B U Int B is compact in Int (U%., R)).
Therefore, Int (U%_,R;) is homeomorphic to the plane.

THEOREM 6. Suppose R; and R;., are not separated for i =1, «--,
k — 1. Then, there is a homeomorphism g: Int (U L R;,) — P,, where P,
s a plane, and P, under gfg~ has at most k fundamental regions.

Proof. The homeomorphism ¢ exists by Theorem 5.

Let z, x,€ R; N Int (UL ,R;). If R;C Int (UX R,), then by definition
of R;, there is a curve segment L C Int (U{.,R;) joining %, and =z, for
which f™(L) — = as £ n-— . Since Int R;cInt (UL .R), if x, x.€
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Int R;, then by (8), there is a curve segment L C Int (U%,R;) for which
S"(L)— o as n— * . Ifx € R; — Int R;, then by (2), ,€C,C R; —
Int R;. By Remarks 3 and 7, C,c Int (U%,R;). Let ye R; such that
y¢C,. Since z, ~ y, there is an arc L, joining #, and y such that
S™L,)—  as m— F . By Remark 3, there is a subarc L of L,
such that L joins x, to an interior point of R; and such that LcC
Int (UL,R;). Therefore, if z, x,€ R; N Int (U ,R;), then there is a
curve L CInt (UL R;) which f*(L)— « as n— + . Let C be any
compact set in P,. Then, ¢g7*(C) is a compact set in P,. Thus, there
is a natural number N such that if || > N, then f*(L) N g7*(C) = ¢.
Now, ¢(L) is a curve segment joining g(x,) and g(,) in plane P,. Since
S L)Ng™(C) = ¢, gf*g7'g(L) N C = ¢. Therefore, g(xz,) and g(x,) are
in the same fundamental region.

COROLLARY. If k = 2, then P, has exactly one fundamental region
under gfg.

The following two embedding theorems can be considered as a
continuation of the work started by Andrea [1].

THEOREM 7. If the plane under f has exactly one fundamental
region and if C is a proper flowline, then f can be embedded in a
continwous flow II, such that II(C, R) = C.

Proof. The homeomorphism f is topologically equivalent to a
translation. Hence, there is a curve K such that K separates the
plane, f(K) N f™(K)=¢ for n+ m, if z is a point of the plane f*(z) is
in the strip bounded by K and f(K) for some unique integer =, and
KNC={x}. The plane, P, is homeomorphic to another plane P,
under a homeomorphism /4 such that A(K) and (hf)K are parallel straight
lines and #(C) from A(z,) to (hf)x, is a straight line. Now if ze K
and if 0 <t < 1 define

Hl(xi t) =Y

where k(y) = (1 — t) k(x) + t(hf) x. If x€ K and ¢ is any real number,
define

”z(x, t) = fﬂ(ﬂl(xy S)) ’
where n + s = ¢, n is an integer, and 0 < s < 1. If z is in the interior

of the strip bounded by K and f(K) or if z€ K, and if ¢, is any real
number, define

Iz, t,) = Hy(y, t. + t)
where i(z) = (1 — t)(hf)y + t.h(y) and ye K. If xe P, and ¢ is any



THE EMBEDDING OF HOMEOMORPHISMS 431

real number, define
H(x9 t) = Hs(f_m(x), t + m) ’

where f~™(x) is in the strip bounded by K and f(K). It follows that
Il is a continuous flow and that 7I(z, n) = f™(z) for every xe P, and
every integer m.

THEOREM 8. Suppose R, and R; are not separated for © = 2, «--,
n. Then

(a) R, is open

(b) flz, can be embedded in a continuwous flow, and

(e) if flz, can be embedded in a continuous flow II,, then f can be
embedded in a continuous flow II, where II(x, r) = Il (z, r) of (x, r) € R,
X Reals.

(d) If flz, can be embedded 1m a continuous flow II,, such that
11, restricted to R, X [0, 1] is uniformly continuous, then f can be
embedded in a continuous flow II.

Proof. (a) By Remark 12, R; and R, are separated for j = &k and
j, k= 1. Thus by Remark 9, R; is closed for j+# 1. Thus, R, =
Plane — (U?_,R;) is open.

(b) By Theorem 5, there is a homeomorphism g: R, — P, where
P, is a plane. By Theorem 6, P, has exactly one fundamental region
under gfg~'. Thus, gfg~" is topologically a translation and thus can
be embedded in a continuous flow. Therefore f|, can be embedded
in a continuous flow.

(¢) If xe(R,— Int R, N R, then z¢ C,C R, — Int R,, where C, is
a proper flowline. By Remarks 3 and 7, C,C Int (R, U R,). It follows
that Int (R, UR, = R, UR,, and from the proof of Remark 9 that
R, — Int R, = C,. From Theorem 5, R, U R, and plane P, are homeo-
morphic, under a homeomorphism g. By the corollary to Theorem 6,
P, has exactly one fundamental region under gfg~'. Therefore, gfg™*
can be embedded in a continuous flow ¢ such that o(g(C), R) = ¢(C),
by Theorem 7. It also can be shown that we can choose ¢ such that
I(x, vy = g7Y(o(g(z), r) for g(z) = x€C. Now define I7;: (R, U R, X
R— (R, URy) by

II}(z, v) = 97(0(g(2), 7)) -

Then II} is a continuous flow and II)(z, n) = f"(z), where z€ R, U R,.
Define 11,: (R,U R,)) X R— (R, U R,) by
Iz, r) if ze R,

7 = _
(2 7) ,(z, 7 ifzeR,.
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Then II, is a continuous flow on R, U R, since I7, and II, agree on C,.
In the same way, define II;: (R,UR) X R— (R,UR;) for i = 2,8, +-.,
n. Define II: P, x R— P, by

H(z, ’I‘) = ”i(z, ”') if ZERi for ¢ = 1, 2’ cen, M

The fact that /7 is a continuous flow follows from the fact that R;
and R; are closed and separated for ¢ = j; 14,7 # 1.

(d) It is enough toshow that f |z, can be embedded in a continuous
flow. Define I7I: R, x Reals — R, by

Iz, r) = lim f4(Il (%, s)) ,

where ¢, — 2 as n— o, z,€R,, and »r = k + s, where k is an integer
and 0 s < 1.

Let (¢, r) and ¢ > 0 be given. Then r =%k + s, where k is an
integer and 0 < s < 1. Let z,— 2 as n — -, where z,€ R,. By the
uniform continuity of 77, on R, x [0, 1], there is a d > 0 such that if
d(z,, ©,) < 8, then d(II(z,, s), II,(x,, s)) < &. Since %, —w, there is a
natural number N such that if », m > N, then d(=,, #,) <. Therefore,
lim,_.. f*I (%, s)) = f*(im, . I1,(z,, s)) exists.

Suppose z, — « and %, — %, where z,, T, € R, for every n, m. Let
lim,_ . 1,(2,, s) = A, and lim,,_.. I1,(%,, s) = B. By the uniform continuity
of II, on R, x [0, 1], there is a & > 0 such that if d(y, ¥) < d then
(Il (y, s), I1,(7, s)) < ¢&/3. Since x, — = and %, — = as n, m — c, there
is a natural number N such that if u, m > N, then d(x,, 2) < 6/2 and
(%, ) < 0/2. Therefore d(z,, ,) < d(%,, ) + AT, x) <0 if n, m >
N. Thus, d(4, B) = d(4, II.(x,, ) + A1 (%, 8), I[(Zy, s) + dLI(Ty, $),
B) < ¢ for large m and n. Since r =k + s, where k is an integer
and 0 < s < 1, is a unique representation, /7 is well defined.

Since I7,(x,, 0) = «, if x,€ R, II(x, 0) = x for all ze R,.

Let ,—xzasn—oco, r, =k +8,7="Fk +s, and r, + 7, = ks +
s;, where k; are integers and 0<s;,<1 for 7=1,2, 3, and where
z,€R,. Then, I(z, r, + r) = lim, . f*(I(%,, s;) = lim, ... f5(l(z,,
Sy + 1, — 8 + &) = lim, . fR(Il (2, v, + 1) = lim,_.. fr(Il,(x,, b, + 8, +
8;)) = lim, oo f2(IL (I (%, K, + 8,), 82) = lim, oo fR2(I1(f 5 (1 (%, S1)), $2) =
I(I1(w, 11), 12)-

Let (x, g)€ B, x [0, 1]. Let ¢> 0 be given. Choose a neighborhood
N x Uof (2, g) in B, x [0, 1] so that if (z,, g,), &, g)) € (N X U) N (R, X
[0, 1]) then d(I1(x, g,), II,(2: g;)) < . By the definition of 17, there
exists o, € B, N N such that d(1,(x, g), I(z, g)) < e. Suppose (%, 7) e
N x U. Then there exists x,€ B, N N so that d(II.(z,, §), II(Z, g)) <e.
Thus, d(/I(x, 9), [1(%, 9)) =< d(li(x, 9), T.(x,, 9)) + .y, 9), (%, 7)) +
d(I (%, §), T,(w, §) + d(I (s, ), [I(%, §)) < & + €+ ¢=38c. ThusIlis
continuous on R, x [0, 1]. Therefore, by continuity of f* for every
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integer m, I is continuous on R, X Reals.

It follows from Theorem 8 and the remarks §2, that if the plane
has either three or four fundamental regions under f, then the em-
bedding problem is reduced to the problem of embedding f|., in a flow
that can be extended to R..

REMARK 13. If BC R, is a proper flowline and B separates R;
and R;, © = k = j, then each closed half plane defined by B contains
at least two fundamental regions other than R,.

Proof. Use Remark 5 to define a homeomorphism ¢ such that
g(®) = f(x) if xe B and such that g is topologically equivalent to a
translation. Let H' be the half plane defined by B that contains R;,
and let H® be the half plane defined by B that contains R,. Define
F. P,— P, where P, is the plane, by

g(x) ifee H

Fo) = {f(x) if xe H? .

Suppose that R, is the only fundamental region other than R, that has
a point in H?. Letze H'— B, and let xe B. Join z and 2 by a curve
Jc H'. Then F*(J) = g"(J) —  as n— =+ oo. Therefore, the plane has
at most two fundamental regions under F, and thus it has exactly one.
Now join ye R; to x€ B by a curve KCc H>. Then f*(K) = F"(K)— o
asn— =+ o. Thus, # and y are in the same fundamental region under f.

COROLLARY. If n =3 or 4, then B does not separate any two
fundamental regions if meither contains B.

REMARK 14. Suppose there are exactly three fundamental regions
under f, and R; and R;., are not separated for n =1,2. If ye R,
ze R,, and U is any open set such that R,c U, then for every arc C
connecting y and z, there is an integer N such that f(C) N U = 4.

Proof. By Theorem 4, R, separates R, and R, and R, is open.
Thus, Int (R, U R,) = R, U R,. By Theorem 5, R, U R, is homeomorphic
to the plane. Suppose ¢: R, U R,— P,, where P, is the plane and ¢
is a homeomorphism. By Theorem 6, P, has exactly one fundamental
region under gfg~'. Suppose that for some y € R,, z€ R,, and for some
open set UDR,, there is an arc C connecting y and z such that /(C) N
U = ¢ for every integer n. Let K be any compact set in P,. Then
(P, — U)N K is compact. Since f"(C)NU = ¢ for every integer n, it
follows that f*(C)N (P, — U)N K = ¢ implies f(C)N K = ¢. Now,
gf g (g(C)) — o= as m— *+ . Since (P,— U)NK = K,CR UR,,
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9(K,) is compact in P,. Thus, there is a natural number N such that
if |[»| > N, then gf"(C) N g(K,) = ¢. But that implies f*(C) N K, = 4.
Therefore, ¥y and z are in the same fundamental region, which is a
contradiction.

REMARK 15. Suppose C; C R,, where C; is a proper flowline for
J=1,2; H, k=1,2, are the two closed half planes defined by C;;
and C,c Int H} and C,c Int H2. Then H:N HZC R,.

Proof. The proof is similar to the proof of Remark 6.

REMARK 16. Suppose C;cC R,, where C; is a proper flowline for
1 =1,2. If C, separates R, and R, then C, separates R, and R..

Proof. Suppose C, separates R, and R,, but C, does not. Let Hf,
k =1, 2, be the closed half plane defined by C;. Suppose R, c H} and
R,cC H: Since C, does not separate R, and R, and since each R; is
arcwise connected, suppose R, and R, are contained in H}. If C. N
C, = ¢, suppose C,c H:. Then R,C H; N H:. By Remark 15, R,C
H NH!cCR, If C,cH then R,c H!NH,. By Remark 15, R,Cc H!N
H/CcR,. If CCNC,+# ¢, let yeC,NC,. Then f™(y)e C,NC, for every
integer n. In this case there is a point xz€ R, U R;, where « is in the
region bounded by C, and C,. Since that is not possible, C, separates
R, and R..

The following Remark easily follows from the above results.

REMARK 17. Suppose R; and R,,, are not separated for 7 = 1, 2.
Then, there is a homeomorphism g: Int (Ui ,R;) — P,, where P, is a
plane. If P, has exactly three fundamental regions under gfg~* if
ye R,NInt (UL.R)), if ze R, N Int (UL,R;), and if U is any open set
such that R,c U, then for every arc BC Int (U%.,R;) connection y and
z there is an integer N such that fY(B) N U # ¢.

The above results gives us some information about the possible
behavior of a self-homeomorphism of the plane with # fundamental
regions. Consider, for example, the case where the plane P, = Ui R;,
where R, and R; are not separated for ¢ = 2, 3, 4. By Corollary to
Remark 13, R, does not contain a proper flowline B such that B
separates R; and R, for j = k, j, k # 1. By Theorem 5, Int (R, U R, U
R,) = R,U R,U R; is homeomorphic to the plane for ¢ = 3, 4. By Remark
17, if ye R, — Int R,, if U is any neighborhood of y, and if V; is an
open set such that V;DR;, then there is an integer N such that
AU)NV, +# 4.
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4. Self-homeomorphisms of the plane and the closed disc with
one fixed point. In this section sufficient conditions to embed self-
homeomorphisms of the plane and the closed disc will be given.

THEOREM 9. Let f be an orientation preserving self-homeomorphism
of the plane with one fixed point, x,, Suppose f™(&) — oo as n— —
and f™(x) —x, as n— o for x+* x,. Then f can be embedded in a
continuous flow.

Proof. The proof is an immediate consequence of the theorem by
Homma and Kinoshita [10] that says that such a homeomorphism is
topologically equivalent to 2’ = (1/2)z, ¥’ = (1/2)y.

We conclude this paper with the following embedding theorem.

THEOREM 10. Let f be an orientation preserving self-homeomor-
phism of the closed unit disc D. Suppose

(1) <f ze D, then f*"(x) >z, as n— co, where x,€ D — Int D
and f(x,) = % and

(2) if x, w€ D — {x}, there is an arc AC D such that A joins
x, and x, and f=*(4A) —x, as n — oo,

Then f can be embedded in a continuous flow.

Proof. Let L be a straight line tangent to the circle C = D —
Int D at «,. Let L, be the ray along L from xz,, The subspace P, —
L, is homeomorphic to a plane P,. Suppose ¢ is a homeomorphism of
P, — L, onto P, sending C — {x,} onto the y-axis of plane P,. If xze Int D,
let H, be the closed half plane defined by the y-axis of plane P,
containing ¢(x). It follows that ¢~ '(H,) = D — {x,}. Now define F:
P,— P, by

Fx,y) = (v, (9f97'0, »),) if(x,yeP.— H
= 9f97'(%, v) if (w, y) € H, .

F' is orientation preserving self-homeomorphism of plane P, with no
fixed points. If ze P, — H,, then clearly z is in the same fundamental
region as the y-axis of P,. Let z, x,€ H, and let K be any compact
set in P,. Since g7 (K) is a compact set in P, and z, ¢ g7 (K), it follows
that there is an arc A joining ¢~ '(x,) and g¢g~'(x,) such that f*"(4)N
9 (K) = ¢ if n > N for some N. But that implies F*"(9(4)) N K =
6 if m > N. Thus P, has exactly one fundamental region under F,
and consequently can be embedded in a flow /7 which leaves the y-axis
of P, invariant by Theorem 7. It follows that /7(H,, ) = H for every
real number r. Thus, f is restricted to D — {x,} can be embedded
in a flow o,. Now define 6: D x R— D by
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o(d, r) = o,(d, ) ifdeD — {x)}, re R,
0(%, 1) = o, ifreR.

o is a continuous flow if it is continuous at z,. Let U be an open neigh-
borhood of %, in D. Then D — U is compact in P,. Thus g(D — U)
is compact in P,. There exists a compact set K < P, such that if

xeP,— Kandif [t — t,| < 1then II(x, t)e P, — g(D — U). From that
it follows that if ze[¢g7'(P) — ¢ (K)IND and if |r — 7| < 1, then
o(x, r)e U. Thus, o is continuous at (=, 7).
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