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SUPER-REFLEXIVE SPACES WITH BASES

ROBERT C JAMES

Super-reflexivity is defined in such a way that all super-
reflexive Banach spaces are reflexive and a Banach space is
super-reflexive if it is isomorphic to a Banach space that is
either uniformly convex or uniformly non-square. It is
shown that, if O < 2 0 < ε ^ l < Φ and B is super-reflexive,
then there are numbers r and s for which 1 < r < oo,
1 < s < oo and, if {βi} is any normalized basic sequence in B
with characteristic not less than ε, then

φ [Σ\ CLi \ψ' rg | | ΣOiβi \\£Φ[2\θi \ψs ,

for all numbers {a*} such that Σa%βi is convergent. This
also is true for unconditional basic subsets in nonseparable
super-reflexive Banach spaces. Gurariϊ and Gurariϊ recently
established the existence of φ and r for uniformly smooth
spaces, and the existence of Φ and s for uniformly convex
spaces [Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 210-215].

A basis for a Banach space B is a sequence {e \ such that, for

each x in B, there is a unique sequence of numbers {α<} such that

ΣΓα^i converges strongly to x, i.e.,

lim ίx — Σ aiei = 0
n—*oo J] i | |

A normalized basis is a basis {ej such that | |β; | | — 1 for all i.

A basic sequence is any sequence that is a basis for its closed

linear span.

It apparently was known to Banach (see [1, pg. Ill] and [3]) that

a sequence {βj whose linear span is dense in a Banach space B is a

basis for B if and only if there is a number e > 0 such that

a^ h> ε Σ a<

if k < n and {αj is any sequence of numbers. The largest such

number ε is the characteristic of the basis. It follows directly from

the triangle inequality that, if 1 ^ p <^ q <̂  n, then

Σ Wi ^ \ ε Σ α<e,
II i II ^ II P II

An unconditional basis for a Banach space B is a subset {ea} of

J5 such that for each x in B there is a unique sequence of ordered
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pairs (aiy ea[i)) such that ΣΓ cb&au) converges strongly and uncondi-
tionally to x. By arguments similar to those used in [1] and [3] for
a basis, it can be shown that a subset {ea} whose linear span is
dense in B is an unconditional basis for B if and only if there is a
characteristic ε for which

if B c A and A is a finite subset of the index set.
A uniformly non-square Banach space is a Banach space B for

which there is a positive number δ such that there do not exist
members x and y of B for which || x || <; 1, \\y\\ ^ 1,

i- (x + y) I > 1 - δ and Ii- (a - y) I > 1 - d .
2 II II 2 II

A uniformly convex space is uniformly non-square and a uniformly
non-square space is reflexive [6, Theorem 1.1].

THEOREM 1. The following properties are equivalent for normed
linear spaces X, each of them is implied by nonreflexivity of the
completion of X, and each is self-dual. If a normed linear space
X has any one of these properties, then X is not isomorphic to any
space that is uniformly non-square.

( i ) There exists a positive number θ such that, for every posi-
tive integer n, there are subsets {zly , z J and {g19 , gn} of the
unit balls of X and X*, respectively, such that

gfa) = θ if i^j, Qtizj) = 0 if i> j .

(ii) There exist positive numbers a and β such that, for every
positive integer n, there is a subset {x19 , xn} of the unit ball of X
for which \\ x \\ > a if xe conv {xλ, , xn} and, for every positive
integer k < n and all numbers {alf , an},

Σ aiXi ^ β Σ aiXi

(iii) There exist positive numbers a! and βr such that, for every
positive integer n, there is a subset {xιy , xn} of X which has the
property that, for every positive integer k < n and all numbers {αj,

II k II
^ OL' sup I at I and Σ χi \\ < β'-

II II

Proof. It is known that Theorem 1 is valid for properties (i)
and (ii) [8, Theorem 6]. We shall show that (i) and (iii) are
equivalent.
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If (i) is satisfied, let xx — zι and xi — zi — z^ if 1 < i ̂  n.
Then gi(xd) = δ( θ, so that

and II Σf ^ II - II ̂  II ̂  1. Thus (iii) is satisfied.
If (iii) is satisfied, let zk = Σ ί ®%lβ' Define g3- on lin {zL, , zn}

by letting (̂a?,.) = δ}ar. Then || sfc || < 1 and

so that g, can be extended to all of the space with H^H ̂  1. Also,
g^Zj) — a'lβ' if i ̂  j and g^Zj) = 0 if i > i, so that ( i ) is satisfied.

DEFINITION. A super-reflexive Banach space is a Banach space
that does not have any of the equivalent properties (i), (ii) and
(iii) described in the statement of Theorem 1.

This is a natural definition, since a Banach space is non-reflexive
if and only if (i) of Theorem 1 is satisfied by infinite sequences {2J
and {gi}. Moreover, there are several other finitely stated properties
that are equivalent to (i), but which become equivalent to non-
reflexivity when stated for infinite sequences [8, Theorem 3].

THEOREM 2. Let B be a super-reflexive Banach space. If Φ > 1
and 0 < ε ̂  1, then there is a number s for which 1 < s < oo and,
if fa} is any normalized basic sequence in B with characteristic not
less than ε, then

(1) I I Σ α ^ | | ^ Φ [ Σ I ^ | s ] 1 / s

for all numbers {αj such that Σ aieι is convergent.

Proof. It will be shown that, if there are numbers Φ and ε for
which Φ > 1, 0 < s <£ 1, and there does not exist such a number s,
then B has property (ii) of Theorem 1 with a = 1/2 and β = ε. Let
n be an arbitrary positive integer greater than 1. Let ^ be a
number for which

1 - — <θ < 1 .
2n

Then choose λ such that θιμ < λ < 1, X2Φ > 1, and

(2) (^2i)(i-^)<l(i-r).

Choose s > 1 and close enough to 1 that λw < nίls. Then
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(3) {a + β)ίls ^ λ (a1/s + βίί8) if a ^ 0 and β ^ 0 ,

(4) λra(inf /5i)1/s ̂  ( Σ & Y" if /8< ̂  0 for each i .

Since there is a basic sequence {ej with characteristic not less than
e and a sequence {αj for which (1) is false, there also is a least
positive integer m for which

( 5 )

where the sup is over all m-tuples of numbers (alf •••, am). Since

I m - t II
a i e i l II n o I!

m—1

Σ<

Σ k i + iα. [lα-IT"

we have Φ < M tί Φ + I and it follows from (2) that

< < l (i _
-λ2ilf- 1J \*M- 1 %

Let (αlt •••, am) be an m-tuple such that

( 7 )

[
m

Σ
l / β 1/β

> XM

We shall show first that, for each k,

(8) \ak\°<^(l

It follows from (3), (7) and (5) that, for each k,

1/8

and

( 9 )
I α*| + Σ (Xtfii

χ*M< !Li^
ah\ + ΣKI Γ

\ak

1/s =

«* i + [ΣI «,| ϊ
Since X2M — 1 > λ2Φ — 1 > 0, direct computation shows t h a t ](9)

implies
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λ2M - 1 - 1

which with (6) implies (8). Now that (8) has been established, we
know there is a sequence of n integers {m(l), •••, m{n) = m} such
that, for each i,

I Γm(j) A m " 1 1 1 m

ΣlαΛ --^ΣlαilΊ <-^-(i-^1/4)ΣI«ί|
s

IL »=i % i JI 2n i

Let us write

()

= Σ

m(2)

e. + Σ + + Σ

where uά — ΣS(J-i>+i«*βi with m(0) = 0, Then we have, for each j ,

[ mίj) 1 TO "I

2 J OLi\ 2Λ I (Xi I
TO(i-i)+i ^ i -i

This implies that

1^
n

i ί1'4 Σ I «< I* < Σ |
^ 1 m(j-l)+l

W(i)

Σ *

and

(10) m Σ ) + i I ̂  Is <

for each i It follows from (7), (5), (10), (4) and λ2 > θ112 that

1

TO(fc)

Σ

Γ TO ηi/s — Γ TO(i) HI/β Γ m(/5) "11/.

ΓΣI^I 8 ] I Σ |α,M mf Σ |α 4 | ]
L i J L«(j-i) + i J L ί; TO(A-I)+I J

nθ\\uA

[ m ηi/

Σ I ^ I S J

1/8 '

so that || % || < l/(nθ). We are now prepared to show that {xlf •••,»»}
satisfies (ii) of Theorem 1 if xό = wό^ for each i, a = 1/2 and /S = ε.
Note first that if Σβ3- = 1 and βά ^ 0 for each j , then

Since || Σu51| = || ^ ^ || = 1 and 0 > 1 - l/(2w), we have
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^ (^ (n -A) - (Λ-1) = j =

Since the characteristic of the basic sequence {ej is not less than
ε = /3, we also have

1 w II II AT II

Σ ΐ̂̂ i ^ /S Σ aiχi ί f k <n .

The duality argument used by Gurariϊ and Gurariϊ [4] in a
similar situation does not seem easily adaptible to give a proof of
Theorem 3 that makes explicit use of Theorem 2. Therefore a direct
proof of Theorem 3 will be given.

THEOREM 3. Let B be a super-reflexive Banach space. If ψ and
ε are numbers for which 0 < 2φ < ε ^ 1, then there is a number r
for which 1 < r < oo and, if {ej is any normalized basic sequence in
B with characteristic not less than s, then

(11)

for all numbers {αj such that Σa^ is convergent.

Proof. Suppose that 0 < 2φ < ε ^ 1. It will be shown that if
no such number r exists, then B has property (iii) of Theorem 1 with
a' = 2̂ 2/ε and β' > 1/ε.
Let n be an arbitrary positive integer greater than 1. Let λ be a
positive number for which

2φ < λ2ε and λ < 1 .

Then choose r > 1 and large enough that

\Λ.Δ) n \ ΛJ \JL — λi) .

If βi ^ 0 for each i, then it follows from (12) that

(13)

Since there is a basic sequence {ej with characteristic not less than
ε and a sequence {αj for which (11) is false, there also is an m for
which

II m II

IIS" π P

(14, - I I Σ > Λ l •-

where t h e inf is over all m-tuples of numbers (αx,
 β , α m ) . Let
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(alf , am) be an m-tuple such that || ΣΓ && \\ — 1 and

(15)
l/r 1/r

< MX~l.

As is true for all basic sequences with characteristic not less than ε,

II ΣΓ <x$i II ^ (l/2)e I ak | for each k. Thus it follows from (15) that

(16) [ m

Σ

Since M < Φ and 2φ < λ2ε, it follows from (16) and (12) that

I ak Γ < λ" Σ i «< lr < — (1-λ.) Σ I α* l r .

Therefore, there is a sequence of w integers {m(l),

such that, for each j,

,m(w) = m}

lΓm(i) 2 m HI

Σ | α ι l r - A Σ | α * l r

IL =i n i Jl

Let us write

m w(l) m(2)

Σ #iei = Σ î̂ i + Σ
1 1 m(l)+l

+ + ΣΣ <
m(%-l)+l

where % = Σϊίj-im

\Γ

!L

m(j)

Σ
w(i-i)+i

m(0) = 0. Then we have, for each j,

< - ( ! • n

This implies that

Σ |
m(i-i)+i

and

m(j)

(17) Σ |α i |
r >λ 2 sup

f m(fe) ^

Σ I^Γ: l^Jfc^wL
lm(ft-l)+l J

It follows from (15), (14), (17), and (13) that, for each j,
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M <[ m ηi/r ^ — Γ m(j) Πl/r " Γ m(fc) Ίl/r

Σ l α i l Ί Σ | α t | Ί λ1" sup Σ I α* I'l
1 J L»W-1)+1 J L * m(*-l)+l J

L l

l/r '

so that | | % || > λ\ Since {e<} is a basis with constant not less than
ε and λ4 > 4^2/s2, this implies

1
n II 1 1 2ό2

Σ %% ^ — ε II α*^* II ^ — ε ^ 4 1 a* I ^ —̂— I ak I = α f I ak \i II 2 2 β

for all numbers {αj and each k ^ n. Now we can use

to obtain || Σ ί % II ^ 1/e <

THEOREM 4. Le£ B be a Banach space that is super-reflexive.
If 0 < 2φ < ε <̂  1 < Φ, £Λ,ew f̂eβre are numbers r and s for which
l < r < oo, l < s < oo and, if {e<} is a ^ normalized basic sequence
in B with characteristic not less than ε, then

for all numbers {aj such that Σ a ί e ί ^ s convergent.

An examination of the proofs of Theorems 2 and 3 will show that
essentially the same arguments can be used for nonseparable Banach
spaces and unconditional basic subsets. Therefore:

THEOREM 5. Let B be Banach space that is super-reflexive. If
O < 2 0 < ε ^ l < Φ , then there numbers r and s for which 1 < r < oo,
1 < s < oo and, if {ea} is any normalized unconditional basic subset of
B with characteristic not less than ε, then

ΦlΣ,\aa IT" ^ II Σ aaea \\ύΦlΣ\aa \Ύ'S ,

for all numbers {aa} such that Σ a«ea ^s convergent.

It is stated in [4] that it is not known whether B is isomorphic to
a space that is uniformly convex and uniformly smooth if, for each
normalized basic sequence {ej in B, there are positive numbers φ, Φ,
r and s such that l < r < o o , l < s < oo, and

ΦiΣ\at I T ^ II Σ atet || ^ Φ [Σ I α« Is]1'8 .
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This conjecture would be strongly suggested by the next theorem, if
it should be true that every super-reflexive space is isomorphic to a
uniformly convex space. It would then also follow that uniform
convexity, uniform smoothness, and super-reflexivity are equivalent
within isomorphism and that the existence of numbers φ, Φ, r and s
that satisfy the inequalities of Theorem 4 could be deduced from the
results of Gurariί and Gurariϊ [4].

THEOREM 6. Each of the following is a necessary and sufficient
condition for a Banach space B to be super-reflexive.

(a) If 0 < 2φ < ε ^ 1 < Φ, then there are numbers r and s for
which 1 < r < oo, 1 < s < oo, and, if {eJ is any normalized basic
sequence in B with characteristic not less than ε, then

φ[Σ\«i \Ύr ^ II Σ α4β41| ^ Φ [ Σ I a, |T / S ,

for all number {αj such that Σ afii is convergent.
(b) If 0 < ε ^ 1 < Φ, then there is a number s for which

1 < s < oo, and, if {βj is any normalized basic sequence in B with
characteristic not less than ε, then

for all numbers {αj such that Σ &&% is convergent.
(c) There exist numbers ε, Φ and s such that 0 < ε < 1/2,

1 < s < oo, and, if {eJ is any normalized basic sequence in B with
characteristic not less than e, then

(18) IIΣαΛllίSΦIΣKir ,

for all numbers {αj such that Σ &&% is convergent.

Proof. It follows from Theorem 4 that super-reflexivity implies
(a) The implications (a) => (b) => (c) are purely formal. To prove
that (c) implies that B is super-reflexive, let us suppose that B is
not super-reflexive and that there exist numbers ε, Φ and s as
described in (c). Choose a positive integer n such that

(19) nι~lίs > — .
ε

It is known that in (ii) of Theorem 1 we can require that ε < a — β
(see the definition of P 3 and Theorem 6, both in [8]). Therefore there
is a subset {xu •••,#„} of the unit ball for which \\x\\ > ε if
x e conv {x19 , xn} and || XΓ a^ \\ Ξ> β || Σ ? a*χ% II f ° r all k < n and
all numbers {α1? * ,αw}. Then {xt} can be the initial segment of a
basic sequence with characteristic not less than ε and it follows from
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(18) that

Since || Σ Γ ^ I I > nε> we have a contradiction of (19).
Recall that, relative to a basis {ej, a block basic sequence is a

sequence {eί} for which there is an increasing sequence of positive
integers {n(i}} such that n(ΐ) = 1 and

n{k+ί)—ί

e ' k = Σ <*>Φi y & = 1, 2, .
n{k)

THEOREM 7. A Banach space B is reflexive if B has a basis {ej
and, for each normalized block basic sequence {el} of {ej, there are
positive numbers φ, Φ, r and s such that 1 < r < <χ>, 1 < s < oo, and

(20) φ [ Σ I α, \ψr ^ || Σ ad \\ ^ Φ [ Σ I α, | s ] 1 / s >

/or αϊZ numbers {αj ŝ cfc £to£ Σ α*βί ^ s convergent.

Proof. If {βj is not boundedly complete, there is a sequence
and a positive number zf such that H Σ Γ ^ i l is bounded, \\Ui\\ > J,
and

= ΣΣ = 1, 2,

where {n(i)} is an increasing sequence of positive integers. Let e\ =
w</| I %< 11. Then 11 (ΣΓ 11 % 11 011 is bounded, but there do not exist φ > 0
and 1 < r < oo such that φ ΣΓ II w* | | r > 0wJw is bounded. If {βj is
not shrinking, there is a normalized block basic sequence {e"} such
that || ΣΓ e"\\ > (l/2)n for all n. But there do not exist Φ and s > 1
such that Φnlls > (l/2)w for all n. Thus {ej is boundedly complete
and shrinking, which implies B is reflexive [2, Theorem 3, p. 71].

The next example shows that Theorem 7 can not be strengthened
by assuming that (20) is satisfied only for a basis for B, even if φ —
Φ = l, s = 2, and r is close to 2.

EXAMPLE. Choose r > 2 and positive integers {%} so that
(wi)

(1/2)f>-1 > 2* for each i. For each &, let vk be the sequence that has
zeros except for k initial blocks, the ith block having n{ components
each equal to (^)~1/2. Let B be the completion of the space of all
sequences of real numbers with only a finite number of nonzero
components and, if x — {&J,

(21) | | s | | = inf {(Σ ^ ) 1 / 2 + Σi\ak\:x = u +
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If lift/,}!!, denotes [ Σ I Vt IT r > t h e n ( Σ ^ ) 1 / 2 ^ II « llr and

|| Φ* | | r = [%r1/2r + wl-1/ir + (w,,*,)1-"*]1 ' ' < 1

Therefore

It follows directly from (21) that || x || ^ (Σ ^D1/2 It follows from
the facts that || vk || ^ 1 for all k and that a sequence has norm 1
if it contains all zeros except for one block of n{ terms each equal
to nγ112, that the natural basis for B is not boundedly complete and
B is not reflexive.

It was shown by N. I. Gurariϊ [5, Theorem 7] that, for any r
and s with 1 < r < oo and 1 < s < oo, there is a basis {βj for Hubert
space such that for any positive numbers φ and Φ there are finite
sequences {αj and {δj for which

ΦYZ\ai\ψr>\\Έ,aiei\\ and | | Σ δ Λ l l > Φ [ Σ α * l f ] 1 / β .

Thus for Hubert space there can be neither an upper bound p < oo
for r nor a lower bound σ < 1 for s in Theorems 2-5, even if ^ and Φ
are allowed to depend on the basic sequence.

REFERENCES

1. S. Banach, Theorie des Operations Lineaires, Warsaw, 1932.
2. M. M. Day, Normed Linear Spaces, New York, 1962.
3. M. M. Grinblum, Certain theorems sur la base dans un espace de type (B), Dokl.
Akad. Nauk SSSR, 31 (1941), 428-432.
4. V. I. Gurariϊ and N. I. Gurariϊ, On bases in uniformly convex and uniformly
smooth Banach spaces, Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 210-215.
5. N. I. Gurariϊ, On sequential coefficients of expansions with respect to bases in
Hilbert and Banach spaces, Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 216-223.
6. R. C. James, Uniformly non-square Banach spaces, Ann. of Math., 80 (1964), 542-
550.
7. , Weak compactness and separation, Israel J. Math., 2 (1964), 101-119.
8. , Some self-dual properties of normed linear spaces, Symposium on Infinite
Dimensional Topology, Annals of Mathematics Studies, 69 (1972).

Received July 20, 1971. This work was supported in part by NSF Grant GP 20838.

CLAREMONT COLLEGE






