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CONTINUOUS DEPENDENCE ON PARAMETERS AND
BOUNDARY DATA FOR NONLINEAR TWO-POINT

BOUNDARY VALUE PROBLEMS

STEVEN K. INGRAM

Sufficient conditions are given for the continuous depend-
ence of solutions to the two-point boundary value problem

( l ) χ"=f(ί, *, x'; μ)

(2) x(a) = a χ(b) = β

on the boundary data and the parameter μ.
Previous results given by Gaines and Klaasen for con-

tinuous dependence on the boundary data have assumed con-
tinuity on / and uniqueness to two-point BVP'S. Klaasen
has, also shown assuming uniqueness to two-point BVP'S and
the existence of a C2-solution to (1)—(2) that there exist
solutions x (t; af

9 β
f) to (1) with the boundary conditions

x(a) = a' x(b) = β'

for all (α;, β') sufficiently close to (α, β). Furthermore,
x (£; α', βι) is a uniformly continuous function of (α;, βf) at
(a, β) on [a, b]. This same result is shown to be valid under
weaker uniqueness conditions. Sufficient conditions are also
given for existence and continuous dependence on the para-
meter, μ, of solutions to (1)—(2).

We consider the BVP

( 1 ) x" = f(t,x,x';μ)

(2) x(a) = a x(b) = β

and assume

I. f(t, xL, x2; μ) is continuous on [α, 6] x R3

II. There exists a solution xo(t) to the BVP

( 3 ) x" = f(t, x, x'; μ,)

( 4 ) x(a) = a0 x{b) = β0

such that if x(t) is any other solution to (3) and x(tt) = xo(ti), i — 1,

2, for a S t1 < t2 ^ b, then x(t) = xo(t) on [tlf ί2].

Following Jackson, [3], we make the following definition.

DEFINITION 2.1. For any constant C > 0, let

395
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F*(t, x, x'; μ) =

(f(t, x, C; μ) if x'^C

f(t, x, χ'\ μ) if i χ'\ ^ C

J(t,x, -C; μ) if x* ̂  - C

and define for u(t) ̂  v(t) on [a, b]

( 5 ) F(t, x, xf; μ) =

F*(t, v(t), x'; μ) v(t)]112 if x ^ v(t)

F*(t, x, x'; μ) if u(t) ̂ x^ v(t)

F*(t, u(t), x'; μ) - [u(t) - x]1'2 if x ^ u{t) .

Then F(t, x, xr\ μ) is called the modification of /(£, x, x'\ μ) with re-
spect to u(t), v(t) and C

LEMMA 2,2. Under Conditions I and II, given e > 0 £/&6re exists
constants σ > 0, Co > 0, Co' > 0 sw/^ £/wιί for any t0 e [a, b] and any a,
β, μ with I xo(to) - a \ ̂  ε, | χ'0(t0) — β\<Lε and \ μ — μQ \ < ε every
solution x(t; μ) to IVP

( 1 ) »" = / ( ί , *, *'; JK)

( 6 ) α?(ίo) = α x%) = β

or IVP

( 7 )

( 6 )

a ? " = ί, a?, α?';

exists on [tQ — δ, tQ + δ]
[t0 ~δ,to + δ].

satisfies \ x(t; μ) \ ̂  CO, | x'(t; μ) \ ̂  CQ on

Proof. The proof is an easy application of the Peano existence
theorem ([2], Theorem 2.1,) where

Co = max I xΌ(t) | + e + 1, Co' = max | xo(t) | + e + 1 .
[α,6] [α,6J

THEOREM 2.3. Assume Conditions I and II. Then there exists a
δ > 0 such that for all μ with \μ — μo\<δ, a solution x(t; μ) to BVP
(1) — (4) exists. Furthermore, x(t; μ) —• xo(t) in Cί-norm on [a, b]

as μ-+μ0.

Proof. Let {μn} be any sequence converging to μ. It suffices to
show that there is a subsequence {/**} such that for all μ*f a solution
x(t; μt) to BVP (1) - (4) exists.

Denote by xm(t; μn) a solution to (1) satisfying

8 x(a) = a0 x'(a) = x'0(a)
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Pick e = 1 and let δ, C, Co be the constants assured by Lemma 2.2.
For n sufficiently large, say n ^ N, \μn — μo\ ^l, and hence the
sequences {xm(t; μn)}n=N and {x'm(t; μn)}n=N are uniformly bounded and
equicontinuous on [α, a + δ]. By Ascoli's theorem there exists a sub-
sequence {xt(t; μn)}, which converges in C^-norm on [α, a + δ] to a
solution ίcw(ί; μ0) of / F P (3) — (8). Letting m~> °o, there exists a
subsequence, {ά?£(£; #>)}> which converges in C^-norm to a solution
zo(t) of (3) satisfying the initial conditions

( 9 ) x(a) = a0 %'{a) = x'0(a) .

Case 1. zQ(t) = α?0(ί) on [α, α + δ]. Given any ε > 0 , ε < 1, there
exists an Λf and ΛΓ such that for all m Ξ> M and all n^ N,

II M ί J /*») - «o(ί) lid < e on [α, α + δ]

and

^ m (α + δ; μn) > xQ(a + δ) .

By a similar procedure there exists a sequence {xm(t; μn)} of solutions
to equation (1) satisfying

(10) x(a) — a0 x'(ά) = x'Q(a) — 1/m ,

such that for all m and n sufficiently large, (say m:> M, n^N with-
out loss of generality),

< e on [α, α + <5]

and

^w(α + δ; μn) < xo(a + 3) .

By our uniqueness assumption in II, there exists an Ni ^ N such
that for all n ^ Nf

m, xm(t; μn)^xm(t; μn).
Now let FJf, x, xf\ μn) be the modification of f(t, x, x'; μn) with

respect to xm(t; μn), xm(t; μm) and Co for any n^Nf

m. By Theorem 2.5,
[3], there exists solutions y^t; μn; j) and yt(t; μn; j) to BVP

x" - Fm(t, x, χ'\ μn)

x(a) = α0 α;(α + S) = ^0(α + S) ± 1/i ,

respectively, for all i ^ J where

^m(α + δ; μn) ^ xo(α + 8) - 1/i < xo(a + δ) + 1/i ^ xm(α + 3; ^n) .

Furthermore,

xm(t; μn) ^ yx(t; μn; j) ^ »w(i; μn) on [α, α + δ]
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and hence

I y[(a; μn, j) - xΌ(a) \ ^ 1/m ,

implying by Lemma 2.2

I y[(t; μn; j) I ^ Co on [α, a + δ] .

Thus yx(t; μn; j) is in fact a solution to

(11) x" = f(t, x, x'; μn) .

Similarly y^t; μn; j) is a solution to (19).

Now fix j . The sequences {y^t; μn; j)n=Nm> and {y[(t; μn; j)}n=Nm>

are uniformly bounded and equicontinuous, and hence a subsequence
converges to a solution y^t; μo; j) of (3) satisfying the boundary
conditions

(12) x(a) = a0 x(a + 8) = xo(a + δ) + 1/j .

Similarly a subsequence of {y^t; μQ; j)T=j} converges in C^norm on
[α, a + δ] to xo(t) by II. By Lemma 2.2, then, there exists a Jf ^> J
such that yfo; μo; j) may be extended to [a, a + 28] for all j ^ / \
Then also for n sufficiently large the solutions y^t; μn; j) may be
extended to [α, a + 28],

Similarly for n and j sufficiently large the solutions Vjt', μn; j)
may be extended to [α, α + 23]. We now use the solutions y^t; μn;j)
and y^t; μn; j) in place of xm(t; μn) and xm(t; μn) and argue as above
on the interval [α, a + 28],

We continue in this way until we may assume that there are
sequences of solutions y(t; μn; j) and %(t; μn; j) to equation (11) satis-
fying

(13) x(a) = a0 x(b) = β0 ± 1/j , respectively ,

with y(t; μn; j) ^ V(t; μn; j) on [α, 6]. Using the modification of
/(ί, x, x'; μn) with respect to y(t; μn; j), V(t; μn; j), and Co, and arguing
as above we may assume that for some subsequence {μt} of {μn} there
exists solutions x(t; μt) to BVP (11) - (4).

Case 2. zo(t) ^ xQ(t) on [α, α + 8]. Then by II,

zo(a + δ) > a;0(α + <5) .

Let

0 < ε < min (1, zo(a + δ) - £0(α + δ)) .

Similarly, if xm(t; μ0) does not converge to xo(t) on [a, a + δ], then for
w and m sufficiently large
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xm(a + δ; μn) < xo(a + δ) — ε/3 .

Now we may obtain the solutions y^t; μn; j) and yt(t; μn; j) and pro-
ceed as in Case 1.

Case 3. In Case 1 we considered the possibility that the sequences
{xm(t; μ0)} and {xm(t; μ0)} had subsequences which converged to xo(t) on
[α, a + δ]. In Case 2, these sequences converged to functions not
identically equal to xQ(t) on [a, a + δ]. In Case 3, then, we must
consider the possibility that one of these sequences converges to xQ(t)
and the other converges to some function not identically equal to
xo(t) on [a, a + δ]. The proof for Case 3 is thus just a combination
of the proofs of Case 1 and Case 2.

To complete the proof of the theorem we must show that x(t; /-C)—>
xo(t) in C^-norm on [α, b] as w—> oo. By construction we have

I %(t; μi) I ̂  max | xQ(t) \ + 1
[α, 6]

and

I χ'(t; μt) I ̂  Co on [α, b] .

Thus the sequences {x(t; μi)} and {x'(t; μt)} are uniformly bounded
and equicontinuous on [α, b] and hence by Ascoli's Theorem there
exists a further subsequence which converges in C^-norm on [α, b] to
a solution of BVP (3) - (4) which by II must be xo(t). Similarly
any subsequence of {x(t; μi)} has a further subsequence which con-
verges to xo(t) implying that the original sequence itself must con-
verge to xo(t).

Note. We have proven only a weak form of continuous dependence
on the parameter; i.e , we have shown only that the solutions x(t; μn)
must converge to xo(t). It is still unknown whether all solutions to
BVP (11) — (4) must converge to xo(t) as μ —> μ0.

Theorem 2.3 is of interest when considering nonlinear eigenvalue
problems. If an eigenvalue problem satisfies Conditions I and II,
then the set of eigenvalues is dense in itself.

We now seek sufficient conditions for existence and continuous
dependence of solutions to BVP's in which we vary not only the
parameter but also the boundary data.

LEMMA 3.4. Assume I and II. Then there exists sequences of
solutions {un(t)}, {vn(t)}, {wn(t)} and {zn(t)} that converge to xo(t) in the
Cι-norm on [α, b] and such that

un(a) = xo(a) un(b) > un+1(b) > xo(b) for all n ,
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vn(b) = xo(b) vn(a) > vn+1(a) > xo(a) for all n ,

wn(ά) = χQ(d) wn(b) < wn+1(b) < xo(b) for all n ,

and

zn{b) = xQ(b) zn{a) < zn+1(a) < xo(a) for all n ,

Proof. The proof is contained in the proof of Theorem 3.7, [5].

THEOREM 2.5. Under Conditions I and II, there exist sequences
{%n(t)} and {%n{t)} of solutions to (3) which converge to xo(t) in Cι-norm
on [α, b] from above and below, respectively, with

xn(a) > xn+ί(a) > α?0(α) > xn+ί(a) > xn{a)

and

x»(b) > Xn+i(b) > xo(b) > Xn+ί(b) > xn(b)

for all n.

Proof. We will show the existence of {xn(t)}. Let Sλ be the set
of all ί0 G [a, b] such that there exists a second solution xλ(t) to IVP

( 3 ) x" = f(t, x, x'; μ0)

(14) x(tQ) = xo(to) x'(Q = x',{Q

with xjj) > xo(t) on (λΓ, U) Π [a, b] for some XT < t0. Let t± = inf Sx.
If SL = ^, let ίx = 6. Similarly, let S2 be the set of all t0 e [a, b] such
that there exists a second solution x2(t) to IVP (3) — (14) with
x2(t) > xo(t) on (ί0, λ2

+) Π [α, δ] for some λ2

+ > t0, and let t2 = sup S2. If

S2 = ^, let ί2 = &•

Case 1. t1<.t2. Then there are solutions #*(£), i = 1, 2 to IVP
( 3) - (14) for ί0 G [ίlf ί2] satisfying

α ^ί) > xo(t) for some ί < t0

and

α?2(ί) > xo(t) for some t>t0.

By Lemma 2.2 all solutions to IVP (3) — (14) exist on [t0 — δ, t0 + δ]
for some δ> 0. Assume tQ + δ>t2 and hence #2(£0 + δ) > xo(ίo + δ).
By Knesser's Theorem, ([2], Theorem 4.1, page 15), there exist solu-
tions {un(t)} to IVP (3) - (14) on [ί0, t0 + δ] such that un(tQ + δ) ->
ô(̂ o + δ) as ^—> oo. By Kamke's convergence theorem, ([2], Theorem

3.2, page 14), and our uniqueness assumption, there exists a sub-
sequence {u%(t)} which converges to xo(t) in C^-norm on [t0, b] with
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tt»(&) > un+1(b) > xo(b) for all n .

If x2(t) ~ xQ(t) on [t0, ί0 + δ] we continue to the right until there is an
interval [£3, ί3 + δ] such that α?a(ί) = xQ(t) on [ί0, ί3] and

X%(U + δ)> X0(tz + 8) .

Then argue as above.
Similarly there are solutions vn(t) to IVP (3) — (14) which con-

verge to xo(t) in CVnorm on [α, t0] with

vn(a) > vΛ+i(α) > x(ά) , for all n .

Then define

ί) on [a, tQ]
x (t) ~

Λ } (un(t) on [ίOf 6] .

{xn(ί)} is the required sequence.

Case 2. tι ^ ί2. We claim in this case that there exist solutions
{un(t)} and {vn(t)} as given in Lemma 2.4 with

un(t0) = ι;Λ(ί0) for some ίo6 [ί^ ί2], for all n

sufficiently large. To see this, given ε' > 0, let δ', Co, and Co' be the
constants assured by Lemma 2.2. Choose ε > 0 so small that

( i ) ε < ε '

and

( π ) δ Ξ-^_<ε'.

Thus there exists an N such that

\\uN(t) - xo(t)\\ci<ε on [α, t0]

Since tγ ^ t2 we may assume uN(t0) > xo(to) and hence

&o(*o) < vn(̂ o) < îv(̂ o) for all n sufficiently large,

say n ^ N'. By [3], Theorem 2.5, there exists a solution xn(t) to
BVP

α;" = F(t, x, x'; μ0)

x(a) — a x(t0) = vn(Q for all n*zN',

where F(t, x, x'\ μ0) is the modification of /(ί, x, xf; μ0) with respect
to xo(t), nN(t) and CQ. Furthermore
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xo(t) ^ xn(t) ^ uN{t) on [a, t0] .

Hence

on any subinterval of [α, t0] of length δ = 2ε/e' But this in turn im-
plies that

I <{t) I ̂  Co

on any subinterval of length δ and hence

^ Co on [α, *0] .

By definition of jP(ί, α?, xf; μQ), xjf) is a solution to (3). Now for n
sufficiently large we may extend the solution xn(t) to [α, b] and use
them as the solutions un(t) assured by Lemma 2.4.

Let ε > 0 be arbitrary, but fixed, and let δ, Co, and Co' be the
constants assured by Lemma 2.2. There exists an N > 0 such that
for all n ^ N

and

\\vn(t) -

Suppose for definiteness that tt^(ί0) ^ v^(ί0). Define

C? = {(x, x'): vN(t0) = uN{Q = x , v'Sd ^x'^ <

Cι is a compact connected set in R2. Let Cf be the set of all (β, β')
such that there exists a solution x(t; a, a') to (3) with x(t0) = α,
aj'(ί0) = α', where

(a, a9) e Cf, x(t0 - δ; a, cf) = β

and

x'(t0 - δ; a, ar) = β'.

By an extension of Knesser's Theorem, ([6], page 386), Cξ is a compact
connected set in R2 containing the two points (uN(t0 — δ), vfN{t0 — 8))
and (vN(t0 - δ), v'N(t0 - δ)).

( i) Cfc

In this case | β — xQ(tQ — δ) | ^ ε and | β' — x'Q(tQ — δ) | ^ ε for all
(β, β') e Cξ. Hence the solutions x(t; a, a!) may be continued to
[tQ — 2δ, t0]. Similarly, we may continue these solutions to the left
by δ intervals as long as the end points of each solution lie inside
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the ε-tube about xQ(t). Let n0 be such that

t0 — (nQ - 1) d ^ a> t0 - nod

and suppose that

Cξ a Nε(x0(t0 - ( n - 1)3), x'ΰ(t0 - (n - ί)δ))

for all n ^ n0. Thus all solutions x(t; a, af) may be continued to
[α, ί0].

We now perform a similar procedure to the right of t0. Define
Dξ = Cξ and Dξ analogously to Cξ. Assume also in (i) that

Dξ c Nε(x0(t0 + (n - 1)3), a?ί(ί0 + (w - l)δ)) for all

where

Define Cξ to be the set of all (7, 7') such that there exists a solution
x(t) to IVP

x" = f(t, x, x'; μ0)

x(t0 - (n_dδ) = β, «'(ίo - (^-i)δ) - /5'

with (β, β') e C^-i and a?(α) = 7, a?'(α) = 7'. Analogously, define Dξ.
Now for each (7,Y)eCξ with 7>£ 0 (α), there exists a solution

x(t; 7, 7') on [α, b] such that a?(α; 7, Y) = 7, ίt?'(α;7, 7') = 7', α?(ίo;Ύ,7') =
Mί«) = vAQ and (a?(6; 7, 7'), x'(b; 7, 7')) e Dξ. If a?(6; 7, 7') > xo(b),
we've found an x(t). Hence suppose x(b; 7, 7') ^ a?0(6) for all (7, 7') e Cf
with 7>^ 0 (^) Pick {7%}-^.τ0(α), 7%>α;0(α) for all n. By Lemma 2.2,
we have

! χ(t; 7., 7;) I < Co'

and

I α?'(ί; τn, 7;) I < Co for all ί e [a, b] .

By Ascoli's Theorem there exists a subsequence {x*(t; 7», 7^)}
which converges in C^norm to a solution z(t) on [α, 6]. But z(a) =
xo(a), z(b) ^ xo(b), and «(ί0) = uΛr(ί0) > xo(to) contradicting our uniqueness
assumption. We may thus assume that we have an x^t). Also by
II and the definition of t0, Xί(t)>xo(t) on [α, 6]. Now let

ε' = min (xλ(t) - xo(t)) > 0 .
[α,δ]

Using this e' in place of ε we may procede to find an x2(t) as long as
(i) occurs.
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(ii) Suppose for some n,

Cξ (£ Nε(xQ(t0 - ( n - l)δ), x'0(t0(n -

Then all solutions x(t; a, a') for (a, a') e C? may not be extendable to
[α, t0]. However, if we let uCξ and vCξ be the components of

CS Π N.(xo(to - { n - 1)8), x'0(t0 - (n -

which contain (uN(t0 ~(n — 1)5), u'N(tQ — (n — 1)8)) and (vN(t0 — (n — 1)8),

v'Ato — {n — 1)8)) respectively, then we may continue the solutions
ending in uCζ or vCξ as before.

Let Cf = {(#, a'): (a, a') e Cf and x(t; a, a') exists on [a, t0] by
the extension procedure above}. It is easy to see that Cf is a com-
pact interval. Analogously we define the compact set Df.

(a) CΓ = Cf = D? = Df. Thus x(t; a, a9) exists on [α, 6] for all
(a, a!) eC1 = JD1# Suppose no x(t; a, a') satisfies x(a; a, af) > xo(a) and
x(b; a, a') > xo(b).

Let a'o = sup {a': u'N(t0) ^ a! ^ v'N(t0), x(a; a, a') > xo(a), and (a, a') e
Cf}. By an application of Ascoli's Theorem, there exists a solution
z,(t) with ^(6) ^ α?0(δ), «i(α) > α;0(α), ^(ί0) > α?0(ί0), and «;(ί0) = a[. By uni-
queness αj < u'(tQ) and hence there exists a sequence {αi} —* αί with
^5 < oc'm ^ wi(ί0) and a sequence of solutions x(t; a, a'm) such that
x(a; a, a'm) ^ xo(a). By Ascoli's Theorem again there exists a sub-
sequence converging in C^-norm to a solution z2(t) with z'2(t0) = αj and
«2(α) ^ aJoW The solution

Z{ " U(ί) on [ίo, b]

contradicts our uniqueness assumption. We must conclude that there
exists an x(t; a, a') such that x(a; a, af) > xQ(a) and x(b; a, a') > xo(b).
We then define x(t) = α?(ί; α, a') and continue as before.

(b) CΓ Φ C?, D? - £>Γ Let αί = sup {«': ^( ί 0 ) ^ α' ^ <( t 0 ) and
such that there exists a solution of(£; α, Λ') to IVP

( 3 ) a" = / ( « , a, *'; Aθ

(15) a?(*o) - M * o ) *'(*o) - OL'

which exists on [tO1 b] and satisfies xr(b; a, ccf)^LxQ(b)}. Then aΌ<u'N(t0)
by uniqueness. Let a'm—+a'o, a'0<a'm<Lv,'N(t0) for all m. Let x^t a, a!m)
be a solution to IVP (3) — (15) on some interval [λ~~, t0]. By Kamke's
convergence theorem a subsequence of {x\t\ α, a'm)} converges to a
solution xN(t; a, a[) at least on [t — 8, ί0]. If ^ ( ί ; α, αj) exists on
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[α, 6], then x^t; a, a'm) exists on [α, b] for m sufficiently large and
xι(a; a, a'm) > xo(ά) since xN(a; a, a[) > xo(ά). But x(b; a, a!m) > xo(b) by
definition of a[ and we have our x^t).

At this point let us do a similar analysis with nN+κ{t) and vN+κ(t)
for JBL = 1, 2, . We wish to show that xN+κ{t\ OLK, a'κ) fails to exist
on [α, t0] for at most a finite number of indices K. Suppose for con-
tradiction xN+κ(t; aKf a'Ko) does not exist on [α, t0] for K = 1, 2, ,
relabeling if necessary. Since (α x , a'κ) —• (α?0(ί0), #o(#o))t by Kamke's
convergence theorem a subsequence of {xN+κ(t; aκ, <x'κ$t=i converges
to a solution z(t) of the IVP (3) — (14) in C^-norm on some interval
(or, ί0]. By definition of tu z(t) ^ xo(t) on (ω~, t0] and by uniqueness
of xQ(t), z(t) ^ a?0(*) Hence z(t) = xQ(t) and thus for K sufficiently
large xN+κ{t\ aκ, ®>'κ) exists on [α, ί0], which is a contradiction. Thus
for all but perhaps a finite number of cases in which (b) occurs we
obtain an ^( ί ) .

(c) Cf Φ CN

X and Όψ Φ Ώ* with

\CN

X - (UC? U VCO] n [D? - OΦf U vDί)] Φ φ .

Again we claim (c) can happen for at most a finite number of indices
K without obtaining a suitable ^( ί ) . Suppose for contradiction that
(c) occurs for K = 1, 2, . Pick a'κ such that

<+κ(t0) <OL'K< u'N+κ(t0)

with a!κ e [C^* - C C f + κ U wCf+ κ)] Π [D^κ - {UD^+K U VD^+K)\. Then
if we assume x(t\ aκ, a!κ) does not exist on [a, b] and argue as in (b)
we arrive at a contradiction.

(d) CΓ Φ Cf, DT Φ Df with

[C? - CCf U τCf)] n [Df - (uDίτ U *Df)] = ^

In this case Cf - (MCf U vCf) is a subset of M #f U VD? and we may
proceed as in (b) to show that this can occur without obtaining a
suitable x(t) for at most a finite number of indices K.

Hence (b), (c), and (d) are inconclusive for at most a finite number
of indices. We may thus conclude that an x±(t) exists, and as before
%i(t) > #o(O o n laj δ]. Letting εf = min[α,δ](x1(ί) — xo(t)) > 0 and using
ε' in place of ε, we may repeat the above procedure to obtain an x2(t)
with xo(t) < x2(t) < x^t) on [α, b] and so on.

Similarly we may construct {x(t)}
Theorem 2.5 generalizes a result of Klaasen, [4], Corollary 7,

where he assumes uniqueness to two-point BVP'S (3) — (2). The
following example shows that Condition II does not imply uniqueness
to two-point BVP'S in any neighborhood of xo(t).
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EXAMPLE 2.6 Define

(2 33/4 μ |α; ' | 1 / 4 | ^Γ / 6 if x ^ 0

Then f(t, x, x'\ μ) is continuous on [ —1,1] x R2, and

- c)3 if t > c

ί 1

is a solution to the differential equation

x"(t) = f(t, x, x'; 1)

on [ — 1,1] for any ce [ — 1, 1]. Also xQ(t) = 0 is a solution satisfying
Condition II. However, xε(t) ~ ε is a solution for any ε > 0 and #„(£)
intersects xε(t) twice if c e [ — l+ε 1 / 3 , 1—e1/q].

DEFINITION 2.7. Let α?(ί; μ) be a solution to (1). We will say
that solutions to (1) are unique with respect to x(t; μ) on [a, b] if x(t)
is any other solution to (1) with α?(ί<) = x(U; μ), i = 1, 2 for any ίlf ί,
satisfying a ^t1<t2^b, then

a?(ί) Ξ= α?(ί; //) on [ίx, t2] .

THEOREM 2.8. Assume, in addition to I and II, that solutions to
BVP's (3) — (2) are unique if they exist. By Theorem 2.3, there
exist a δ > 0 such that for all \ μ — μQ \ < δ, a solution x(t; μ) to BVP
(1) — (4) exists. Assume also that solutions to (1) are unique with
respect to x(t; μ) for all \ μ — μ0 \ < δ. Let e > 0 be given sufficiently
small. Then there exists a δ' ^ δ such that for all \ μ — μQ \ < <?',
there exists a solution x(t; μ; a, β) to BVP (1) — (2) where

| α - α o | < ε , | / 3 - / 3 0 | < s .

Furthermore, x(t; μ; α, β)-+xQ(t) in C^norm on [α, b] as μ~* μ0,
a -> a0, and β - * β0.

Proof. If suffices to show that if {μn} is any sequence converging
to μQ, then there is a subsequence, relabeled the same, such that for
all n, there exists a solution x(t; μn; a, β) to BVP (11) — ( 2 ) for any
I a — a01 < ε and | β — βo\<e, and that x(t;μn; a, β) —*xo(t) as n-+°oy

a-+a0 and β-+β0

Since solutions to BVP's (3) - (2) are unique if they exist, by
Theorem 2.5 there exist sequences {xm(t; #>)}SUi a n d {̂ m(̂  μo)}Z^i which
converge to xo(t) in the C^-norm on [a, b] with
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xm(a; μ0) > αo(α) > xJβ\ A>)

and

xJt>; μQ) > xQ(b) > xm(b; μQ) .

Let δ" and Co be the constant assured by Lemma (2.2) for ε = 1, and
let s' = min (1/2, <5"/4). Then there exists an M such that for m^M

and

Fix m Ξ> M and let

0 < ε < min (ε', l/2(xm(a) - α?0(α)), l/2(xm(b) - xo{b)) .

l/2(xo(a) - xm(a)), l/2(xo(b) - xm

(This puts an upper bound on the possible choices of ε). By Theorem
2.3 there exists a subsequence of {μn}, relabeled the same, and an
N > 0 such that for n ^ N there exist solutions xm(t; μ%) and α?m(£; ^Λ)
to equation (11) satisfying

x(a) = xm(α; //0) a?(6) = %m(b;μ0)

and

a?(α) = ^w(α; μϋ) x(b) = »(&; j«0) , respectively .

with

\\Xm(t; μ%) - x»(t; μ0) \\oι <e .

Let F(t, x, x'; μn) be the modification of f(t, x, x'; μn) with respect
to x(t; μn), x(t; μn) and Co. By Theorem 2.5, [3], there exists a solu-
tion x(t; μn; a, β) to x" = jP(ί, a?, α?'; ̂ Λ) satisfying (2) for all n^ N,
provided | a — xo(a) \ < ε and | β — xo(b) \ < ε, with

xjt) μn) ^ flj(ί; μn; a, β) S xjf>\ μn) on [a, b] .

Again it is easy to show that x(t; μn; a, β) is a solution to (11).

It remains to show that x(t; μn; a, β) —> xo(t) as n —> co, <χ —* α0

and /?—>/30 Let {αm} be any sequence converging to α0 and {βm}
any sequence converging to βQ. By construction the sequences
{x(t;μn;am, βm)} and {α?'(ί; j«n; am, βm)} are uniformly bounded and equi-
continuous on [α, 6]. Hence there exists a subsequence which con-
verges in C^-norm on [α, b] to xo(t) by the uniqueness of xo(t). This
implies that a?(ί; μ; a, β) -+ xo(t) as μ—>μQ, a—> aw and β —> /30
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