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THE TRANSLATIONAL HULL OF AN TV-SEMIGROUP

ROBERT E HALL

An AΓ-semigroup is a commutative, cancellative, archi-
medean semigroup having no idempotents. In the first sec-
tion of this paper the Tamura representation of an iV-semi-
group is used to determine the translational hull. The
maximal semilattice decomposition of the translational hull
is then investigated resulting in a complete determination
of the classes of this decomposition in the case that the
iV-semigroup is power joined. These results are used in the
second section which deals with ideal extensions of an N-
semigroup by an abelian group, and ideal extensions of an
abelian group by an JV-semigroup. These extensions arise
naturally in the maximal semilattice decomposition of a com-
mutative separative semigroup. The latter part of this sec-
tion contains results on cancellative extensions of iV-semi-
groups, and a structure theorem of the class of weakly
power joined, commutative, cancellative semigroups.

Notat ion and Preliminaries* Let S be a semigroup. We will
write left [right] translations as operators on the left [right]; Λ(S)
[P(S)] denotes the semigroup of all left [right] translations of S
under the multiplication (XX')x = λ(λ'#) [x(ppr) — (xp)pr] for all x e S.
The translations λ e Λ(S) and p e P(S) are linked if x{Xy) — (xp)y for

all x, y e S; Ω(S) denotes the translational hull of S, that is, the

subsemigroup of Λ(S) x P(S) consisting of all pairs of linked trans-

lations. The subsemigroup of Ω(S) consisting of all pairs of the

form (λα, pa) is denoted by Π(S). (Recall that Xax = ax and xpa =

xa for all xeS).

We will need the following results concerning Ω(S) when S is a

commutative cancellative semigroup. Proofs may be found in [6].

(1) Ω(S) is commutative and cancellative.

(2) (λ, p) e Ω(S) if and only if λα; = xp for all x e S, and hence

Ω(S) ~ Λ(S).

(3) S~ Γ(S) w h e r e Γ(S) = { λ β e Λ ( S ) \aeS}.

We next describe the Tamura representation of an iV-semigroup.

Let N denote the positive integers and NQ the nonnegative integers.

Let G be an abelian group and /: G x G—»AΓ0 be a function satisfying:

( i ) I(a, b) = I(b, a) (a,beG),

(ii) /(α, b) + I(ab, c) = I{a, be) + (6, c) (α, b, c e G),

(in) For each a e G there is an m e N such that I(am, a) > 0.

(iv) I(e, e) = 1 where e is the identity of G.
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On the set No x G define a multiplication by:

(m, a)(n, b) — (m + n + I(a, b), ab) .

With this multiplication No x G becomes an JV-semigroup which will
be denoted by (G, I). The abelian group G is called the structure
group and I an index function. We have the following fundamental
result due to Tamura [7].

THEOREM. Let S be an Nsemigroup. Then S ~ (G, /) for some
abelian group G and some index function I on G.

DEFINITION. A semigroup S is power joined if for each α, b e S
there are m, ne N such that αm = bn.

The next theorem, due to Chrislock [1], points out the role the
structure group plays in an ΛΓ-semigroup.

THEOREM. S = (G, I) is power joined if and only if G is periodic.
S = (G, I) is finitely generated if and only if G is finite.

For all concepts and notation not defined in this paper, the
reader is referred to [2].

l The translational hulL It follows from our preliminary
remarks that to determine Ω(S), where S is an iV-semigroup, we
need only consider left translations.

LEMMA 1.1. Let S = (G, I). Then I(x, e) = 1 for all xeG.

Proof. By setting a — x and b = c = e in property (ii) of an
index function we have

I(x, e) + I(x, e) = I(x, e) + I(e, e) , whence I(x, e) = I(e, e) = 1 .

THEOREM 1.1. Let S = (G, I). Then Λ(S) = {[m, g] | g e G, m e NQ,
and m + I(g, h) — 1 ̂  0 for all he G}, where [m, g] operates on
elements of S as follows:

[m, g](n, a) = (m + n + I(g, a) — 1, ga) .

Proof. The condition, m + I(g, h) — 1 Ξ> 0 for all h e G, insures
that [m, g] maps S into S. Let (n, α), (p, b) e S. Then
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[m, g]{(n, a)(p, b)} = [m, g](n + p + I(a, 6), ab)

= (m + n + p + I(a, b) + I(g, ab) - 1, gab)

= (m + n + p + I(g, a) + I(ga, b) — 1, gab)

= (m + n + I(g, a) - 1, ga)(p, b)

= {[m, flf](w, α)}(p, δ) ,

where the third equality follows from the fact that 7(α, 6) + I(g, ab) —
I(ga, b) + I(g, α), and the others directly from the definition of [m, g]
and multiplication in S. Hence, [m, g] e Λ(S).

Conversely, let λ be any left translation of S. Then λ = [m, g]
where λ(0, e) — (m, g). We first show that [m, g] satisfies the con-
dition m + I(g, h) — 1 ^ 0 for all A e G. This is clear if m ^ 1 since
I assumes only nonnegative values. Hence, assume m = 0. Let
he G and let λ(0, h) = (n, b). Then

l, h) = λ{(0, e)(0, λ)} - {λ(0, e)} (0, A) = (0, ^)(0, h) =

and

λ(l, λ) = λ{(0, Λ)(0, e)} = {λ(0, A)} (0, e) = (rc, δ) (0, e) = (n + 1, b) .

A comparison of the first coordinates of the above expressions for
λ(l, h) shows that I(g, h) = n + l which certainly implies that I(g, h) ^ l
It follows that m + I(g, h) — 1 ^ 0 in any case. It remains to show
that λ = [m, g]. Let (n, a) e S where n ^ 1. Then

X(n, a) = λ{(0, e)(n - 1, a)} = {λ(0, e)}(w - 1, a)

= (m, flf)(n —l,a) = (m + n + I(g, a) - 1, ga) = [m, gr](^, α) .

If w = 0 let λ(0, α) = (p, b). Then

(p + 1, 6) = (p, 6)(0, β) - {λ(0, α)}(0, e) - λ{(0, α)(0, e)}

- λ{(0, β)}(0, a) - (m, ^)(0, α) = (m + J ( Λ α), ga) .

Hence, we have p = m + /(β', α) — 1 and 6 = gα, whence

λ(0, α) = (p, b) = (m + I(g, a) - 1, ga) = [m, g](0, a) .

Therefore, λ = [m, g] and the proof is complete.

REMARK 1.1. The condition on [m, g] in order that it be a left
translation is always satisfied when m ^ 1. Hence, it is relevant
only when we want to determine whether pairs of the form [0, g]
are left translations. A necessary and sufficient condition for [0, g]
to be a left translation is that I(g, h) ^ 1 for all heG. In particular,
[0, e] is always a left translation since J(β, h) = 1 for all heG. In
fact, [0, e] is the identity function on S. As we will establish later,
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the elements of Λ(S) with a zero in the first coordinate are precisely
those left translations that are not inner.

PROPOSITION 1.1. Let S = (G, I) and (m, g), (n, h) e Λ(S). Then
( i ) [m, g] = [n, h] if and only ifm — n and g — h,
(ii) [m, g][n, h] = [m + n + I(g, h) - 1, gh\.

Proof. To prove (i) note that (m, g) — [m, g](o, e) — [n, h](0, e) =
(n, h). Since equality in S is defined coordinatewise we have m = n
and g = h. If m = n and g — h, clearly [m, g] = [n, h].

To prove (ii) let (p, a) e S. Then

{[m, g][n, h]}(p, a) = [m, g]{[n, h](p, a)}

= [m, fif](w + p + I(α, fe) — 1, ha)

= (m + n + p + I(a, h) + I(g, ha) — 2, gha)

= (m + n + p + I(g, h) + I(gh, a) — 2,

= [m + n + I(g, h) — 1, #fc](p, α) ,

where the fourth equality follows from the fact that I(a, h) + I(g, ha) =
, α) + I(g, h). Hence, [m, #][w, A] = [m + n + /(gr, A) — 1, #λ].

THEOREM 1.2. Lei S = (G, I). Then Γ(S) - {[m, ̂ ] U e G, m ̂  1}.
Moreover, Xin,a) = [n + 1, a].

Proof. In the proof of Theorem 1.1 it was established that
λ == [m, g] where λ(0, e) — (m, g) for each λ e Λ(S) Since λ(w,α)(0, e) =
(w, α)(0, e) = (w + 1, α), it follows that λ(ntα) = [n + 1, α]

We next determine the group of units of Λ(S). This group will
be denoted by Σ(S).

THEOREM 1.3. Let S = (G, I). Then
( i ) Σ(S) = {[0, g] I /(^, h) > 0 and /(flr-1, fe) > 0 /or aZi h e G,

% , r 1 ) - 1}.
(ii) // G is periodic, then Σ(S) = {[0, #] | % , fc) > 0 for all

heG, I(g, gm) - 1 for all m e N}.

Proof, (i) Let [0, g] be an element of the set on the right. The
conditions I(g, h) > 0 and I(g~\ h) > 0 for all heG guarantee that
[0, g] and [0, g~ι] are left translations. Since I(g, g~~ι) = 1, we have
[0, flf][0, ̂  = [0, e], and hence, [0, g] e Σ(S). Conversely, let [m, g] e
Σ(S), and let [n, h] = [m, ^J"1. Then [m, flr][n, h] = [0, e], whence,
m + n + I(g, h) — 1 = 0 and #A — e. Since [w, fe] G Λ(S), we have
n + I(g, h) — 1 ^ 0. Hence, m = 0 and [0, g] e Λ(S). From this it
follows that I(g, k) > 0 for all keG, and in particular, I(g, h) —
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1(9, 9"1) > 0. Then ^ = 0 and [0, h] = [0, g"1] e Λ(S), whence, I(g~\ k)>0
for all keG. Since m — n — 0, it follows from m + n + I(g, h) — 1 = 0
that I(g, h) — I(g, g"1) = 1 and the proof of (i) is complete.

(ii) Let [0, g] be an element of the set on the right. To see
that [0, g] e Σ(S) it will be sufficient, using (i), to show that I(g"\ h)>0
for all h e G, and that I(g, g~~ι) — 1. Since G is periodic, g"1 = gr

for some r e N and hence, I(#, gr"1) = I(g9 g
r) = 1 by hypothesis. We

use induction to show that I(gm, h) > 0 for all he G and me N. It
is true by hypothesis for m = 1, so assume I(gm~\ h) > 0 for all
fceG. By setting a = g, b = ̂ m - 1 and c = fe in property (ii) of an
index function, we have

I(g, flT-1) + /(<Γ, Λ) - I(g, g*~ιh) + I{gm~\ h) .

By hypothesis I(g, gm~~^) — 1. Also, both terms on the right are
positive, I(g, gm~ιh) by hypothesis, and I(gm~~\ h) by the induction
hypothesis. Hence, I(gm, h) > 0 and the induction is complete. Since
g-i = gr, we have I(g"\ h) = I{g\ h) > 0 for all k G . Hence, by (i)
[0, g] G £(S). Conversely, let [0, g] e ̂ (S). Then % , λ) > 0 for all
heG. Also, every power of [0, g] must fall in Σ(S),',s.nd hence,
must have a zero in the first coordinate. Therefore, I(g, gm) = 1 for
all meN.

COROLLARY 1.1. Let S = (G, /) . Then Σ(S) is isomorphic to a
subgroup of G.

Proof. The mapping θ: Σ(S) —* G defined by #[0, g] = g is clearly
an injective homomorphism by (i) of the preceding theorem.

REMARK 1.2. An abstract iSΓ-semigroup may have many repre-
sentations in the form ((?, /) . In each of these representations we
may have a different structure group. Corollary 1.1 shows, however,
that each structure group contains a subgroup isomorphic to Σ(S).

We next investigate the maximal semilattice decomposition of
Λ(S). Recall that the minimal semilattice congruence σ on a com-
mutative semigroup S is defined by xσy if x and y divide a power
of each other.

THEOREM 1.4. Let S = (G, I), and let σ be the minimal semi-
lattice congruence on Λ(S). Then Γ(S) is contained in a congruence
class of σ, and this class, which we will denote by [Γ{S)\, is Γ(S) U
{[0, g] I I(g, h)>0 for all heG, I(g, gm) > 1 for some m e N).

Proof. Since S is archimedean and Γ(S) is isomorphic to S, it
is clear that Γ(S) is contained in a single σ-class. The remaining
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elements of Λ(S) have a zero in the first coordinate. If I(g, gm) > 1,
then [0, g]m+ι has a nonzero first coordinate, and hence, is in Γ(S).
Therefore, [0, g]m+ίσ[l, e] and it follows immediately from the defini-
tion of σ that [0, g]σ[l, e\. Thus, [0, g] is in the same σ class as
Γ(S). Conversely, if [0, g] e [Γ(S)] there exist r e N and [p, k] e Λ(S)
such that [1, e][p, k] = [0, g]r. Hence,

[p + l,k] = [I(g, g) + + I(g, gr~ι) - (r - 1), gr] .

A comparison of the first coordinates shows that I(g, gm) > 1 for
some m ^ r — 1.

THEOREM 1.5. Let S — (G, I) where G is periodic, and let σ be
the minimal semilattiee congruence on Λ(S). There are exactly two
congruence classes of σ, namely Σ(S) and [Γ(S)]

Proof. This follows immediately from Theorems 1.3 and 1.4.

COROLLARY 1.3. Let S = (G, I) where G is finite. Then the
maximal semilattiee decomposition of S consists of two classes, Σ(S)
and [Γ(S)].

Proof. A finite group is clearly periodic so the result follows
immediately from Theorem 1.5.

REMARK 1.3. In the case that S = (G, I) is power joined (G is
periodic) or the case that S is finitely generated (G is finite) precise
descriptions of the congruence classes of the minimal semilattiee
congruence are given by Theorems 1.3 and 1.4.

2* Extensions* A semigroup is separative if for each pair
a, be S with α2 = ab — b2 we have a — b. In [5] Hewitt and Zucker-
man proved that a commutative semigroup S is separative if and
only if S is a semilattiee of i\Γ-semigroups and abelian groups. This
result suggests the construction of all commutative separative semi-
groups from the basic building blocks of semilattices, iV-semigroups,
and abelian groups. As a first step in this direction we consider
the construction in the case where the semilattiee has two elements,
that is, the extension problem. We will be concerned with finding
all extensions of an iSΓ-semigroup by an abelian group with zero
adjoined, and all extensions of an abelian group by an iV-semigroup
with zero adjoined. In the latter part of this section we will con-
sider cancellative extensions.

In view of Theorem 4.21 of [2] and our remarks in the pre-
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liminary section, every extension of a commutative concellative
semigroup S by a commutative cancellative semigroup Q with zero
adjoined is determined by a homomorphism of Q into Λ(S). Hence,
it will be sufficient to determine these homomorphisms in the cases
in question.

THEOREM 2.1. Let S' = ((?', T) and G be an abelian group. Let
τ = G —> G' be a homomorphism satisfying

( i ) Γ(τa,g')>0 (aeG g'eG'),
(ii) Γ(τa, τb) = 1 (a,beG).

Define Θτ: G-+Λ(S') as follows:

θτ{a) = [0, τa] (aeG) .

Then θτ is a homomorphism of G into Λ(Sf) and every homomorphism
of G into Λ(S') is of this form.

Proof. Condition (i) insures that θτ maps G into Λ(Sr). Let
a,beG. Then θτ(ab) = [0, τ(ab)] = [0, τα][0, τb] = θτ{a)θτ{b), where the
second equality follows from (ii) and the fact that τ is a homomorphism.

Conversely, let ^ be a homomorphism of G into Δ{$>). Let
τ: G — G' be defined by:

0(α) = [0, τα] (aeG) .

This definition is valid since 0 must map G into Σ(S'), that is, there
must be a zero in the first coordinate of θ(a). Let a, beG. Then
0(αδ) = Θ(a)θ(b), whence,

[0, τ{ab)\ = [0, rα][0, r6] = [Γ(rα, r6) - 1, (rα)(r6)] .

Therefore, Γ{τa, τb) = 1 and τ(αδ) = (τα)(τδ). That τ satisfies (ii)
follows immediately from the fact that θ maps G into Λ(S). Finally,
let aeG. Then θ(a) - [0, τa] = 0r(α) and ^ = (?Γ.

THEOREM 2.2. Lei S = (G, I) and Gf be an abelian group. Let
τ = G —> G' δβ α function satisfying

( i ) (rα)(rδ) = (re)/(β'δ)r(αδ) (α, 6 e G).
Define θτ: S—> Gf as follows:

θτ{m, a) = (τe)m(τa) ((m, α ) e S ) .

Γ/̂ βw θτ is a homomorphism of S into Gr, and every homomorphism
of S into Gr is of this form.

Proof. Since Gr = Λ(G'), it is sufficient to find all homomorphisms
of S into G'. Let (m, a) and (w, δ) be elements of S. Then
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( 1 ) θτ{(m, a)(n, b)} = θt{m + n + I(a, 6), ab) = (τe)m+n+IM)τ(ab) ,

while

( 2 ) θT(m, a)θr(n, b) = (τe)m(τa)(τe)n(τb) = (τe)m+n(τa)(τb) .

That (1) and (2) are equal follows from condition (i) Hence, θτ is a
homomorphism.

Conversely, let 5 be a homomorphism of S into G\ Define
r:G~»G' as follows:

τα = 5(0, α) (α e G) .

Let (m, α) e & Then

5(m, α) = {5(0, e)w(0, α)} = (τe)m(τa) = 5r(m, α) .

Thus, θ — θτ and #Γ is a homomorphism. Therefore, we have the
equality of (1) and (2) above. That τ satisfies (i) follows immediately
from this equality.

REMARK 2.1. Note that any homomorphism of G into Gf satisfies
condition (i) of Theorem 2.2. Hence, the functions satisfying this
condition may be considered "generalized" homomorphisms.

A commutative cancellative semigroup is clearly separative and
hence is a semilattice of iV-semigroups and abelian groups. It is of
interest then to investigate cancellative extensions of iV-semigroups
and abelian groups. The reader is referred to [4] for an investiga-
tion of extensions of nonpotent cancellative semigroups by groups.
Our investigation will be based on the following results which are
due to Grillet and Petrich.

THEOREM. (Grillet and Petrich [3]). Let V be an extension of
a semigroup S. For each as V let

\ax = ax xpa = xa (x e S) ,

and τ = τ(V: S): α—> (λα, pa). Then τ(V: S) is a (canonical) homo-
morphism of V into Ω(S).

THEOREM 2.3. (Petrich [6]). An extension V of a semigroup S
is cancellative if and only if S is cancellative and τ( V: S) is injective.

REMARK 2.2. When the semigroups under consideration are com-
mutative and cancellative we may take τ( V: S) to be a homomorphism
of V into Λ(S).
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PROPOSITION 2.1 An extension V of a cancellative semigroup S
with identity cannot be cancellative. In particular there exists no
cancellative extension of a group.

Proof. Since S is assumed to have an identity, it follows that
S = Π(S) — Ω(S). The canonical homomorphism τ(V: S) maps S onto
Π(S)9 and hence, cannot be injective. By Theorem 2.3, the extension
V cannot be cancellative.

PROPOSITION 2 2. An extension V of an N-semigroup is cancella-
tive if and only if V is isomorphic to a subsemigroup of Λ(S) that
contains Γ(S).

Proof. This follows immediately from Theorem 2.3.

If S is a semigroup with zero let S* denote the set S\{0}.

PROPOSITION 2.3. Let Q be a semigroup with zero such that Q*
is a semigroup. Then there exists a cancellative extension V of a
power joined N-semigroup S = ((?, /) by Q if and only if Q* is
isomorphic to a subgroup of Σ(S). In particular, Q* must be a
periodic abelian group that is isomorphic to a subgroup of G.

Proof. If Q is isomorphic to a subgroup Hof Σ(S), then H{JΓ(S)
is a cancellative extension of S by Q. Conversely, if V is a cancellative
extension of S by Q, it follows from Proposition 2.2 and Theorem
1.5 that ζ>* is isomorphic to a subsemigroup of Σ(S). We complete
the proof by noting that Corollary 1.1 implies that any subsemigroup
of Σ(S) is in fact a subgroup.

PROPOSITION 2.4. Let Q be a semigroup with zero such that <3*
is a semigroup. Then there exists a cancellative extension V of a
finitely generated N-semigroup S = (G, I) by Q if and only if Q* is
isomorphic to a subgroup of Σ(S). In particular, Q* must be a
finite abelian group that is isomorphic to a subgroup of G.

Proof. The proof is analogous to that of Proposition 2.3 taking
into consideration the fact that G is finite.

We next characterize abstractly the extensions that may occur
in Propositions 2.3 and 2.4.

DEFINITION. A semigroup S is weakly power joined if any two
elements of infinite order are power joined.

LEMMA 2.1. A group G is weakly power joined if and only if
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G is periodic.

Proof. It is clear that a periodic group is power joined, and
hence, certainly weakly power joined. Let G be a weakly power
joined group. If a e G has infinite order, then α"1 has infinite order,
whence there exists m, ne N such that am — (a~ι)n. Hence am+n — e
contradicting our assumption that has a infinite order. Thus, every
element of G has finite order and G is periodic.

The class of weakly power joined commutative semigroups con-
tains at least the periodic abelian groups and power joined iV-semi-
groups. The next theorem shows that the remaining semigroups in
this class are the cancellative extensions of Proposition 2.3.

THEOREM 2.4. Let S be a weakly power joined, commutative,
cancellative semigroup that is neither a periodic abelian group nor
a power joined N-semigroup. Then there is a power joined N-semi-
group T = (G, I) such that S is isomorphic to a subsemigroup of Λ(T)
of the form H\jΓ(T) there H is a subgroup of Σ(T). Conversely
every such subset of Λ{T) is a weakly power joined, commutative,
cancellative semigroup.

Proof. Let S be as in the statement of the theorem. Then S
is clearly separative, and hence, is a semilattice Y of semigroups
Sa, where for each aeY, Sa is either an abelian group or an N-
semigroup. Since S is weakly power joined, each abelian group
must be periodic and each iV-semigroup must be power joined.
(Recall that every element in an iV-semigroup has infinite order.)
The assumption that any two elements of infinite order are power
joined implies that we can have at most one y e Y with Sr being an
iV-semigroup. Also, since a commutative cancellative semigroup can
have at most one idempotent, we can have at most one βe Y with
Sβ being an abelian group. Thus Y has at most two elements. The
assumption that S is neither a power joined JV-semigroup nor a
periodic abelian group rules out the possibility that Y has exactly
one element. By Proposition 2.1 there can be no cancellative exten-
sion of a group. Hence, S is an extension of the weakly power
joined iNΓ-semigroup T = Sr by the periodic abelian group Sβ. By
Proposition 2.3 such an extension exists if and only if Sβ is iso-
morphic to a subgroup H of Σ(T). Hence, the canonical homo-
morphism τ(S: T) provides an isomorphism of S onto a subsemigroup
of Λ(T) of the desired type.

To establish the converse statement first note that any subset
of Λ(T) where T — (G, I) is a power joined JV-semigroup is com-
mutative and cancellative. Let R = H{J Γ(T) where H is a subgroup
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of Σ(T). It follows easily from our results in § 1 that R is a sub-
semigroup. Since T — Γ(T), we have that Γ{T) is power joined.
Also, Σ(T), and hence, H is periodic. Thus any two elements of
infinite order that occur in R must be in Γ(T), and hence, are power
joined. Therefore, R is weakly power joined.

REMARK 2.3. A similar argument shows that the class of finitely
generated, weakly power joined, commutative cancellative semigroups
consists of

( i ) the finite abelian groups,
(ii) the finitely generated JV-semigroups,
(iii) subsemigroups of Λ(T) of the form H{JΓ(T) where T is

a finitely generated iV-semigroup and H is a subgroup of Σ{T).
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