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IRREDUCIBLE CHARACTERS AND SOLVABILITY OF
FINITE GROUPS

F. R. DEMEYER

The relationship between the degree of an irreducible
character ζ on a finite group G induced from a nilpotent
normal subgroup and the structure of the group G are studied
when the degree of ζ is large. In particular if the square
of the degree of ζ is the index of the center of G in G then
G is solvable.

Let ζ be an irreducible (complex) character on the finite group G.
What conditions on ζ insure that G is solvable? Of course, if ζ is a
faithful linear character then G is cyclic. We are interested in the
other extreme when the degree of ζ is large, in part because of the
relationship to the theory of projective representations and the Schur
multiplier. Let H be a nilpotent normal subgroup of G, assume ζ =
φσ for some character φ on H, and assume for each Sylow p-subgroup
S of G that ζ\s — mλ for some irreducible character λ on S where
(m, p) = 1, then G is solvable. If Z is the center of G the last
condition always holds if the degree of ζ is [G: Z]ll2

9 that is, if G is
a "group of central type" [2]. It is easy to see that no irreducible
character on G can have degree larger than [G: Z]lβ. Another upper
bound for the degree of an irreducible character on G is d[G: H] where
d = max {degree p\p is an irreducible character on H) ([3] 17.9 p.
570). If [G, G] is the commutator subgroup of G and Zf)[G, G]
contains an element of order d[G: H] then there is an irreducible
character ζ of degree d[G: H] on G. Moreover, ζ — φG for some
character φ on H, and for each Sylow p-subgroup S of G, ζ | s = Σ?=i XJ
where the λ, are irreducible characters on S with λ^l) equal to the
p-part of ζ(l) (j — 1, , n). If n — 1 for each prime p dividing [G: 1]
then G is solvable. An example showing the necessity of the
hypothesis on n is given. The conditions on the character ζ with
respect to the Sylow subgroups S of G restrict the action of G on S.
To illustrate this we show G is nilpotent if and only if for every
Sylow subgroup S of G and every irreducible character χ on G, χ | s =
mλ for some irreducible character λ on S.

In what follows all groups are finite and all characters and
representations are taken over the complex numbers. If n is an
integer and p is a prime integer we let np denote the largest factor
of n which is a power of the prime p. Our standard reference is
[3] and all unexplained terminology and notation coincides with [3].
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THEOREM 1. Let ζ be an irreducible character on the group G
and let H be a nilpotent normal subgroup of G. Assume

1. ζ = φG for some character φ on H.
2. For each Sylow p-subgroup Sof G, ζ \s = mλ for some irreducible

character X on S where (p, m) — 1. Then G is solvable.

Proof. A theorem of P. Hall ([3] 1.10 p. 662) asserts that a
group is solvable if every Sylow subgroup has a complement, this
theorem will be applied to G/H. Let p be a prime dividing [G: 1],
let P be the Sylow p-subgroup of H and S a Sylow p-subgroup of G.
Since P is a characteristic subgroup of H, P is a normal subgroup
of G and P £ & By Clifford's Theorem ([3] 17.3 p. 565)

where the ft are inequivalent irreducible characters on P conjugate
in G. We determine the number n. By hypothesis 2, ζ | P = mλ | P so
λ| P = e/m(p1 + ••• + pn) and the ft are conjugate in S by Clifford's
Theorem. Now (φ, ζ\H) ^ 1 so by relabeling we can say (ft, φ\P) ^ 1.
We claim pf — X so e/m = 1 and n = [S: P]. To verify the claim
hypothesis 2 says the p-part of ζ(l) is λ(l). Also, φ\P = gft (since i ϊ
is nilpotent) where ft(l) is a power of p so fts(l) divides the p-part
of #ff(l) = ζ(l) Since X is contained in pf this implies X — pf verifying
the claim.

Now G acts on ft ft by conjugation and the inertia group
H* of the action of G on ft has index n = λ(l)/ft(l) = [S: P]. Also
H* contains H since J ϊ is nilpotent so H*/H is a p-complement in
G/H. The Theorem of P. Hall completes the proof.

We next give a sufficient condition that ζ satisfy condition 2 of
Theorem 1. (See [2] Theorem 2).

THEOREM 2. Lei ζ 6e α% irreducible character on G and let Z be
the center of G. If ζ(l)2 = [G: Z] then for each Sylow p-subgroup S
of G, ζ\s = wλ /or some irreducible character X on S and (p, m) = 1.

Proof. By Schur's lemma ζ | z = ζ ( l ) ^ where ψ is a linear character
on Z. Then by reciprocity (ζ, ψG) = (ζ\z, ψ) = ζ(l) so by counting
degrees, ζ(l)ζ = ^ G . Let S be a Sylow ^-subgroup of G and let iϋ
be the subgroup of G generated by Z and S. Let X be an irreducible
character of R contained in ψR. By Schur's lemma λ^ remains
irreducible because the elements of Z are represented by Sclars.
Since λ is contained in ψR, XG — mζ for some integer m. By counting
degrees

m = [G: ΛJλ(l)/ζ(l) .
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Since λ is irreducible on S, λ(l) = pa for some α, [G: R] is prime to p
since R contains S. The p-part of ζ(l)2 is [S: S Π Z\. Thus λ(l)2 =
[S: Sf)Z] and (ζ, XG) = (ζ|Λ, λ) - (ζ|,, λ|,) = [G: Z]/X(l)\ Thus ζ | 5 =
mλ where m is the largest divisor of ζ(l) prime to p. We combine
the first two results to obtain.

COROLLARY 1. Let ζ be an irreducible character on the group G,
and let H be a nilpotent normal subgroup of G. Assume ζ = φG for
some character φ on H and ζ(l)2 = [G: Z] where Z is the center of G.
Then G is solvable.

The principal theorem of [1] is now an easy consequence of
Corollary 1.

COROLLARY 2. Let ζ be an irreducible character on the finite
group G, and let A be an abelian normal subgroup of G. If ζ(l)2 =
[G: A]2 = [G. Z] where Z is the center of G then G is solvable.

Proof. Let φ be a linear constitutent of ζ\A. Then by reciprocity,
ζ is a constitutent of φG. But ζ(l) - φG{l) = [G: A] so φG = ζ. By
Corollary 1, G is solvable.

We now verify some of the hypothesis of Theorem 1 in another
situation. We begin by summarizing basic results relating ordinary
representations, projective represent ions, and the Schur Multiplier.
Our nontrivial assertions are the contents of 23.3, p. 629 of [3]. Let
G be a finite group with center Z, assume n is the exponent of
[G, G]f)Z and let G = G/Z. Write

G = \JZR(g)
geG

where R(g) is an element in G corresponding to g. Then R{g^)R(g2) —
A(gu g2)R(gιg2) where A(gy, g2) e Z. Let ae[G, G] Π Z order n and let
Θ be a linear character on Z which is faithful on the cyclic group
generated by a. Define a 2-cycle a on G by

ly g2) = θ(A(gl9 g2)) .

Let JRΓ* be the multiplicative group of the complex numbers. The
element a represents in the Schur multipler H2(G, K*) has order n.

Form the projective group algebra KGa and let M be a left KGa-
module. For each geG, left multiplication by g on M induces a K-
linear transformation T(g) of M and

T(gdT(g2) = a(g

If x G G then x = zJR{g^ where zγeZ and g, e G. Let left multiplica-
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tion by x on M be the linear transformation T*(x) — 0(z1)T(gί). If
y = z2R(g2) e G then

xy = z

and

T*(x)T*(y) = θ(zdT(gdθ(zάT(gd = e{z^e{A{gu g2))T(gig2) = T*(xy) .

Thus M can be viewed as a iΓG-module. Notice that M is irreducible
over KG if and only if M is irreducible over KGa. Also, note that
T* | z = Γ*(l). This process can be reversed when M is a ifG-module
giving- the G representation T* if T * | z = T*(ϊ)θ for the given linear
character θ on Z. Define a linear character α/r on G by the equation
,/φ) - det (T%τ)). Since α e [G, G], t(α) = 1. But ^(α) = #(α)m where
m = Γ*(l) so w divides T*(l).

Let S be a Sylow p-subgroup of G and S the natural image of
S in G. The element the restriction of a to S represents in H2(S,
K*) is realized by the equation a(yl9 y2) = θ(A(yu y2)) in the group SZ.
By ([3] 16.21, p. 118) a represents an element whose order is np in
H2(S, K*). In the correspondence of ([3] 23.3, p. 629) this implies θ
is faithful on a cyclic group of order np in [S, S] Π Z. Form the
protective group algebra K8a. Now M can be viewed as a i£Sα-module,
let M — Mι 0 0 Mk where the Mi are irreducible KSa modules.
As above, each Mi affords an ordinary representation T^ on SZ which
is irreducible. The restriction of T* to S is also irreducible since
each T* restricted to Z is T*(ΐ)θ. Also, θ is faithful on a cyclic
group of order np in [S, S] Π Z so arguing as before np must divide
the degree of Tf.

LEMMA 1. Let G be a finite group with center Z, let a e [G, G] Π
Z of order n, and let θ be a linear character on Z faithful on the
cyclic group generated by a. Then

(1) 0G = Σl-i Cΐ(l)Cΐ where n\ζi(l) and the ζ̂  are inequivalent
irreducible characters of G.

( 2 ) If ζ is an irreducible character on G with (0G, ζ) ;> 1 and
S is a Sylow p-subgroup of G then ζ\s = Σi=i bjXj where np\X3 (l)9 the
Xj are inequivalent irreducible characters on S, and the bj are positive
integers.

Proof. Let ζ be an irreducible character on G. By Schur's
lemma ζ\z = ζ(l)α/r for a linear character ψ on Z. Now (ζ, ψG) =
(ζ\Zf ψ) = ζ(l). This shows ΘG = Σf=i C*(1)C» where the ζ̂  are inequi-
valent irreducible characters of G. If T* is the representation affording
ζi then det Γi is a linear character on G. Since ae[G,G]fl —
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det(Ti(a)) = det[θ(a)Ti(l)] = θ(a)ζ*w. Therefore Λ|C<(1).

To prove (2) we need the analysis which preceded the lemma.
Let T* be the ordinary representation on G which affords ζ and T
the corresponding protective representation on G. In this situaion
we showed Γ* | s = Ti* + ••• + Tfc* where the T? are irreducible and
their degree are divisible by np. Let λ1? , λz be a full set of
inequivalent characters afforded by the Tf, •••, T*. Then ζ\8 =
Σlί=ιbjXj where bj is the multiplicity of X3 in ζ\s and λ5 (l) is the
degree of some T* and so is divisible by np. We can now prove

THEOREM 3 Let G be group with center Z. Let H be a normal
nilpotent subgroup of G and let d = max {p(ϊ) \p is an irreducible
character of H). If [G, G] Π Z contains an element of order d[G: H]
then there is an irreducible character ζ on G so that ζ = φG for some
character φ on H, and for each Sylow p-subgroup S of G, ζ\s = Σ?=i &Λ*
where λ f(l) — ζ(l)p. If n — 1 for each p then G is solvable.

Proof. Let n = d[G: H] and let a e [G, G] Π Z of order n. Let
θ be a linear character on Z which is faithful on the cyclic group
generated by α. By the first part of LEMMA 1

where n\ζi{l) and the ζt are inequivalent irreducible characters of G.
We will show each of the ζ* satisfy the conclusion of the Theorem.
By 17.9 p. 570 of [3], % is the largest possible degree of an irreducible
character on G so n = ζ»(l)(i = 1, , s) and His a maximal nilpotent
normal subgroup of G so ZSH. Now ΘG{1) - [G: Z\ so [G: Z\ = sn2

where s is the number of inequivalent ζ< in ΘG. By Clifford's Theorem
(17.3 p. 565, [3])

where the φ\(j = 1, •••, m) are inequivalent irreducible characters on
H conjugate in G. Now ζ; is a constitutent of (φ))G and (0} )σ(l) ^
d[G: H] = ζ*(l) so for each i, -̂(1) = d and (φ))G = ζiβ This verifies
the first conclusion of Theorem 3 for each i(i = 1, 2, , s).

Let S be a Sylow p-subgroup of G. By the second part of LEMMA 1,

where the λ are inequivalent irreducible characters on S and wp

divides λ}(l). Since H is nilpotent, dp = max {7(1) 17 is an irreducible
character on P). If λ is an irreducible constitutent of λ}|P then
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7S(1) ^ λ}(l) so 7 s = λ} and λ}(l) = dp[S: P] = np. This verifies the
second conclusion of Theorem 3. If n = 1 for each p then ζ | 5 = 6 ^
and ζ(l) = 6^(1). But ζ(l)p = λ^l), so (p, 6X) = 1 and by Theorem 1,
(? is solvable. This completes the proof.

For an example to show the necessity of Condition 2 in Theorem
1 let H be any group of order n and Jn(H) the group algebra of H
over the ring Jn of integers modulo n. Let A = JΊXH) viewed as an
additive group and let H act as a group of automorphisms of A by

h(ax) = αto (regular representation) x, he H, aeJn .

Let G be the semi-direct product of A by i ϊ with respect to this
action. Let φ be the linear character defined on A by Φ(ΣιheH<ihh) =
| α where £ is a primitive nth root of 1 and a is an integer representing
the coefficient in Jn of the identity e of H. One checks that [(?, A] Π
Z — Z where Z, the center of G, is {Σ 0*& I α* = α* all A, k e H} and
has exponent n. Also ^ is distinct from all its conjugates so φG = ζ
is irreducible. Yet G need not be solvable. The problem is that the
restriction of ζ to a Sylow subgroup does not behave properly. For
example, if H = Aδ (the simple group of order 60), and S is the
Sylow 5-subgroup of G then ζ \s = Σί =i λ» * where the λ» are 12 distinct
irreducible characters on S of degree 5.

If G is a finite group with center Z and ζ is a faithful irreducible
character on G with ζ | s = mλ for some Sylow subgroup Sand irredu-
cible character λ on S then the center of S is Z Π S. The proof of
this observation also proves

THEOREM 4. The group G is nilpotent if and only if for each
irreducible character ζ on G and each Sylow subgroup S of G, ζ\s —
mX for some irreducible character λ on S.

Proof. Assume G is nilpotent, let ζ be an irreducible character
on G and S a Sylow subgroup. Then S is normal in G so by Clifford's
Theorem

with the φι distinct conjugate irreducible characters on S. If g e G
then g = gγg2 where gλ centralizes S and g2 e S. Then, φ{ — φfι92 =
φ°* = φ. So m = 1.

Conversely, let S be a Sylow subgroup of G and let a be an
element of the center of S. Let ζ be an irreducible character on G,
then ζ |s = mλ where λ is an irreducible character on S. Let Z(S)
be the center of S. Then by Schur's lemma, λ|Z((S) = λ(l)0 for some
linear character on Z(S). Thus ζ(α) = ζ(l)0(α) so α is an element of
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the center of G/ker ζ. Since this is true for all irreducible characters
on G, a is an element of the center of G. If <&> is the central
subgroup of G generated by a then the irreducible characters of G/
<α)> correspond to the irreducible characters of G with kernel <(α>
Thus Gjζay satisfies the same hypothesis G does so by induction G
is nilpotent.
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