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IRREDUCIBLE CHARACTERS AND SOLVABILITY OF
FINITE GROUPS

F. R. DEMEYER

The relationship between the degree of an irreducible
character { on a finite group G induced from a nilpotent
normal subgroup and the structure of the group G are studied
when the degree of { is large. In particular if the square
of the degree of { is the index of the center of G in G then
G is solvable.

Let { be an irreducible (complex) character on the finite group G.
What conditions on { insure that G is solvable? Of course, if { is a
faithful linear character then G is cyclic. We are interested in the
other extreme when the degree of { is large, in part because of the
relationship to the theory of projective representations and the Schur
multiplier. Let H be a nilpotent normal subgroup of G, assume { =
% for some character ¢ on H, and assume for each Sylow p-subgroup
S of G that {|; = m\ for some irreducible character A on S where
(m, p) =1, then G is solvable. If Z is the center of G the last
condition always holds if the degree of { is [G: Z]'#, that is, if G is
a “group of central type” [2]. It is easy to see that no irreducible
character on G can have degree larger than [G: Z]'*. Another upper
bound for the degree of an irreducible character on G is d[G: H] where
d = max {degree p|p is an irreducible character on H} ([3] 17.9 p.
570). If [G, G] is the commutator subgroup of G and ZN|[G, G]
contains an element of order d[G: H] then there is an irreducible
character { of degree d[G: H] on G. Moreover, { = ¢° for some
character ¢ on H, and for each Sylow p-subgroup Sof G, {|s = >7, \;
where the \; are irreducible characters on S with \;(1) equal to the
p-part of (1) =1, ---,n). If m =1 for each prime p dividing [G: 1]
then G is solvable. An example showing the necessity of the
hypothesis on n is given. The conditions on the character { with
respect to the Sylow subgroups S of G restrict the action of G on S.
To illustrate this we show G is nilpotent if and only if for every
Sylow subgroup S of G and every irreducible character y on G, %|s =
mx for some irreducible character ) on S.

In what follows all groups are finite and all characters and
representations are taken over the complex numbers. If = is an
integer and p is a prime integer we let n, denote the largest factor
of n which is a power of the prime p. Our standard reference is
[3] and all unexplained terminology and notation coincides with [3].
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THEOREM 1. Let { be an trreducible character on the group G
and let H be a nilpotent normal subgroup of G. Assume

1. { = ¢% for some character ¢ on H.

2. For each Sylow p-subgroup Sof G, {|s = m\ for some trreducible
character » on S where (p, m) = 1. Then G is solvable.

Proof. A theorem of P. Hall ([3] 1.10 p. 662) asserts that a
group is solvable if every Sylow subgroup has a complement, this
theorem will be applied to G/H. Let p be a prime dividing [G: 1],
let P be the Sylow p-subgroup of H and S a Sylow p-subgroup of G.
Since P is a characteristic subgroup of H, P is a normal subgroup
of G and P< S. By Clifford’s Theorem ([3] 17.3 p. 565)

Cle =e(@+ =+ + 0a)

where the p; are inequivalent irreducible characters on P conjugate
in G. We determine the number n. By hypothesis 2, {|, = m\|p so
My = e/m(o, + --+ + p,) and the p; are conjugate in S by Clifford’s
Theorem. Now (¢, {|y) = 1 so by relabeling we can say (o, 4|5 = 1.
We claim o =N so e¢/m =1 and n =[S: P]. To verify the claim
hypothesis 2 says the p-part of {(1) is M1). Also, é|» = g0, (since H
is nilpotent) where 0,(1) is a power of p so (1) divides the p-part
of #°(1) = {(1). Since ) is contained in of this implies A = o] verifying
the claim.

Now G acts on p, --- p, by conjugation and the inertia group
H* of the action of G on p, has index n = M1)/0.(1) = [S: P]. Also
H* contains H since H is nilpotent so H*/H is a p-complement in
G/H. The Theorem of P. Hall completes the proof.

We next give a sufficient condition that  satisfy condition 2 of
Theorem 1. (See [2] Theorem 2).

THEOREM 2. Let { be an irreducible character on G and let Z be
the center of G. If (1) = [G: Z] then for each Sylow p-subgroup S
of G, C|s = m\ for some irreducible character N on S and (p, m) = 1.

Proof. By Schur’s lemma (|, = {(1)¥ where + is a linear character
on Z. Then by reciprocity (£, +°) = ({|z ) = (1) so by counting
degrees, {(1){ = 4°. Let S be a Sylow p-subgroup of G and let R
be the subgroup of G generated by Z and S. Let A be an irreducible
character of R contained in +*. By Schur’s lemma \|; remains
irreducible because the elements of Z are represented by Sclars.
Since ) is contained in %, A\ = m{ for some integer m. By counting
degrees

m = [G: R]M1)/EQ) .
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Since M is irreducible on S, A1) = p* for some a, [G: R] is prime to p
since R contains S. The p-part of {(1)* is [S: SN Z]. Thus M1)? =
[S: SN Z] and (£, A%) = ]z M) = (s, Ms) = [G: Z]/M1)°. Thus (s =
mX\ where m is the largest divisor of {(1) prime to p. We combine
the first two results to obtain.

COROLLARY 1. Let { be an irreducible character on the group G,
and let H be a nilpotent normal subgroup of G. Assume { = ¢° for
some character ¢ on H and {(1)* = [G: Z] where Z tis the center of G.
Then G is solvable.

The principal theorem of [1] is now an easy consequence of
Corollary 1.

COROLLARY 2. Let { be an irreducible character on the finite
group G, and let A be an abelian normal subgroup of G. If L(1)* =
[G: AP = [G. Z] where Z is the center of G then G 1is solvable.

Proof. Let ¢ be a linear constitutent of {|,. Then by reciprocity,
{ is a constitutent of ¢° But {(1) = ¢°1) = [G: A] so ¢° ={. By
Corollary 1, G is solvable.

We now verify some of the hypothesis of Theorem 1 in another
situation. We begin by summarizing basic results relating ordinary
representations, projective representions, and the Schur Multiplier.
Our nontrivial assertions are the contents of 23.3, p. 629 of [3]. Let
G be a finite group with center Z, assume # is the exponent of
[G,G]IN Z and let G = G/Z. Write

G = UEZR(g)
where R(g) is an element in G corresponding to g. Then R(g,)R(g,) =
A(g,, 9:)R(9,9;) where A(g, 9,) € Z. Let a€|[G, G]N Z order »n and let
0 be a linear character on Z which is {aithful on the cyclic group
generated by a. Define a 2-cycle « on G by

a(g, g.) = 0(A(g,, 92)) -

Let K* be the multiplicative group of the complex numbers. The
element « represents in the Schur multipler H*G, K*) has order .

Form the projective group algebra KG, and let M be a left KG.-
module. For each ge @G, left multiplication by ¢ on M induces a K-
linear transformation T(g) of M and

T(9,) T(g.) = a(gy, 92) T(9.9) -
If xe G then z = 2,R(g,) where z,€ Z and g, G. Let left multiplica-
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tion by 2 on M be the linear transformation T*(z) = 0(z)T(g). If
Y = 2.R(g,) € G then

vy = 22,49, 9.)F(9.92)

and
T(@) T*(y) = 0(2) T(9)0(2) T(92) = 0(2.2:)0(A(g1, 92)) T(9.9:) = T*(wy) .

Thus M can be viewed as a KG-module. Notice that M is irreducible
over KG if and only if M is irreducible over KG,. Also, note that
T*|, = T*(1). This process can be reversed when M is a KG-module
giving the G representation T* if T*|, = T*(1)0 for the given linear
character 0 on Z. Define a linear character + on G by the equation
J(v) = det (T*(x)). Since a€[G, G], y(a) = 1. But +(a) = 0(a)™ where
m = T*1) so n divides T*(1).

Let S be a Sylow p-subgroup of G and S the natural image of
S in G. The element the restriction of @ to S represents in H*(S,
K*) is realized by the equation a(y, v.) = 0(A(y, ¥.)) in the group SZ.
By ([3] 16.21, p. 118) « represents an element whose order is =, in
H*S, K*). In the correspondence of ([3] 23.3, p. 629) this implies ¢
is faithful on a cyclic group of order =, in [S, S]N Z. Form the
projective group algebra KS,. Now M can be viewed as a KS,-module,
let M =M@ --- P M, where the M; are irreducible KS, modules.
As above, each I, affords an ordinary representation 7;* on SZ which
is irreducible. The restriction of T* to S is also irreducible since
each 77 restricted to Z is T7(1)4. Also, 0 is faithful on a cyclic
group of order =, in [S, S| N Z so arguing as before n, must divide
the degree of T,*.

LemMmA 1. Let G be a finite group with center Z, let a € |G, G] N
Z of order m, and let 0 be a linear character on Z faithful own the
cyclic group generated by a. Then

(1) 0%= 3356 where n|l,(1) and the C; are itnequivalent
wrreducible characters of G.

(2) If C 1is an irreducible character on G with (0°,0) =1 and
S is a Sylow p-subgroup of G then | = D)., bjn; where n,|n;(1), the
N are inequivalent irreducible characters on S, and the b; are positive
integers.

Proof. Let { be an irreducible character on G. By Schur’s
lemma |, = L)+ for a linear character « on Z. Now ((, v% =
&z ) = &(1). This shows 0% = >, £;(1)C; where the {; are inequi-
valent irreducible characters of G. If T} is the representation affording
{; then det T; is a linear character on G. Since a<|[G, G],1 =
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det (Ty(a)) = det [6(a) T;(1)] = 6(a)*®. Therefore n|;(1).

To prove (2) we need the analysis which preceded the lemma.
Let T* be the ordinary representation on G which affords { and T
the corresponding projective representation on G. In this situaion
we showed T*|g = Ty + +-+ + Ty where the T are irreducible and
their degree are divisible by =,. Let A, -+, )\, be a full set of
inequivalent characters afforded by the T, ..., T¥. Then {|; =

i b;N; where b; is the multiplicity of )\; in {|; and \;(1) is the
degree of some T;* and so is divisible by #n,. We can now prove

THEOREM 3. Let G be group with center Z. Let H be a normal
nilpotent subgroup of G and let d = max{o(l)|o is an trreducible
character of H}. If [G, G] N Z contains an element of order d[G: H]
then there is an irreducible character £ on G so that { = ¢° for some
character ¢ on H, and for each Sylow p-subgroup S of G, L|s = D, bin;
where N;(1) = {(1),. If n=1 for each p them G 1is solvable.

Proof. Let n =d[G: H] and let ac[G, G]N Z of order n. Let
6 be a linear character on Z which is faithful on the cyclic group
generated by a. By the first part of LEMMA 1

6° = 336G

where 1|{;(1) and the {; are inequivalent irreducible characters of G.
We will show each of the {; satisfy the conclusion of the Theorem.
By 17.9 p. 570 of [3], » is the largest possible degree of an irreducible
character on G so n = ;)¢ =1, ---, s) and H is a maximal nilpotent
normal subgroup of G so Z& H. Now 0°(Q1) = [G: Z] so [G: Z] = sn®
where s is the number of inequivalent ; in §°. By Clifford’s Theorem
(17.3 p. 565, [3])

Lilw = (gl + -+ + 60)

where the ¢i(j =1, ---, m) are inequivalent irreducible characters on
H conjugate in G. Now (; is a constitutent of (¢))¢ and (4)°(1) =<
d[G: H] = {;(1) so for each 7, ¢i(1) = d and (¢)° = {;. This verifies
the first conclusion of Theorem 3 for each i(¢ = 1,2, «--, s).

Let S be a Sylow p-subgroup of G. By the second part of LEMMA 1,

l -
Cils = Z bj)";
j=1
where the A} are inequivalent irreducible characters on S and =,

divides Ai(1). Since H is nilpotent, d, = max {v(1)|v is an irreducible
character on P}. If M\ is an irreducible constitutent of A\i|, then
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75(1) = Ni(@) so ¥ =2\ and \i(l) = d,[S: P] = n,. This verifies the
second conclusion of Theorem 8. If n = 1 for each p then {|; = b\,
and (1) = b (1). But (1), = M(1), so (p, b)) = 1 and by Theorem 1,
G is solvable. This completes the proof.

For an example to show the necessity of Condition 2 in Theorem
1 let H be any group of order n and J,(H) the group algebra of H
over the ring J, of integers modulo n. Let A = J,(H) viewed as an
additive group and let H act as a group of automorphisms of 4 by

h(ax) = ahx (regular representation) =, he H,acdJ, .

Let G be the semi-direct product of A by H with respect to this
action. Let ¢ be the linear character defined on A by ¢(Zhex @rh) =
&* where ¢ is a primitive n'™ root of 1 and a is an integer representing
the coefficient in J, of the identity e of H. One checks that [G, A]IN
Z = Z where Z, the center of G, is {3, aih|a, = a, all h, ke H} and
has exponent n. Also ¢ is distinet from all its conjugates so ¢% =
is irreducible. Yet G need not be solvable. The problem is that the
restriction of { to a Sylow subgroup does not behave properly. For
example, if H = A, (the simple group of order 60), and S is the
Sylow 5-subgroup of G then (| = 3%, \; where the \; are 12 distinct
irreducible characters on S of degree 5.

If G is a finite group with center Z and ( is a faithful irreducible
character on G with {|; = m)\ for some Sylow subgroup S and irredu-
cible character A on S then the center of S is ZN S. The proof of
this observation also proves

THEOREM 4. The group G is nilpotent if and only if for each
irreducible character { on G and each Sylow subgroup S of G,(|s =
mx for some irreducible character . on S.

Proof. Assume G is nilpotent, let { be an irreducible character
on G and S a Sylow subgroup. Then S is normal in G so by Clifford’s
Theorem

Cls = e(gs + =+ + 6u)

with the ¢; distinct conjugate irreducible characters on S. If ge G
then ¢ = g,9, where g, centralizes S and g¢g.€S. Then, ¢/ = ¢)1%2 =
¢ =¢. Som = 1.

Conversely, let S be a Sylow subgroup of G and let a be an
element of the center of S. Let { be an irreducible character on G,
then ¢|; = mx where A is an irreducible character on S. Let Z(S)
be the center of S. Then by Schur’s lemma, M|, = M1)0 for some
linear character on Z(S). Thus {(a) = {(1)f(a) so a is an element of
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the center of G/ker {. Since this is true for all irreducible characters
on G, a is an element of the center of G. If {a) is the central
subgroup of G generated by a then the irreducible characters of G/
{a) correspond to the irreducible characters of G with kernel <{a).
Thus G/{a) satisfies the same hypothesis G does so by induction G
is nilpotent.
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