GENERALIZED RAMSEY THEORY FOR GRAPHS, III. SMALL OFF-DIAGONAL NUMBERS

Václav Chvátal and Frank Harary

The classical Ramsey theory for graphs studies the Ramsey numbers $r(m, n)$. This is the smallest p such that every 2 coloring of the lines of the complete graph K_{p} contains a green K_{m} or a red K_{n}. In the preceding papers in this series, we developed the theory and calculation of the diagonal numbers $r(F)$ for a graph F with no isolated points, as the smallest p for which every 2 -coloring of K_{p} contains a monochromatic F. Here we introduce the off-diagonal numbers: $r\left(F_{1}, F_{2}\right)$ with $F_{1} \neq F_{2}$ is the minimum p such that every 2 coloring of K_{p} contains a green F_{1} or a red F_{2}. With the help of a general lower bound, the exact values of $r\left(F_{1}, F_{2}\right)$ are determined for all graphs F_{i} with less than five points having no isolates.

1. Introduction. The small ($p \leqq 4$ points) graphs F_{i} having no isolated points are shown in Figure 1, together with their symbolic names, following the notation for operations on graphs in the book [3, p. 21]. In fact, we follow the terminology and notation of this book throughout.

In [1, 2], we defined the number $r(F)$ as the minimum p for which every 2 -coloring (of the lines) of K_{p} contains a monochromatic subgraph F. The number $r\left(F_{1}, F_{2}\right)$ is the corresponding smallest p
such that every 2 -coloring of K_{p} contains a green F_{1} or a red F_{2}. Obviously $r(F)=r(F, F)$, so that the numbers $r(F)$ are diagonal within the $r\left(F_{1}, F_{2}\right)$.

There is an equivalent formulation of the definition of $r\left(F_{1}, F_{2}\right)$ in terms of graphical complementation rather than 2 -colorings of a complete graph. Namely, $r\left(F_{1}, F_{2}\right)$ is the minimum p such that whenever a p-point graph G does not have F_{1} as a subgraph, then its complement \bar{G} contains F_{2}. It is convenient to assign numbers to the following immediate consequences of the definition: symmetry, monotonicity, and a crude lower bound,

$$
\begin{equation*}
r\left(F_{1}, F_{2}\right)=r\left(F_{2}, F_{1}\right) \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
F_{1}^{\prime} \subset F_{1} \text { and } F_{2}^{\prime} \subset F_{2} \text { imply } r\left(F_{1}^{\prime}, F_{2}^{\prime}\right) \leqq\left(F_{1}, F_{2}\right) \tag{2}\\
r\left(F_{1}^{\prime}, F_{2}\right) \geqq \max \left(p\left(F_{1}\right), p\left(F_{2}\right)\right) . \tag{3}
\end{gather*}
$$

When F_{1} and F_{2} are both complete graphs, we have specialized to $r\left(K_{m}, K_{n}\right)=r(m, n)$, the classical Ramsey numbers for graphs. As all the numbers $r(m, n)$ are known for $m, n=2,3,4$, we begin with some information about off-diagonal Ramsey numbers for small F_{1} and F_{2}. The existence of the diagonal numbers $r(n, n)$ was established by Ramsey [4] himself; that of all the other numbers $r\left(F_{1}, F_{2}\right)$ follows from (2).

From [3, p. 17], we have the following values of $r(m, n)$:

m	2	3	4
2	2	3	4
3		6	9
4			18

In [2], the numbers $r(F)$ are determined for the 10 graphs of Fig. 1:

$$
\begin{array}{c|cccccccccc}
F & K_{2} & P_{3} & 2 K_{2} & K_{3} & P_{4} & K_{1,3} & C_{4} & K_{1,3}+x & K_{4}-x & K_{4} \\
r(F) & 2 & 3 & 5 & 6 & 5 & 6 & 6 & 7 & 10 & 18
\end{array} .
$$

It is obvious that $r\left(K_{2}, F\right)=p(F)$, the number of points in F.
2. The simplest Ramsey numbers. We now obtain two equations which give the next two rows in Table 1.1, the first for Ramsey numbers involving $2 K_{2}$ and the second for P_{3}.

Lemma 1. For any graph F with no isolates,

$$
r\left(2 K_{2}, F^{\prime}\right)= \begin{cases}p(F)+2 & \text { if } F \text { is complete } \\ p(F)+1 & \text { otherwise } .\end{cases}
$$

Proof. First, when F is complete, we have $r\left(2 K_{2}, F\right)>p(F)+1$ because a 2 -coloring of K_{p+1} in which the green lines form just one triangle cannot have a red K_{p}. On the other hand, if a 2-coloring of K_{p+2} has no green $2 K_{2}$, then the green lines form either a star or a triangle, so there must be a red K_{p}.

Secondly when F is not complete, it is a subgraph of $K_{p}-x$. In an arbitrary 2 -coloring of K_{p+1} which does not contain a green $2 K_{2}$, the green lines again form a star or a triangle. When there is a green star, there must be a red K_{p}. And when we have a green triangle, there must appear a green $K_{p}-x$. Thus $r\left(2 K_{2}, F\right) \leqq p(F)+1$. The equality follows from the 2 -coloring of K_{p} with red K_{p-1} and a green star $K_{1, p-1}$.

The next question is a bit more subtle.
Lemma 2. For any graph F with no isolates,

$$
r\left(P_{3}, F\right)=\left\{\begin{array}{l}
p(F) \text { if } F \text { has a 1-factor } \\
2 p(F)-2 \beta_{1}(F)-1 \text { otherwise } .
\end{array}\right.
$$

Proof. In each 2-coloring of K_{m} without a green P_{3}, all the green lines are independent. In other words, the green graph is a subgraph of $[m / 2] K_{2}$ or, equivalently, the red graph contains $K_{m}-[m / 2] K_{2}$. (For m even, this graph has been called a "party graph" by A. J. Hoffman because everyone talks to everyone else with the exception that nobody talks to his own spouse.) Thus, $r\left(P_{3}, F\right)$ is the smallest m such that F is a subgraph of $K_{m}-[m / 2] K_{2}$.

For any graph F with p points, we have the maximum number of independent lines in the complement of $F, \beta_{1}(\bar{F})=n$ if and only if $F \subset K_{p}-n K_{2}$. Thus, if \bar{F} has a 1 -factor, i.e., $\beta_{1}(\bar{F})=p / 2$, then we have $F \subset K_{p}-(p / 2) K_{2}$ or $r\left(P_{3}, F\right) \leqq p$. The equality follows trivially from (2).

Now, let \bar{F} have no 1-factor, so that $\beta_{1}(\bar{F})=n<p / 2$. If $m=$ $2 p-2 n-1$, then any 2 -coloring of K_{m} having no green P_{3} has a red $K_{m}-[m / 2] K_{2}=K_{m}-(p-n-1) K_{2}$. We will show that such a coloring has a red F. Starting with the simple inclusion $(p-n-1) K_{2} \cup K_{1} \subset$ $n K_{2} \cup(p-2 n) K_{1}$, and taking complements by merely removing the indicated number of independent lines from a complete graph of the proper size, we obtain $K_{p}-n K_{2} \subset K_{m}-(p-n-1) K_{2}$. Thus, we have $r\left(P_{3}, F\right) \leqq 2 p-2 n-1$. On the other hand, the 2 -coloring of $K_{m \rightarrow 1}$ which has just $(m-1) / 2=p-n-1$ green independent lines
and leaves as the remaining red graph $K_{m-1}-((m-1) / 2) K_{2}$ already has no green P_{3}. It contains no red F either, for otherwise $((m-1) / 2) K_{2} \subset$ \bar{F} or equivalently $n=\beta_{1}(\bar{F})>(m-1) / 2=p-n-1$, contradicting $n<p / 2$ and proving Lemma 2.
3. A useful lower bound. For our last lemma, we easily derive a simple lower bound which is not at all sharp in general, but luckily happens to be rather useful in establishing the values of $r\left(F_{1}, F_{2}\right)$ for the 10 small graphs of Fig. 1.

Lemma 4. Let F_{1} and F_{2} be two graphs (not necessarily different) with no isolated points. Let c be the number of points in a largest connected component of F_{1}, and let χ be the chromatic number of F_{2}. Then the following lower bound holds:

$$
r\left(F_{1}, F_{2}\right) \geqq(c-1)(\chi-1)+1 .
$$

Proof. Consider the graph $G=(\chi-1) K_{c-1}$. Since G has no component with at least c points, it cannot possibly contain F_{1}. On the other hand, the complement \bar{G} is $(\chi-1)$-chromatic and hence cannot contain the χ-chromatic graph F_{2}. The inequality follows at once, as G has $(c-1)(\chi-1)$ points.

Remarkably, we shall find that in all but the two instances $r\left(K_{13}, C_{4}\right) \geqq 4$ and $r\left(K_{4}-x, K_{4}\right) \geqq 10$, this lower bound turns out to yield the exact number for $r\left(F_{1}, F_{2}\right)$.

$$
G:
$$

Figure 2

Referring to Table 2 below, we next show that better lower bounds than 4 and 10 respectively are given by

$$
\begin{gather*}
r\left(K_{1,3}, C_{4}\right) \geqq 6 \tag{4}\\
r\left(K_{4}-x, K_{4}\right) \geqq 11 . \tag{5}
\end{gather*}
$$

Later we will see that (4) and (5) give the correct values of these two Ramsey numbers.

To prove (4) we need only exhibit a graph G with 5 points such that G has no $K_{1,3}$ (i.e., no point of degree exceeding 2) and \bar{G} has no 4 -cycle. Clearly $G=C_{5}$ works.

Similarly (5) can be verified by producing G with 10 points not containing $K_{4}-x$ such that $\beta_{0}(G)<4$. This example is a bit trickier, but we finally found it.

The graph G of Fig. 2 has just four triangles, no two having a common line. Hence G does not contain $K_{4}-x$. It is also easily seen that G has no set of 4 independent points.
4. Forcing forbidden subgraphs. For each pair F_{1}, F_{2} of forbidden graphs, we must argue that when the number r of points is right, every graph G with r points not containing F_{1} must have F_{2} in its complement. In particular, we will prove the next 8 upper bounds which establish the remaining off-diagonal Ramsey numbers.

$$
\begin{gather*}
r\left(P_{4}, K_{1,3}\right) \leqq 5 \tag{6}\\
r\left(P_{4}, C_{4}\right) \leqq 5 \tag{7}\\
r\left(K_{1,3}, C_{4}\right) \leqq 6 \tag{8}\\
r\left(K_{1,3}+x, K_{4}-x\right) \leqq 7 \tag{9}\\
r\left(C_{4}, K_{4}-x\right) \leqq 7 \tag{10}\\
r\left(K_{1,3}+x, K_{4}\right) \leqq 10 \tag{11}\\
r\left(C_{4}, K_{4}\right) \leqq 10 \tag{12}\\
r\left(K_{4}-x, K_{4}\right) \leqq 11 \tag{13}
\end{gather*}
$$

Proof of (6) and (7). By coincidence, both (6) and (7) may be shown at one fell swoop. Let G have no 4 -point path P_{4} on its 5 points. There are only two possibilities for such a graph: either $G \subset$ $K_{2} \cup K_{3}$ or $G \subset K_{14}$. Taking complements, $K_{2,3} \subset \bar{G}$ or $K_{4} \subset \bar{G}$, so that necessarily both $K_{1,3}$ and C_{4} are subgraphs of \bar{G}.

Proof of (8). Taking G as a 6 -point graph with all degrees $\leqq 2$
forces \bar{G} to have each degree $\geqq 3$. Thus, in \bar{G}, the neighborhoods of any two nonadjacent points have at least two common points, so that \bar{G} must contain C_{4}.

The next assertion (9) will automatically have several consequences by the monotonicity condition (2).

Proof of (9). Let G be an arbitrary graph of 7 points not containing $K_{13}+x$. We assume \bar{G} does not contain $K_{4}-x$ and proceed to derive a contradiction. There are two possibilities, depending on whether $G \supset K_{3}$. If G does have a triangle $u_{1} u_{2} u_{3}$, with the remaining points labeled v_{j}, then there can be no line $u_{i} v_{j}$ in G. Now each pair of the points v_{j} is forced to be adjacent in G, for otherwise \bar{G} would contain $K_{4}-x$. Hence the points v_{j} induce K_{4} in G, a contradiction.

Next, if G has no triangle, then it has 3 independent points u_{1}, u_{2}, u_{3} since $r\left(K_{3}, K_{3}\right)=r\left(K_{3}\right)=6$. Again, we denote the remaining four points by v_{j}. Each v_{j} must be adjacent in G to at least two of the points u_{i}, for otherwise $G \supset K_{4}-x$. If there is even one line $v_{i} v_{j}$, then G contains $K_{1,3}+x$, contrary to the hypothesis. Thus \bar{G} is forced to contain K_{4}, and a fortiori $K_{4}-x$.

We now apply (2) and the inclusions

$$
K_{13}+x \supset K_{13}, P_{4}, K_{3}
$$

to (9) to obtain at once the lower bounds

$$
\begin{align*}
r\left(K_{3}, K_{4}-x\right) & \leqq 7 \tag{14}\\
r\left(P_{4}, K_{4}-x\right) & \leqq 7 \tag{15}\\
r\left(K_{1,3}, K_{4}-x\right) & \leqq 7 \tag{16}
\end{align*}
$$

Similarly $K_{4}-x \supset K_{1,3}+x, C_{4}, K_{1,3}, P_{4}$ and (2) applied to (14) give

$$
\begin{gather*}
r\left(K_{3}, P_{4}\right) \leqq 7 \tag{17}\\
r\left(K_{3}, K_{1,3}\right) \leqq 7 \tag{18}\\
r\left(K_{3}, C_{4}\right) \leqq 7 \tag{19}\\
r\left(K_{3}, K_{1,3}+x\right) \leqq 7 . \tag{20}
\end{gather*}
$$

Similarly by (15),

$$
\begin{equation*}
r\left(P_{4}, K_{1,3}+x\right) \leqq 7, \tag{21}
\end{equation*}
$$

and by (16),

$$
\begin{equation*}
r\left(K_{1,3}, K_{1,3}+x\right) \leqq 7 \tag{22}
\end{equation*}
$$

Proof of (10). Let G be an arbitrary graph with 7 points and no C_{4}. We will assume $\bar{G} \not \supset K_{4}-x$ and deduce a contradiction.

In the proof, we distinguish two cases according to whether there is or is not a point u of degree smaller than three. In the first case, we delete the point u together with its neighbors and are left with a subgraph H of G having at least four points. Clearly, H has no C_{4} because G has none. Thus, as $r\left(P_{3}, C_{4}\right)=4$ by Lemma $2, \bar{H}$ is forced to contain P_{3}. By definition of H, u is adjacent to no point in H. Therefore, \bar{G} contains $K_{4}-x$, contradicting the assumption.

Next, we consider the second case where each point in G has degree at least three. Now the inequality (9), $r\left(K_{13}+x, K_{4}-x\right) \leqq 7$, proved above, implies $K_{1,3}+x \subset G$. A fortiori, G contains a triangle $u_{1} u_{2} u_{3}$. Now, since each point of G has degree at least three and G contains no C_{4}, we conclude that there are three other points v_{1}, v_{2}, v_{3} such that $u_{i} v_{i}$ is a line of G for each $i=1,2,3$. In other words, G contains the subgraph shown in Figure 3. Actually, it is easy to check that the graph in Fig. 3 is the subgraph of G induced by u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, for the addition of any line to this graph produces C_{4}. But then \bar{G} contains $K_{4}-\imath$ with points $u_{1}, v_{1}, v_{2}, v_{3}$ again contradicting the assumption.

Figure 3
Proof of (11). Assume there is a graph G with 10 points such that G contains no $K_{13}+2$ and $\beta_{0}(G)<4$. As $r\left(K_{3}, K_{4}\right)=r(3,4)=9, G$ contains a triangle $u_{1} u_{2} u_{3}$. Let the other points in G be $v_{j}(j=1,2$, $\cdots, 7$). There cannot be any line $u_{i} v_{0}$ for otherwise G would contain a $K_{13}+x$. Now, let us consider the subgraph H of G spanned by the
v_{j} 's. H has 7 points and no $K_{1,3}+x$ because G has none. Thus, the inequality (20) written in the form $r\left(K_{1,3}+x, K_{3}\right) \leqq 7$ implies the existence of three independent v_{j} 's. Since u_{1} is adjacent to none of these, we then have $\beta_{0}(G) \geqq 4$, contrary to the initial assumptions, completing the proof of (11).

Now we can apply (2) and the inclusions $K_{1,3}+x \supset K_{1,3}, P_{4}$ to (11) to obtain two more upper bounds,

$$
\begin{align*}
& r\left(K_{1,3}, K_{4}\right) \leqq 10 \tag{23}\\
& R\left(P_{4}, K_{4}\right) \leqq 10 \tag{24}
\end{align*}
$$

It is quite convenient to have another lemma for the proof of (12).
Lemma 3. If a graph G with p points has minimum degree d and $d(d-1)>p-1$, then G contains C_{4}.

Proof. Let n be the total number of paths P_{3} contained in G. There are exactly p choices for the midpoint of P_{3}, and for each fixed midpoint at least $\binom{d}{2}$ choices of the endpoints. Therefore $n \geqq p\binom{d}{2}>$ $\binom{p}{2}$ so there must be two distinct paths P_{3} in G with the same pair of endpoints, and hence a cycle C_{4}.

Proof of (12). Let G be a graph with 10 points such that the point independence number $\beta_{0}(G)<4$. Then necessarily the chromatic number $\chi(G) \geqq 4$. Hence by Brooks' Theorem, see [3, p. 128], either K_{4} (and hence C_{4}) is contained in G, or the degree of each point of G is at least four in which case the conclusion follows from Lemma 3.

Proof of (13). We have to show that there is no graph G with 11 points such that $K_{4}-x \not \subset G$ and $\beta_{0}(G)<4$, so again we assume the contrary. Our first aim is to show that G must be regular of degree 4. This will be done by degrees, considered as possible separate cases.

Case 1. G has a point u of degree $\geqq 7$. Then the neighborhood subgraph H of u (induced by the neighborhood of u) has at least 7 points and clearly contains no set of four independent points. By Lemma 2, $r\left(P_{3}, K_{4}\right)=7$, so H must contain P_{3}, which on joining u implies $K_{4}-x \subset G$. This contradiction proves the impossibility of Case 1.

Case 2. G has a point u of degree 6. Then the neighborhood
subgraph H of u has exactly six points, no four of them being independent. As G contains no $K_{4}-x, H$ cannot contain P_{3}. It is easy to see that these conditions imply $H=3 K_{2}$; let the three independent lines of H be $v_{1} w_{1}, v_{2} w_{2}$ and $v_{3} w_{3}$. There are four other points in G; call one of them u_{0}. This point cannot be adjacent to both v_{i} and w_{i} for some $i \in\{1,2,3\}$ since otherwise G would contain $K_{4}-x$. Thus, we may assume u_{0} not adjacent to v_{1}, v_{2}, v_{3}. But then the points $u_{0}, v_{1}, v_{2}, v_{3}$ are independent contradicting $\beta_{0}(G)<4$. Hence the asumption of Case 2 is false.

Case 3. G has a point u of degree 5. Similarly as above, we can prove that the neighborhood graph H of u must be $2 K_{2} \cup K_{1}$. Let its two lines be $u_{1} v_{1}$ and $u_{2} v_{2}$, and let its fifth point be w. There are five other points in G. If all of them are adjacent to w, then the degree of w equals six. As we saw, this assumption led to a contradiction in Case 2. Thus there is a point w_{0} adjacent neither to u nor to v. Clearly, w_{0} cannot be adjacent to both u_{1} and v_{1} (nor to both u_{2} and v_{2}) as otherwise G would contain $K_{4}-x$. Thus, we may assume w_{0} not adjacent to u_{1}, u_{2}. But then w_{0}, w, u_{1} and u_{2} form a set of four independent points, contradicting $\beta_{0}(G)<4$.

Finally, to rule out any degree other than 4, we consider
Case 4. G contains a point u of degree $\leqq 3$. Then there is a set S of seven points in G which are distinct from u and not adjacent to u. The subgraph $\langle S\rangle$ of G induced by S contains no $K_{4}-x$. Since by (14), $r\left(K_{4}-x, K_{3}\right) \leqq 7,\langle S\rangle$ necessarily contains three independent points u_{1}, u_{2}, u_{3} and hence G contains four independent points, namely u, u_{1}, u_{2}, u_{3} contradicting $\beta_{0}(G)<4$.

We have shown that each of the Cases 1-4 leads to a contradiction. Therefore, G must be regular of degree 4. Clearly, every line of G is contained in at most one triangle, for otherwise G would contain $K_{4}-x$. On the other hand, if every line of G is in exactly one triangle, then the number of lines of G would be divisible by three. However, G has 22 edges and so it has a line, say $u v$, contained in no triangle. Let the other three neighbors of u be u_{1}, u_{2}, u_{3} and let the other three neighbors of v be v_{1}, v_{2}, v_{3}. As $u v$ is contained in no triangle, all these are distinct. Now, we show that the subgraph of G spanned by u_{1}, u_{2}, u_{3} must contain exactly one line. For if it has none, then the points u_{1}, u_{2}, u_{3}, v would be independent; if it has more than one, then G would contain $K_{4}-x$ with points u, u_{1}, u_{2}, u_{3}. Similarly, the subgraph of G spanned by v_{1}, v_{2}, v_{3} also contains exactly one line. Let these two lines be $u_{1} u_{2}$ and $v_{1} v_{2}$. Next, let w be one of the remaining three points w_{1}, w_{2}, w_{3} in G. This point cannot be adjacent to both u_{1} and u_{2} for G would then contain $K_{4}-x$.

Thus, we may assume w not adjacent to u_{1}. If w is not adjacent to u_{3}, then u_{1}, u_{3}, w, v are four independent points, contradicting $\beta_{0}(G)<4$. So w must be adjacent to u_{3}. As w is arbitrary, we conclude that each of the points w_{1}, w_{2}, w_{3} is adjacent to u_{3}. By a symmetry argument, each of w_{1}, w_{2}, w_{3} is adjacent to v_{3}. Then there can be no line $w_{i} w_{j}$ in G, for otherwise F would contain $K_{4}-x$ with points $u_{3}, v_{3}, w_{i}, w_{j}$. Thus the points w_{1}, w_{2}, w_{3} are independent. But then the points u, w_{1}, w_{2}, w_{3} are independent, contradicting $\beta_{0}<4$.
5. Conclusions. The following table summarizes the results obtained (for both diagonal and off-diagonal) generalized Ramsey numbers.

Table 2. Small generalized Ramsey numbers

	K_{2}	P_{3}	$2 K_{2}$	K_{3}	P_{4}	$K_{1,3}$	C_{4}	$K_{1,3}+x$	$K_{4}-x$	K_{4}
K_{2}	2	3	4	3	4	4	4	4	4	4
P_{3}		3	4	5	4	5	4	5	5	7
$2 K_{2}$			5	5	5	5	5	5	5	6
K_{3}				6	7	7	7	7	7	9
P_{4}					5	5	5	7	7	10
$K_{1,3}$						6	6	7	7	10
C_{4}							6	7	7	10
$K_{1,3}+x$								7	7	10
$K_{4}-x$									10	11
K_{4}										18

Notice the irregularity of the behavior of $r\left(F_{1}, F_{2}\right)$:

$$
r\left(P_{4}, K_{3}\right)>r\left(P_{4}, P_{4}\right), r\left(K_{3}, K_{3}\right)
$$

On the other hand,

$$
r\left(P_{3}, P_{3}\right)<r\left(P_{3}, K_{3}\right)<r\left(K_{3}, K_{3}\right)
$$

(inequalities which continue to hold when all subscripts are increased to 4). These suggest the following

Conjecture. For any graphs F_{1}, F_{2} with no isolates,

$$
r\left(F_{1}, F_{2}\right) \geqq \min \left(r\left(F_{1}\right), r\left(F_{2}\right)\right)
$$

It would be a formidable task indeed to extend this table to all 23 of the 5 -point graphs with no isolates. In particular this would include the determination (exact, of course) of $r(5,5)$ which appears not intractable, but extremely complicated. Our experience show that some of these 5-point graphs will be more delicate to handle than
others. Unless and until some more analytic, powerful, and automatic method is found for calculating the numbers $r\left(F_{1}, F_{2}\right)$, it is highly unlikely that these will be found for all the 6 -point graphs and larger ones.

References

1. V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, I, Diagonal numbers. Periodica Math. Hungar., to appear.
2. ——, Generalized Ramsey theory for graphs, II, Small diagonal numbers, Proc. Amer. Math. Soc., 32 (1972), 389-394.
3. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1969.
4. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 30 (1930), 264-286.

Received February 23, 1971. Research of the second author was supported in part by Grant AF 68-1515 from the Air Force Office of Scientific Research.

University of Waterloo
AND
University of Michigan

