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HOMOMORPHISMS OF BANACH ALGEBRAS
WITH MINIMAL IDEALS

GREGORY F. BACHELIS

Let A be a semi-simple Banach algebra with socle F,
and let v be a homomorphism of A into a Banach algebra.
It is shown that if I is a minimal one-sided ideal of A, then
the restriction of v to I is continuous. This is then used to
deduce continuity properties of the restriction of v to F. In
particular, if F has a bounded left or right approximate
identity, then v is continuous on F.

In [1] and [2] we deduced continuity properties of v\F in case
A was a semi-simple annihilator Banach algebra. In this paper we
obtain essentially the same results, but without the hypothesis that
A be an annihilator algebra.

We first show that the restriction of v to any minimal one-sided
ideal is continuous. The proof is almost purely algebraic. We then
show that there exists a constant K such that

\\v(xy)\\ <, K\\x\\\\y\\ , xeF, yeF.

As a corollary we obtain that v\F is continuous if F has a
bounded left or right approximate identity.

1* Preliminaries* Throughout this section we assume that A is
a complex semi-simple Banach algebra. The socle, F, is defined to
be the sum of the minimal right ideals. An idempotent e is called
minimal if eA is a minimal right ideal. We use without reference
the basic facts about the socle of a Banach algebra (see e.g. [7,
pp. 45-47]).

The following two lemmas, together with the "Main Boundedness
Theorem" of Bade and Curtis ([3, Thm. 2.1], [2, Thm. 4.1]) are the
basic ingredients in the proofs that follow. The first lemma is due
essentially to Barnes.

LEMMA 1.1. Let {x19 •• , a ; J c ί τ . Then there exist idempotents
e and f in F such that {xi9 , xn) c eAf and eAf is finite-dimen-
sional.

Proof. By hypothesis, there exist minimal r ight ideals, Ilf * ,J m ,

whose sum contains {xlf •••,#»}. By [4, Thm. 2.2], there exists an

idempotent eeF such t h a t eA = I H \-Im. Thus xk e eA, l^kkf^n.
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Similarly, there exists an idempotent feF such that xke Af, l^k^n.
Hence xk = exkfe eAf, l^k^n.

If u and v are minimal idempotents, and uAv Φ (0), then uAv
is one-dimensional [9, Lemma 5.1]. Since e and / are each the sum
of minimal idempotents, eAf is finite-dimensional.

LEMMA 1.2. Let e he a minimal idempotent and suppose that
eA is infinite-dimensional. Then there exists a sequence of minimal
idempotents {gn} such that gngm = 0, n Φ m, and eAgn Φ (0) for
all n.

Proof. Let gγ = e. Assume that gί9 , gn have been chosen
with the desired properties. Let / = gt + + gn. Then f — f%

and eAf is finite-dimensional. Thus there exists xeeA such that
x(l — f) Φ 0. Since eA is a minimal right ideal, there exists we A
such that x(l-f)w = e. Let gn+1 = (1-/) wex (1-/) . Then fgn+ι =
9n+if = 0, so flrΛ0Λ+1 = gn+i9k = 0, l^k<*n. Also

- (l-f)wex(l-f)

Since e is minimal, ^ + 1 is as well. Since

exgn+1 = ex(l-f) = x{l-f) Φ 0 ,

i 7̂  (0). The conclusion follows by induction.

NOTE. Lemma 1.2 above takes the place of [2, Lemma 2.2] in
what follows. Evidently the latter does not hold in this more general
situation, since the norm induced in eA as a subset of (Ae)* (the set
of bounded linear functional on Ae) need not be equivalent to the
given norm on eA (see Remark 2.5).

2* The main results* Throught this section we assume that A
is a complex semi-simple Banach algebra with socle F and that v is
a homomorphism of A into a Banach algebra. We first show the
following.

THEOREM 2.1. If I is a minimal one-sided ideal, then v\ I is
continuous.

Proof. Suppose that / is a minimal right ideal. Then there
exists a minimal idempotent e such that I = eA.
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Let J = {x e A | y —> v(xy) is continuous on A). Then one veri-
fies that / is a two-sided ideal in A [8, p. 153], and that an idem-
potent g is in J if and only if v \ gA is continuous.

We may assume eA is infinite-dimensional, since otherwise the
conclusion trivially follows. Choose {gn} as given by Lemma 1.2. If
gn£ J then there exists xnegnA such that | |a;Λ | | = 1 and || v(xn) || >
n || gn ||. Since gnxn = xn and # Λ = # W # A = 0, mφ n, the Main
Boundedness Theorem [2, Thm. 4.1] implies that gneJ for some n.
Since eA#% =̂  (0) and J is a left ideal, we have that eAf] Jφ (0).
But J is a right ideal and eA is a minimal right ideal. Thus
eeeAc:J, and v\eA is continuous.

REMARK 2.2. (cf. [3, p. 597]) If I = eA is an infinite-dimensional
minimal right ideal, then it is always possible to construct a dis-
continuous homomorphism v of eA into a Banach algebra. For let φ
be a discontinuous linear functional on eA, and define

II « Hi = II ®ll + \Φ{^\ > xeeA.

If .τeei , then xe = λe, λ complex. Thus

so

Hence | λ [ = ρ(x), the spectral radius of x.
If a?, 2/ e A, then

i = II x v II

^ II 3 I I I

=S 11*111

^ l l » l l (

+
12/11
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\\y

+
+

1 +

w
ys\tλ/t/tf)

p(x) φ(y)

Φiv) I)

^ II » I k 1 1 1 / H i ,

so || ||t is a normed algebra norm on eA.
Now let B be the completion of eA in this norm and define

v\ eA —* B by v(#) = x. Then ^ is a discontinuous homomorphism of
eA. By the above theorem, v does not extend to a homomorphism
of A.

We now have:

THEOREM 2.3. Let A be a semi-simple Banach algebra with socle
F and let v be a homomorphism of A into a Banach algebra. Then
there exists a constant K such that
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\\v{xy)\\^K\\x\\\\v\\ xeF, yeF

Proof. Since F is the sum of the minimal right ideals and also
the sum of the minimal left ideals, it follows from Theorem 2.1 that,
for any xeF, the mappings y —* v(xy) and y —> v(yx) are continuous
on A. Thus it suffices to show that

s u p

In addition, if e = e2 e i*7, then v | eA and v | Ae are continuous. With
these observations, the proof is virtually the same as that of [2,
Thm. 4.5], with [2, Lemma 2.1] replaced by Lemma 1.1.

COROLLARY 2.4. If F has a bounded left or right approximate
identity, then v is continuous on F.

Proof. If F has a bounded left or right approximate identity,
then of course so does F. The proof now follows as that of [2, Cor.
4.9], with [1, Cor. 4.9] replaced by Lemma 1.1.

REMARK 2.5. Let X and Y be Banach spaces with 7 c X and
such that the inclusion map i: Y—+X is continuous and i{Y)~ = X.
Let B(X, Y) denote the bounded operators from I to 7 and let
B'{X, Y) denote the compact operators from X to Y. Then B(X, Y)
is a semi-simple Banach algebra with B'{X, Y) as a closed two-sided
ideal. If A is a closed two-sided ideal of B(X, Y) containing
B'(X, Y), then A is semi-simple with socle F consisting of those
bounded operators from X to Y with finite-dimensional range. Each
minimal right ideal of A is linearly homeomorphic to X* and each
minimal left ideal is linearly homeomorphic to Y. Now i*: Y* —*X*
is one-to-one and continuous, but not bi-continuous if Y φX.

If X = Y and satisfies the metric approximation property [5,
p. 178], then F has a bounded left approximate identity, so the
above corollary applies to A. If in addition X has a continued bisec-
tion, then Johnson [6, Thm. 3.5] has shown that any homomorphism
of A into a Banach algebra is continuous on B'(X, X) {— F). He
has also shown that any homomorphism of B(X, X) into a Banach
algebra is continuous if X has a continued bisection [6, Thm. 3.3].
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