COMMUTANTS OF SOME HAUSDORFF MATRICES

B. E. RHOADES

Let B(c) denote the Banach algebra of bounded operators over c, the space of convergent sequences. Let Γ and Δ denote the subalgebras of B(c) consisting, respectively, of conservative and conservative triangular infinite matrices, and C the Cesaro matrix of order one. In this paper we investigate Com(C) in Γ and B(c), Com(H) in Γ and B(c) for certain Hausdorff matrices H, and some related questions.

Let B(c) denote the Banach algebra of bounded operators over c, the space of convergent sequences. Let Γ and Δ denote the subalgebras of B(c) consisting, respectively, of conservative and conservative triangular infinite matrices. It is well known (see, e.g. [3, p. 77]) that the commutant of C, the Cesaro matrix of order one, in Δ is the family \mathscr{H} of conservative Hausdorff matrices. The same proof yields the result that if H is any conservative Hausdorff triangle with distinct diagonal elements, then $\operatorname{Com}(H) = \mathscr{H}$ in Δ . In this paper we investigate $\operatorname{Com}(C)$ in Γ and B(c), $\operatorname{Com}(H)$ in Γ and B(c) for certain Hausdorff matrices H, and some related questions.

The spaces of bounded, convergent, and absolutely convergent sequences shall be denoted by m, c, and l. U will denote the unilateral shift, and we shall use $A \leftrightarrow B$ to indicate that the operators A and B commute. An infinite matrix A is said to be triangular if it has only zero entries above the main diagonal, and a triangle if it is triangular and has no zeros on the main diagonal. An infinite matrix A is conservative; i.e., $A: c \rightarrow c$ if and only if

$$||A|| = \sup_n \sum_k |a_{nk}| < \infty$$
 , $a_k = \lim_n a_{nk}$

exists for each k, and $\lim_{n} \sum_{k} a_{nk}$ exists.

The proof [2, p. 249] that $\operatorname{Com}(C) = \mathscr{H}$ in \varDelta , uses the associativity of matrix multiplication. If $\operatorname{Com}(C)$ is to remain unchanged in the larger algebra Γ , it is necessary that $\operatorname{Com}(C)$ contain only triangular matrices. We are thus led to the following result, where e_k denotes the coordinate sequence with $a \ 1$ in the kth position and zeros elsewhere.

THEOREM 1. Let A be a conservative triangle, B an infinite matrix with finite norm, $B \leftrightarrow A$. Then B is triangular if and only if B. E. RHOADES

$$(1) t(A - a_{nn}I) = 0$$

and $t \in l$ imply t lies in the span of (e_0, e_1, \dots, e_n) , $n = 0, 1, 2, \dots$

The conditions in (1) are merely a reformulation of the fact that B is triangular. For, if $B \leftrightarrow A$, then we obtain the system

(2)
$$\sum_{j=k}^{\infty} b_{nj}a_{jk} = \sum_{j=0}^{n} a_{nj}b_{jk}; n, k = 0, 1, 2, \cdots$$

Define $t^n = \{b_{nk}\}_{k=0}^{\infty}$, $n = 0, 1, 2, \dots$; i.e., t^n is the *n*-th row of *B*. With n = 0, (2) can be written in the form $t^o(A - a_{oo}I) = 0$. Thus $b_{ok} = 0$ for k > 0. By induction, one can then show that $b_{nk} = 0$ for k > n, and hence *B* is triangular.

To prove the converse, suppose (1) fails to hold for all n. Let N be the smallest such n. Then (1) has a nonzero solution outside the span of (e_0, e_1, \dots, e_N) and B is not triangular.

A matrix A is said to be of type M if it is not a right zero divisor over l: i.e., tA = 0 and $t \in l$ imply t = 0. Therefore, an equivalent formulation of (1) is that $(U^*)^{n+1}(A - a_{nn}I)U^{n+1}$ be of type M for each $n = 0, 1, 2, \cdots$.

Let \mathscr{D} denote the set of conservative Hausdorff triangles with distinct diagonal entries, \mathscr{N} the algebra of all matrices with finite norm.

COROLLARY 1. Let $H \in \mathscr{D}$. Then $\operatorname{Com}(H)$ in $\varDelta = \operatorname{Com}(H)$ in $\Gamma = \operatorname{Com}(H)$ in $\mathscr{A} = \mathscr{H}$ if and only if (1) is satisfied.

The last equality follows from the fact that every Hausdorff matrix with finite norm is automatically conservative.

A matrix A is said to be factorable if $a_{nk} = c_n d_k$ for each n and k. Examples of factorable triangular matrices are C, the Hausdorff matrices generated by $\{a/(n+a)\}$ for a > 0, and the weighted mean methods (see [2, p. 57]).

THEOREM 2. If A is a factorable triangle and $B \leftrightarrow A$ then B is triangular.

Proof. Set n = k = 0 in (2) to get

(3)
$$\sum_{j=1}^{\infty} b_{0j}a_{j0} = 0$$
.

From (2) with n = 0, k = 1, we have

$$a_{\scriptscriptstyle 00}b_{\scriptscriptstyle 01} = \sum_{j=1}^\infty b_{\scriptscriptstyle 0j}a_{j1} = \sum_{j=1}^\infty b_{\scriptscriptstyle 0j}c_jd_1 = (d_{\scriptscriptstyle 1}/d_{\scriptscriptstyle 0})\sum_{_{j=1}}^\infty b_{\scriptscriptstyle 0j}a_{j0}$$
 .

Since $a_{00} \neq 0$, $b_{01} = 0$ from (3). By induction one can show that $b_{nk} = 0$ for k > n.

COROLLARY 2. $\operatorname{Com}(C)$ in $\varDelta = \operatorname{Com}(C)$ in $\varGamma = \operatorname{Com}(C)$ in $\mathscr{A} = \mathscr{H}$.

Corollary 2 follows immediately from Theorem 2 since C is factorable.

COROLLARY 3. If $A \in \Delta$, is factorable, and has exactly one zero on the main diagonal, then $B \leftrightarrow A$ implies B is triangular.

Proof. Let N be such that $a_{NN} = 0$. If N > 0, then the proof of Theorem 2 forces $b_{nk} = 0$ for k > n, n < N. For k > N, n = N in (2) we have

$$\sum_{j=k}^{\infty} b_{nj} a_{jk} = \sum_{j=0}^{N} a_{Nj} b_{jk} = a_{NN} b_{Nk} = 0$$
 ,

or

$$-b_{\scriptscriptstyle Nk}c_{\scriptscriptstyle k}=\sum\limits_{\scriptscriptstyle j=k+1}^\infty b_{\scriptscriptstyle Nj}c_{\scriptscriptstyle j}$$
 ,

since $d_k \neq 0$ for k > N. The above equation leads to $b_{Nk}c_k = 0$ which implies $b_{Nk} = 0$. By induction, $b_{nk} = 0$ for n > N, k > n.

If a factorable triangular matrix A contains at least two zeros on the main diagonal, then Com (A) in Δ need not equal Com (A) in Γ . This fact is a special case of the following. A necessary condition for any conservative triangle A to satisfy Com(A) in $\Delta = \text{Com}(A)$ in Γ is that A have distinct diagonal entries. For, suppose there exist integers $i, k, k > i \geq 0$ such that $a_{ii} = a_{kk}$. Then the matrix $(U^*)^{i+1}(A - a_{ii}I)U^{i+1}$ has a zero on the main diagonal in the (k - i)th position and is therefore not of type M.

A necessary condition, therefore, for a conservative Hausdorff matrix H to satisfy $\operatorname{Com}(H)$ in $\varDelta = \operatorname{Com}(H)$ in Γ is that H have distinct diagonal entries. The condition, however, is not sufficient. Let $A = H + \lambda K$ where H is the Hausdorff matrix generated by $\mu_n = (n-a)/(-a) (n+1), a > 0$, K is the compact Hausdorff matrix generated by $\mu_0 = 1, \ \mu_n = 0, \ n > 0$, and λ is any real number satisfying $-(a+1)/a < \lambda < 0$. We shall show that $B = U^*(A - a_{00}I) U$ is not of type M. Thus $\operatorname{Com}(A)$ in Γ will contain nontriangular matrices.

Let D by the Hausdorff matrix generated be

$$m
u_n = rac{\lambda(n-arepsilon)}{-arepsilon(n+1)}$$
 , where $arepsilon = \lambda/\delta$, $\delta = -\lambda - 1 - 1/a$.

Since $a_{00} = 1 + \lambda$, a straightforward calculation verifies that D and $A - a_{00}I$ agree, except for terms in the first column. B is obtained by removing the first row and first column from $A - a_{00}I$. Therefore $B = U^*DU$. By Theorem 1 of [4], D is not of type M, and a suitable sequence t is $t_0 = 1$, $t_n = (-1)^n \varepsilon(\varepsilon - 1) \cdots (\varepsilon - n + 1)/n!$ n > 0. Therefore B is also not of type M.

For $\operatorname{Com}(H)$ in \varDelta to equal $\operatorname{Com}(H)$ in Γ it is not necessary that the Hausdorff matrix H be a triangle. Set $H = \overline{H} - \mu_0 I$, when \overline{H} is any conservative Hausdorff matrix such that $\operatorname{Com}(\overline{H})$ in $\varDelta = \operatorname{Com}(\overline{H})$ in Γ .

We shall now examine Com(C) in B(c).

Let *e* denote the sequence of all ones. If $T \in B(c)$ then one can define continuous linear functionals χ and χ_i by $\chi(T) = \lim Te - \sum_k \lim (Te_k)$ and $\chi_i(T) = (Te)_i - \sum_k (Te_k)_i$, $i = 1, 2, \cdots$. (See, e.g., [5, p. 241].) It is known [1, p. 8] that any $T \in B(c)$ has the representation

$$(4) Tx = v \lim x + Bx for each x \in c$$

where B is the matrix representation of the restriction of T to c_0 and v is the bounded sequence $v = \{\chi_i(T)\}$.

The second adjoint of T has the matrix representation

(5)
$$T^{**} = \begin{pmatrix} \chi(T) & a_1 & a_2 & \cdots \\ \chi_1(T) & b_{11} & b_{12} & \cdots \\ \chi_2(T) & b_{21} & b_{22} & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$

where the a_i 's occur in the representation of

$$\lim \circ T \in c^*$$
 as $(\lim T)(x) = \lim (Tx) = \chi(T) \lim x + \sum_k a_k x_k$.

See, e.g., [6, p. 357].

For the matrix C, each $\chi_i(C) = 0$, [5, p. 241] and $\chi(C) = 1$, so that

(6)
$$C^{**} = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & \frac{1}{2} & \frac{1}{2} & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$

Since $C \leftrightarrow T$ if and only if $C^{**} \leftrightarrow T^{**}$, we may use (5) and (6) to obtain $(C^{**}T^{**})_{00} = (T^{**}C^{**})_{00} = \chi(T)$, and, for n > 0,

(7)
$$(C^{**}T^{**})_{n_0} = \frac{1}{n} \sum_{k=1}^n \chi_k(T) = \chi_n(T) = (T^{**}C^{**})_{n_0}.$$

718

The system (7) yields $\chi_n(T) = \chi_1(T)$, $n = 1, 2, 3, \cdots$. Thus $v = \chi_1(T)e$. Substituting in (4) with $\chi \in c_0$ we see that c must commute with B. Since B is a matrix and $B \in \mathcal{M}$, we may use Corollary 2 to obtain the following result.

THEOREM 3. Let $T \in B(c)$. Then $T \leftrightarrow C$ if and only if T has the form (4) with $v = \chi_1(T)e$ and $B \in \mathscr{H}$.

Note added in proof. The hypotheses of Theorem 1 can be modified without changing the details of the proof. For example, if A and B are any two bounded operators over l^p , p > 1, then the conclusion of Theorem 1 holds. In particular, since $C \in B(l^p)$ for p > 1, we get as a corollary that Com(C) in $B(l^p)$ consists only of those Hausdorff matrices that belong to $B(l^p)$. Another description of Com(C) in $B(l^2)$ appears in A. Shields and L. Wallen [Indiana Univ. Math. J., 20 (1971) 777-788].

REFERENCES

1. H. I. Brown, D. R. Kerr, Jr. and H. H. Stratton, The structure of B[c] and extensions of the concept of conull matrix, Proc. Amer. Math. Soc. 22 (1969) 7-14.

2. G. H. Hardy, Divergent Series, Oxford, 1949.

3. F. Hausdorff, Summationsmethoden und Momentfolgen, I, Math. Zeit., 9 (1921), 74-109.

4. B. E. Rhoades, Some Hausdorff matrices not of type M, Proc. Amer. Math. Soc., 15 (1964), 361-365.

5. A. Wilansky, Topological divisors of zero and Tauberian theorems, Trans. Amer. Math. Soc., **113** (1964), 240-251.

6. ____, Subalgebras of B(X), Proc. Amer. Math. Soc., 29 (1971), 355-360.

Received August 6, 1971.

INDIANA UNIVERSITY