COMMUTANTS OF SOME HAUSDORFF MATRICES

B. E. Rhoades

Abstract

Let $B(c)$ denote the Banach algebra of bounded operators over c, the space of convergent sequences. Let Γ and Δ denote the subalgebras of $B(c)$ consisting, respectively, of conservative and conservative triangular infinite matrices, and C the Cesaro matrix of order one. In this paper we investigate $\operatorname{Com}(C)$ in Γ and $B(c), \operatorname{Com}(H)$ in Γ and $B(c)$ for certain Hausdorff matrices H, and some related questions.

Let $B(c)$ denote the Banach algebra of bounded operators over c, the space of convergent sequences. Let Γ and Δ denote the subalgebras of $B(c)$ consisting, respectively, of conservative and conservative triangular infinite matrices. It is well known (see, e.g. [3, p. 77]) that the commutant of C, the Cesaro matrix of order one, in Δ is the family \mathscr{C} of conservative Hausdorff matrices. The same proof yields the result that if H is any conservative Hausdorff triangle with distinct diagonal elements, then $\operatorname{Com}(H)=\mathscr{H}$ in Δ. In this paper we investigate $\operatorname{Com}(C)$ in Γ and $B(c), \operatorname{Com}(H)$ in Γ and $B(c)$ for certain Hausdorff matrices H, and some related questions.

The spaces of bounded, convergent, and absolutely convergent sequences shall be denoted by m, c, and l. U will denote the unilateral shift, and we shall use $A \leftrightarrow B$ to indicate that the operators A and B commute. An infinite matrix A is said to be triangular if it has only zero entries above the main diagonal, and a triangle if it is triangular and has no zeros on the main diagonal. An infinite matrix A is conservative; i.e., $A: c \rightarrow c$ if and only if

$$
\|A\|=\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty, \quad a_{k}=\lim _{n} a_{n k}
$$

exists for each k, and $\lim _{n} \sum_{k} a_{n k}$ exists.
The proof $[2, \mathrm{p} .249]$ that $\operatorname{Com}(C)=\mathscr{H}$ in Δ, uses the associativity of matrix multiplication. If $\operatorname{Com}(C)$ is to remain unchanged in the larger algebra Γ, it is necessary that $\operatorname{Com}(C)$ contain only triangular matrices. We are thus led to the following result, where e_{k} denotes the coordinate sequence with $a 1$ in the k th position and zeros elsewhere.

Theorem 1. Let A be a conservative triangle, B an infinite matrix with finite norm, $B \leftrightarrow A$. Then B is triangular if and only if

$$
\begin{equation*}
t\left(A-a_{n n} I\right)=0 \tag{1}
\end{equation*}
$$

and $t \in l$ imply t lies in the span of $\left(e_{0}, e_{1}, \cdots, e_{n}\right), n=0,1,2, \cdots$.
The conditions in (1) are merely a reformulation of the fact that B is triangular. For, if $B \leftrightarrow A$, then we obtain the system

$$
\begin{equation*}
\sum_{j=k}^{\infty} b_{n j} a_{j k}=\sum_{j=0}^{n} a_{n j} b_{j k} ; n, k=0,1,2, \cdots \tag{2}
\end{equation*}
$$

Define $t^{n}=\left\{b_{n k}\right\}_{k=0}^{\infty}, n=0,1,2, \cdots$; i.e., t^{n} is the n-th row of B. With $n=0$, (2) can be written in the form $t^{\circ}\left(A-a_{o o} I\right)=0$. Thus $b_{o k}=0$ for $k>0$. By induction, one can then show that $b_{n k}=0$ for $k>n$, and hence B is triangular.

To prove the converse, suppose (1) fails to hold for all n. Let N be the smallest such n. Then (1) has a nonzero solution outside the span of $\left(e_{0}, e_{1}, \cdots, e_{N}\right)$ and B is not triangular.

A matrix A is said to be of type M if it is not a right zero divisor over l : i.e., $t A=0$ and $t \in l$ imply $t=0$. Therefore, an equivalent formulation of (1) is that $\left(U^{*}\right)^{n+1}\left(A-a_{n n} I\right) U^{n+1}$ be of type M for each $n=0,1,2, \cdots$.

Let \mathscr{D} denote the set of conservative Hausdorff triangles with distinct diagonal entries, \mathscr{A} the algebra of all matrices with finite norm.

Corollary 1. Let $H \in \mathscr{D}$. Then $\operatorname{Com}(H)$ in $\Delta=\operatorname{Com}(H)$ in $\Gamma=\operatorname{Com}(H)$ in $\mathscr{A}=\mathscr{H}$ if and only if (1) is satisfied.

The last equality follows from the fact that every Hausdorff matrix with finite norm is automatically conservative.

A matrix A is said to be factorable if $\alpha_{n k}=c_{n} d_{k}$ for each n and k. Examples of factorable triangular matrices are C, the Hausdorff matrices generated by $\{a /(n+a)\}$ for $a>0$, and the weighted mean methods (see [2, p. 57]).

Theorem 2. If A is a factorable triangle and $B \leftrightarrow A$ then B is triangular.

Proof. Set $n=k=0$ in (2) to get

$$
\begin{equation*}
\sum_{j=1}^{\infty} b_{0 j} a_{j 0}=0 \tag{3}
\end{equation*}
$$

From (2) with $n=0, k=1$, we have

$$
a_{00} b_{01}=\sum_{j=1}^{\infty} b_{0 j} a_{j 1}=\sum_{j=1}^{\infty} b_{0 j} c_{j} d_{1}=\left(d_{1} / d_{0}\right) \sum_{j=1}^{\infty} b_{0 j} a_{j 0}
$$

Since $a_{00} \neq 0, b_{01}=0$ from (3). By induction one can show that $b_{n k}=0$ for $k>n$.

Corollary 2. $\operatorname{Com}(C)$ in $\Delta=\operatorname{Com}(C)$ in $\Gamma=\operatorname{Com}(C)$ in $\mathscr{A}=$ \mathscr{H}.

Corollary 2 follows immediately from Theorem 2 since C is factorable.

Corollary 3. If $A \in \Delta$, is factorable, and has exactly one zero on the main diagonal, then $B \leftrightarrow A$ implies B is triangular.

Proof. Let N be such that $a_{N N}=0$. If $N>0$, then the proof of Theorem 2 forces $b_{n k}=0$ for $k>n, n<N$. For $k>N, n=N$ in (2) we have

$$
\sum_{j=k}^{\infty} b_{n j} a_{j k}=\sum_{j=0}^{N} a_{N j} b_{j_{k}}=a_{N N} b_{N k}=0
$$

or

$$
-b_{N k} c_{k}=\sum_{j=k+1}^{\infty} b_{N j} c_{j}
$$

since $d_{k} \neq 0$ for $k>N$. The above equation leads to $b_{N k} c_{k}=0$ which implies $b_{N k}=0$. By induction, $b_{n k}=0$ for $n>N, k>n$.

If a factorable triangular matrix A contains at least two zeros on the main diagonal, then $\operatorname{Com}(A)$ in Δ need not equal $\operatorname{Com}(A)$ in Γ. This fact is a special case of the following. A necessary condition for any conservative triangle A to satisfy $\operatorname{Com}(A)$ in $\Delta=\operatorname{Com}(A)$ in Γ is that A have distinct diagonal entries. For, suppose there exist integers $i, k, k>i \geqq 0$ such that $a_{i i}=a_{k k}$. Then the matrix $\left(U^{*}\right)^{i+1}\left(A-a_{i i} I\right) U^{i+1}$ has a zero on the main diagonal in the $(k-i)$ th position and is therefore not of type M.

A necessary condition, therefore, for a conservative Hausdorff matrix H to satisfy $\operatorname{Com}(H)$ in $\Delta=\operatorname{Com}(H)$ in Γ is that H have distinct diagonal entries. The condition, however, is not sufficient. Let $A=H+\lambda K$ where H is the Hausdorff matrix generated by $\mu_{n}=(n-a) /(-a)(n+1), a>0, K$ is the compact Hausdorff matrix generated by $\mu_{0}=1, \mu_{n}=0, n>0$, and λ is any real number satisfying $-(a+1) / a<\lambda<0$. We shall show that $B=U^{*}\left(A-a_{00} I\right) U$ is not of type M. Thus $\operatorname{Com}(A)$ in Γ will contain nontriangular matrices.

Let D by the Hausdorff matrix generated be

$$
\nu_{n}=\frac{\lambda(n-\varepsilon)}{-\varepsilon(n+1)}, \quad \text { where } \varepsilon=\lambda / \delta, \delta=-\lambda-1-1 / a
$$

Since $a_{00}=1+\lambda$, a straightforward calculation verifies that D and $A-a_{00} I$ agree, except for terms in the first column. B is obtained by removing the first row and first column from $A-a_{00} I$. Therefore $B=U^{*} D U$. By Theorem 1 of [4], D is not of type M, and a suitable sequence t is $t_{0}=1, t_{n}=(-1)^{n} \varepsilon(\varepsilon-1) \cdots(\varepsilon-n+1) / n!n>0$. Therefore B is also not of type M.

For $\operatorname{Com}(H)$ in Δ to equal $\operatorname{Com}(H)$ in Γ it is not necessary that the Hausdorff matrix H be a triangle. Set $H=\bar{H}-\mu_{0} I$, when \bar{H} is any conservative Hausdorff matrix such that $\operatorname{Com}(\bar{H})$ in $\Delta=$ $\operatorname{Com}(\bar{H})$ in Γ.

We shall now examine $\operatorname{Com}(C)$ in $B(c)$.
Let e denote the sequence of all ones. If $T \in B(c)$ then one can define continuous linear functionals χ and χ_{i} by $\chi(T)=\lim T e-\sum_{k}$ $\lim \left(T e_{k}\right)$ and $\chi_{i}(T)=(T e)_{i}-\sum_{k}\left(T e_{k}\right)_{i}, i=1,2, \cdots$ (See, e.g., [5, p. 241].) It is known [1, p. 8] that any $T \in B(c)$ has the representation

$$
\begin{equation*}
T x=v \lim x+B x \quad \text { for each } x \in c \tag{4}
\end{equation*}
$$

where B is the matrix representation of the restriction of T to c_{0} and v is the bounded sequence $v=\left\{\chi_{i}(T)\right\}$.

The second adjoint of T has the matrix representation

$$
T^{* *}=\left(\begin{array}{cccc}
\chi(T) & a_{1} & a_{2} & \cdots \tag{5}\\
\chi_{1}(T) & b_{11} & b_{12} & \cdots \\
\chi_{2}(T) & b_{21} & b_{22} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

where the a_{i} 's occur in the representation of
$\lim \circ T \in c^{*} \quad$ as $(\lim T)(x)=\lim (T x)=\chi(T) \lim x+\sum_{k} a_{k} x_{k}$.
See, e.g., [6, p. 357].
For the matrix C, each $\chi_{i}(C)=0,[5, \mathrm{p} .241]$ and $\chi(C)=1$, so that

$$
C^{* *}=\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \tag{6}\\
0 & 1 & 0 & \cdots \\
0 & \frac{1}{2} & \frac{1}{2} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Since $C \leftrightarrow T$ if and only if $C^{* *} \leftrightarrow T^{* *}$, we may use (5) and (6) to obtain $\left(C^{* *} T^{* *}\right)_{00}=\left(T^{* *} C^{* *}\right)_{00}=\chi(T)$, and, for $n>0$,

$$
\begin{equation*}
\left(C^{* *} T^{* *}\right)_{n 0}=\frac{1}{n} \sum_{k=1}^{n} \chi_{k}(T)=\chi_{n}(T)=\left(T^{* *} C^{* *}\right)_{n 0} \tag{7}
\end{equation*}
$$

The system (7) yields $\chi_{n}(T)=\chi_{1}(T), n=1,2,3, \cdots$. Thus $v=$ $\chi_{1}(T) e$. Substituting in (4) with $\chi \in c_{0}$ we see that c must commute with B. Since B is a matrix and $B \in \mathscr{A}$, we may use Corollary 2 to obtain the following result.

Theorem 3. Let $T \in B(c)$. Then $T \leftrightarrow C$ if and only if T has the form (4) with $v=\chi_{1}(T) e$ and $B \in \mathscr{H}$.

Note added in proof. The hypotheses of Theorem 1 can be modified without changing the details of the proof. For example, if A and B are any two bounded operators over $l^{p}, p>1$, then the conclusion of Theorem 1 holds. In particular, since $C \in B\left(l^{p}\right)$ for $p>1$, we get as a corollary that $\operatorname{Com}(C)$ in $B\left(l^{p}\right)$ consists only of those Hausdorff matrices that belong to $B\left(l^{p}\right)$. Another description of $\operatorname{Com}(C)$ in $B\left(l^{2}\right)$ appears in A. Shields and L. Wallen [Indiana Univ. Math. J., 20 (1971) 777-788].

References

1. H. I. Brown, D. R. Kerr, Jr. and H. H. Stratton, The structure of $B[c]$ and extensions of the concept of conull matrix, Proc. Amer. Math. Soc. 22 (1969) 7-14.
2. G. H. Hardy, Divergent Series, Oxford, 1949.
3. F. Hausdorff, Summationsmethoden und Momentfolgen, I, Math. Zeit., 9 (1921), 74109.
4. B. E. Rhoades, Some Hausdorff matrices not of type M, Proc. Amer. Math. Soc., 15 (1964), 361-365.
5. A. Wilansky, Topological divisors of zero and Tauberian theorems, Trans. Amer. Math. Soc., 113 (1964), 240-251.
6. , Subalgebras of $B(X)$, Proc. Amer. Math. Soc., 29 (1971), 355-360.

Received August 6, 1971.
Indiana University

