GENERALIZED QUASICENTER AND HYPERQUASICENTER OF A FINITE GROUP

J. B. DERR AND N. P. MUKHERJEE

The notion of quasicentral element is generalized to pquasicentral element and the p-quasicenter and the p-hyperquasicenter are defined. It is shown that the p-quasicenter is p-supersolvable and the p-hyperquasicenter is p-solvable.

The quasicenter Q(G) of a group G is the subgroup of G generated by all quasicentral elements of G, where an element x of G is called a quasicentral element (QC-element) when the cyclic subgroup $\langle x \rangle$ generated by x satisfies $\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle$ for all elements y of G. The hyperquasicenter $Q^*(G)$ of a group G is the terminal member of the upper quasicentral series $1 = Q_0 \subset Q_1 \subset Q_2 \subset \cdots \subset Q_n = Q_{n+1} = Q^*(G)$ of G, where Q_{i+1} is defined by $Q_{i+1}/Q_i = Q(G/Q_i)$. Mukherjee has shown [3, 4] that the quasicenter of a group is nilpotent and the hyperquasicenter is the largest supersolvably immersed subgroup of a group. The proofs of these structure theorems rely on the fact that the powers of QC-elements are again QC-elements.

In this paper we generalize the notion of a quasicentral element in a way which allows the results about the quasicenter and the hyperquasicenter [3, 4] to be extended. All groups mentioned are assumed to be finite.

For a given group G and a fixed prime p, the definition of QCelement might suggest that an element x of G be called a p-quasicentral element provided $\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle$ holds for all p-elements y of G. An apparent difficulty with this definition is that the powers of p-quasicentral elements need not again be p-quasicentral elements. For example, consider the group of order 18 defined by $G = \langle a, b,$ $x | a^3 = b^3 = 1 = x^2$, [a, b] = 1 = [a, x], $[b, x] = a \rangle$. A simple calculation shows that ax is 3-quasicentral while $x = (ax)^3$ is not 3-quasicentral otherwise $\langle x \rangle \langle b \rangle = \langle b \rangle \langle x \rangle$ shall imply that x normalizes $\langle b \rangle$, which is not the case however. Because of this example we choose to generalize the notion of a QC-element as follows.

DEFINITION 1. Let G be a given group and p a fixed prime. Suppose x is an element of G and let the order of x be written as $|x| = p^r m$ where (p, m) = 1. Then x is called a p-quasicentral (p-QC) element of G provided $\langle x^m \rangle \langle y \rangle = \langle y \rangle \langle x^m \rangle$ and $\langle x^{p^r} \rangle \langle y \rangle = \langle y \rangle \langle x^{p^r} \rangle$ hold for all p-elements y of G. (It should be noted that every element of a p'-group is p-QC.) THEOREM 1. If x is a p-QC element of a group G and k is a fixed integer, then x^k is also a p-QC element of G.

Proof. Suppose $|x| = p^b m$ where (p, m) = 1. Since $|x^m| = p^b$, $|x^{p^b}| = m$ and x^{p^b} commutes with $x^m, \langle x \rangle = \langle x^{p^b} \rangle \langle x^m \rangle = \langle x^m \rangle \langle x^{p^b} \rangle$. If $|x^k| = p^c n$ where (p, c) = 1, then $(x^k)^{p^c}$ is a p'-element of $\langle x \rangle$ and $(x^k)^n$ is a p-element of $\langle x \rangle$. It follows that $(x^k)^{p^c}$ is some power of x^{p^b} and $(x^k)^n$ is some power of x^m . To show that x^k is a p-QC element of G, it will suffice to show that $\langle (x^m)^i \rangle \langle y \rangle = \langle y \rangle \langle (x^m)^i \rangle$ and $\langle (x^{p^b})^i \rangle \langle y \rangle = \langle y \rangle \langle (x^{p^b})^i \rangle$ hold for all integers i and all p-elements y of G.

Let y be any p-element in G. Since x is a p-QC element of G, $\langle x^m \rangle \langle y \rangle = \langle y \rangle \langle x^m \rangle$. Therefore $\langle x^m \rangle \langle y \rangle$ is some subgroup H of G whose order divides $|x^m| \cdot |y|$. Since x^m is then a p-QC element of the pgroup H, x^m is a QC-element of H. It follows [3, 4] that every power of x^m is a QC-element of H. In particular, $\langle (x^m)^i \rangle \langle y \rangle = \langle y \rangle \langle (x^m)^i \rangle$ holds for every integer *i*.

Now proceed by induction on the order of G to show that $\langle (x^{p^b})^i \rangle \langle y \rangle = \langle y \rangle \langle (x^{p^b})^i \rangle$ holds for every integer i and every p-element y. Let y be a fixed p-element of G of order p^r . If $\langle x^{p^b} \rangle \langle y \rangle = \langle y \rangle \langle x^{p^b} \rangle$ is a proper subgroup of G, induction completes the argument. Assume therefore that $G = \langle x^{p^b} \rangle \langle y \rangle = \langle y \rangle \langle (x^{p^b}) \rangle$. Then G is a supersolvable group (Theorem 13.3.1, [5]).

Let π denote the set of prime divisors of $|x^{p^b}| = m$ which are larger than p. Since G is supersolvable with order $|G| = p^r m$, G has a normal Hall π -subgroup K. Distinguish two cases.

Case 1. π is empty. Then p is the largest prime dividing |G|. Since $\langle y \rangle$ is a Sylow p-subgroup of $G, \langle y \rangle$ must be normal in G. Clearly $\langle (x^{p^b})^i \rangle \langle y \rangle = \langle y \rangle \langle (x^{p^b})^i \rangle$ holds for all integers i in this case.

Case 2. π is nonempty. Let s and t denote integers such that $x_1 = (x^{p^b})^s$ is a π -element, $x_2 = (x^{p^b})^t$ is a π' -element and $x^{p^b} = x_1x_2 = x_2x_1$ (Theorem 4, [2], p. 23). Then $\langle x_1 \rangle$ is a Hall π -subgroup of G. Since G is supersolvable, $\langle x_1 \rangle \leq G$. It follows that $\langle x_1^i \rangle \langle y \rangle = \langle y \rangle \langle x_1^i \rangle$ holds for every integer i. Since $\langle (x^{p^b})^i \rangle = \langle x_1^i \rangle \langle x_2^i \rangle$ for all integers i, the argument will be complete if we show $\langle x_2^i \rangle \langle y \rangle = \langle y \rangle \langle x_2^i \rangle$ holds for all i. Since $\langle x_1 \rangle$ is a normal Hall π -subgroup of G, the Schur-Zassenhaus theorem shows that G possesses a π -complement R. Since y is a π' -element of G, we may choose R so that $y \in R$. Then $\langle y \rangle$ is a Sylow p-subgroup of R. Since R is supersolvable and p is the

largest prime dividing $|R|, \langle y \rangle \leq R$. We now use the fact that x_2 is a π' -element. Since R is a Hall π' - subgroup of the solvable group G, some conjugate x_2^g of x_2 lies in R. It now follows from $G = \langle x^{p^b} \rangle \langle y \rangle$ that $x_2 \in R$, since every element g in G can be written as $(x^{p^b})^u y^v$ for some integers u, v. Therefore $\langle x_2^i \rangle \langle y \rangle = \langle y \rangle \langle x_2^i \rangle$ holds for every integer i. This completes the proof of the theorem.

LEMMA 1. Let θ be a homomorphism from a group G onto a group \overline{G} . If x is a p-QC element of G, the image x^{θ} of x is a p-QC element of \overline{G} .

Proof. Let $|x| = p^b m$ where (p, m) = 1 and let $|x^{\theta}| = p^c n$ where (p, n) = 1. It follows that $\langle x \rangle = \langle x^{p^b} \rangle \langle x^m \rangle$ and $\langle x^{\theta} \rangle = \langle (x^{\theta})^{p^c} \rangle \langle (x^{\theta})^n \rangle$. Now $\langle x^{\theta} \rangle = \langle x \rangle^{\theta}$ implies $\langle x^{p^b} \rangle^{\theta} = \langle (x^{\theta})^{p^c} \rangle$ and $\langle x^m \rangle^{\theta} = \langle (x^{\theta})^n \rangle$.

Let \bar{u} be any *p*-element of \bar{G} . Then there is a *p*-element *y* of *G* with $y^{\theta} = \bar{u}$. Since *x* is a *p*-Q*C* element of *G*, $\langle x^{p^{b}} \rangle \langle y \rangle = \langle y \rangle \langle x^{p^{b}} \rangle$ and $\langle x^{m} \rangle \langle y \rangle = \langle y \rangle \langle x^{m} \rangle$. This shows $\langle x^{p^{b}} \rangle^{\theta} \langle y \rangle^{\theta} = \langle y \rangle^{\theta} \langle x^{p^{b}} \rangle^{\theta}$ and $\langle x^{m} \rangle^{\theta} \langle y \rangle^{\theta} = \langle y \rangle^{\theta} \langle x^{m} \rangle^{\theta}$. Now $\langle y \rangle^{\theta} = \langle y^{\theta} \rangle = \langle \bar{u} \rangle$ implies $\langle (x^{\theta})^{p^{c}} \rangle \langle \bar{u} \rangle = \langle \bar{u} \rangle \langle (x^{\theta})^{p^{c}} \rangle$ and $\langle (x^{\theta})^{n} \rangle \langle \bar{u} \rangle = \langle \bar{u} \rangle \langle (x^{\theta})^{n} \rangle$. The proof of the lemma is therefore complete.

DEFINITION 2. Let G be a given group and p a fixed prime. The p-quasicenter $Q_p(G)$ is the subgroup of G generated by all p-QC elements of G.

We mention a few simple consequences of the definition of the p-quasicenter. For any group G and any prime p, the quasicenter of G is contained in the p-quasicenter of G. The p-quasicenter of a group is always a characteristic subgroup of the group. It should be noted that if a prime p does not divide the order of a group G then $Q_p(G) = G$.

THEOREM 2. For any group G and every prime p, the p-quasicenter $Q_p(G)$ is p-supersolvable.

Proof. First we notice that $Q_p(G) = G$ is *p*-supersolvable if *p* does not divide |G|. Consequently we assume that *p* divides |G|. The proof is by induction on |G|.

It suffices to show that G contains a nontrivial normal subgroup N of order p or of order prime to p. For, by induction, $Q_p(G/N)$ is then p-supersolvable. Since Lemma 1 shows $Q_p(G)N/N \subseteq Q_p(G/N)$ it will follow that $Q_p(G)$ is p-supersolvable. (This is because of the fact that normal subgroups of p-supersolvable groups are p-supersolvable and N being of order p or prime to p, the p-supersolvability of $Q_p(G)N/N$ implies $Q_p(G)N$ is p-supersolvable.) Since $Q_p(Q_p(G)) = Q_p(G)$, induction lets us assume that $Q_p(G) = G$. Thus G is generated by p-QC

elements x_1, x_2, \dots, x_n . First we show that G contains a proper normal subgroup. Distinguish two cases.

Case 1: Some x_i has order divisible by p. Assume p divides the order of x_1 . Then there is an integer d such that $|x_1^d| = p$. Since x_1^d is a p-QC element of G, $\langle x_1^d \rangle$ permutes with each Sylow p-subgroup of G. Therefore $\langle x_1^d \rangle$ lies in the maximum normal p-subgroup $O_p(G)$ of G. Therefore $O_p(G)$ is a proper normal subgroup of G or $O_p(G) = G$ and G is a p-group. If G is a p-group, the theorem is trivially true.

Case 2: No x_i has order divisible by p. Then x_1, x_2, \dots, x_n are p-QC elements of G with p'-orders. Since |G| is divisible by p, G must contain nonidentity p-elements. Let T denote the subgroup of G generated by all the p-elements of G. Since $T \leq G$, we can assume T=G.Therefore G contains nonidentity p-elements y_1, y_2, \dots, y_m with $\langle y_1, y_2, \dots, y_m \rangle = G$. Let q be the largest prime dividing the product $|x_1| \cdot |x_2| \cdots |x_n|$. First suppose p > q. Since x_i is a p-QC element and y_1 is a *p*-element, $\langle x_i \rangle \langle y_1 \rangle = \langle y_1 \rangle \langle x_i \rangle$ holds for all $i = 1, 2, \dots, n$. It follows (theorem 13.3.1, [5]) that $\langle x_i \rangle \langle y_1 \rangle$ is supersolvable of order $|x_i| \cdot |y_1|$ for $i = 1, 2, \dots, n$. Since x_i is a p'-element and $p > q, \langle y_i \rangle$ is a normal Sylow *p*-subgroup of each group $\langle x_i \rangle \langle y_i \rangle$. Then x_1, x_2, \dots, x_n normalize $\langle y_1 \rangle$ and $\langle y_1 \rangle$ is a normal subgroup of $G = \langle x_1, x_2, \dots, x_n \rangle$. Now suppose p < q and let $|x_1|$ be divisible by q. Let s be an integer such that $\langle x_i^s \rangle$ is a Sylow q-subgroup of $\langle x_i \rangle$. Since $\langle x_1 \rangle \langle y_j \rangle = \langle y_j \rangle \langle x_1 \rangle$ is a supersolvable group and q is the largest prime dividing $|y_j| \cdot |x_1|$, y_j normalizes $\langle x_i^s \rangle$ for $j = 1, 2, \dots, m$. Therefore $\langle x_1^s \rangle \subseteq G = \langle y_1, y_2, \dots, y_m \rangle$. This shows that in every case G contains a proper normal subgroup M. If M has order prime to p, we are finished. Assume now that M is a minimal normal subgroup of G and p divides |M|. We will show that |M| = p.

Since $Q_p(G) = G$, G is generated by p-QC elements x_1, x_2, \dots, x_n of G. For each $i, 1 \leq i \leq n, \langle x_i \rangle = \langle v_1 \rangle \langle v_2 \rangle \dots \langle v_{d_i} \rangle$ where v_1, v_2, \dots, v_{d_i} are powers of x_i, v_1 is a *p*-element, and v_2, v_3, \dots, v_{d_i} are *p'*-elements of prime power orders. Since powers of p-QC elements are also p-QC elements, it follows that G can be written as $G = \langle a_1, a_2, \dots, a_h, b_1, b_2, \dots, b_k \rangle$ where each a_i is a *p*-QC *p*-element of G and each b_j is a *p*-QC *p'*-element of G having prime power order.

Let P denote the subgroup of G generated by all p-QC p-elements of G. Clearly P is a characteristic p-subgroup of G with $\langle a_1, a_2, \dots, a_h \rangle \subseteq P$. Since M is a minimal normal subgroup of G, $P \cap M = 1$ or $P \cap M = M$. First suppose that $P \cap M = 1$. Then $[P, M] \subseteq P \cap M = 1$ and P centralizes M. Let $w \in M$ with |w| = p. Clearly a_i normalizes $\langle w \rangle$ for $i = 1, 2, \dots, h$. Since each b_j is a p-QC element of $G, \langle b_j \rangle \langle w \rangle = \langle w \rangle \langle b_j \rangle$ holds for $j = 1, 2, \dots, k$. It follows that each group $\langle b_j \rangle \langle w \rangle$ is supersolvable of order $|b_j| \cdot |w|$.

Since $|b_j|$ is a power of a prime other than $p, \langle b_j \rangle$ is a Sylow subgroup of $\langle b_j \rangle \langle w \rangle$. Hence b_j normalizes $\langle w \rangle$ or w normalizes $\langle b_j \rangle$ for each $j = 1, 2, \dots, k$. Since $\langle b_j \rangle \cap M = 1$ implies b_j normalizes $\langle w \rangle$, $\langle w \rangle \leq G$ unless $\langle b_j \rangle \cap M \neq 1$ for some j. Assume that $\langle b_d \rangle \cap M \neq 1$ for some integer $d, 1 \leq d \leq k$. This implies that some prime different from p divides the order of M. Since every power of b_d is a p-QC element of G, $Q_p(M) \neq 1$. From the minimality of M it follows that $Q_{p}(M) = M$, since $Q_{p}(M)$ is characteristic in M and M is normal in G. Induction applied to M then shows that M is p-supersolvable. If N is a minimal normal subgroup of M then |N| is either p or is prime to p. Then $T = \langle N^g | g \in G \rangle$ is a normal subgroup of G contained in M and $T = N^{g_1} \cdots N^g$ where g_1, \cdots, g_t are elements of G. But M being minimal normal in G it follows that T = M. Therefore M is either a p-group or a p'-group, since T is so. But p divides the order of M and therefore M must be a p-group. This however contradicts the assumption that $\langle b_d \rangle \cap M \neq 1$. Thus $\langle w \rangle \subseteq G$. Since $\langle w \rangle \subseteq M$, $M = \langle w \rangle$ and M has order |w| = p. Now suppose $P \cap M = M$. Then M is a normal subgroup of the p-group P and $M \cap Z(P) \neq 1$. Let z be a nonidentity element of $M \cap Z(P)$ with |z| = p. Since $z \in Z(P)$, surely $\langle a_1, a_2, \dots, a_h \rangle$ normalizes $\langle z \rangle$. On the other hand, M being a p-group it is evident that $\langle b_j \rangle \cap M = 1$ for each $j = 1, 2, \dots, k$. As before, $\langle z \rangle \leq G$ unless $\langle b_j \rangle \cap M \neq 1$ for some j. Therefore $\langle z \rangle \subseteq G$. Since $1 \neq \langle z \rangle \subseteq M$, the minimality of M shows $M = \langle z \rangle$. Therefore M has order |z| = p and the proof is complete.

Since the quasicenter of a group is nilpotent it is natural to ask if the *p*-quasicenter of a group must be *p*-nilpotent. We give an example to show that this need not be the case. Let S_3 denote the symmetric group of degree 3. The 3-quasicenter of S_3 is S_3 itself. Clearly $Q_3(S_3) = S_3$ is not 3-nilpotent.

DEFINITION 3. Let G be a given group and p a fixed prime. The upper p-quasicentral series $1 = H_0 \subset H_1 \subset \cdots \subset H_n = H_{n+1}$ of G is the characteristic series where H_{i+1} is defined by $H_{i+1}/H_i = Q_p(G/H_i)$. The number of distinct nontrivial terms in the upper p-quasicentral series of G is called the p-quasicentral length of G. The terminal member of the upper p-quasicentral series of G is called the p-hyperquasicenter of G. We denote this characteristic subgroup of G by $Q_p^*(G)$.

THEOREM 3. In any group G, the p-hyperquasicenter $Q_p^*(G)$ is the intersection of all normal subgroups N with $Q_p(G/N) = N/N$.

Proof. Let $S = \bigcap \{N \mid N \leq G \text{ and } Q_p(G/N) = N/N\}$. Clearly

 $S \subseteq Q_p^*(G)$. We now show that $Q_p^*(G)$ is included in every normal subgroup N for which $Q_p(G/N) = N/N$. Let $1 = H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_m = Q_p^*(G)$ be the upper p-quasicentral series of G. Trivially $H_0 \subseteq N$. Assume that $H_i \subseteq N$ and $H_{i+1} \not\subseteq N$. Then for some p-QC element yH_i of G/H_i , $y \notin N$. This implies that under the natural homomorphism of G/H_i to G/N, the p-QC element yH_i is mapped onto the p-QC element yN of G/N. Therefore $Q_p(G/N)$ is nontrivial, a contradiction. Hence $H_{i+1} \subseteq N$ and $Q_p^*(G) \subseteq N$ follows by induction.

We shall now investigate the structure of the *p*-hyperquasicenter $Q_p^*(G)$.

LEMMA 2. Let G be a group and p a fixed prime. If $N \subseteq G$ and $N \subseteq Q_p^*(G)$ then $Q_p^*(G/N) = Q_p^*(G)/N$.

Proof. Let $1 = H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_n = Q_p^*(G)$ be the upper p-quasicentral series of G and let $N/N = L_0/N \subset L_1/N \subset \cdots \subset L_k/N = Q_p^*(G/N)$ be the upper p-quasicentral series of G/N. By Lemma 1, $H_1N/N = Q_p(G)N/N \subseteq Q_p(G/N) = L_1/N$. Thus $H_1 \subseteq L_1 \subseteq L_k$. Now assume $H_i \subseteq L_k$ and deduce $H_{i+1} \subseteq L_k$. Since $H_i \subseteq L_k, G/L_k$ is a homomorphic image of G/H_i . Let θ be the natural homomorphism described by $(xH_i)^{\theta} = xL_k$. Then Lemma 1 shows that $(Q_p(G/H_i))^{\theta} \subseteq L_k/L_k$. Since $Q_p(G/H_i) = H_{i+1}/H_i, (Q_p(G/H_i))^{\theta} = H_{i+1}L_k/L_k \subseteq L_k/L_k$. Therefore $H_{i+1} \subseteq L_k$ and by induction $H_n \subseteq L_k$. We complete, the proof by showing $L_i \subseteq H_n = Q_p^*(G)$ for each $i = 1, 2, \cdots, k$. By hypothesis $L_0 = N \subseteq Q_p(G)$. Now assume $L_i \subseteq Q_p(G)$ and deduce $L_{i+1} \subseteq Q_p^*(G)$. Since $L_i \subseteq Q_p^*(G), G/Q_p^*(G)$ is a homomorphic image of G/L_i .

THEOREM 4. For any group G and any prime $p, Q_p^*(G)$ is p-solvable.

Proof. If $Q_p^*(G) = Q_p(G)$, $Q_p^*(G)$ is *p*-supersolvable and the theorem is proved. Assume now that $Q_p(G) \subseteq Q_p^*(G)$. Let *N* denote any minimal normal subgroup of $Q_p(G)$. Since $Q_p(G)$ is *p*-supersolvable, *N* has *p'*-order or |N| = p. Set $S = \langle N^g | g \in G \rangle$. Since $N \subseteq Q_p(G) \subseteq$ G, $N^g \subseteq Q_p(G)$ for each $g \in G$. It follows that *S* has order prime to *p* or order a power of *p*. Since $S \subseteq G$ and $S \subseteq Q_p(G) \subseteq Q_p^*(G)$ induction shows that $Q_p^*(G/S) = Q_p^*(G)/S$ is *p*-solvable. Therefore $Q_p^*(G)$ is *p*solvable.

It is possible to characterize the *p*-hyperquasicenter in terms of the normal subgroups included in it. We begin with the following definition.

DEFINITION 4. Let G be a group and p a fixed prime. A normal subgroup N of G is called p-hyperquasicentral (p-HQ) if $N/M \cap$

 $Q_p^*(G/M) \neq M/M$ holds for each normal subgroup M of G which is properly contained in N.

The lemmas proved next will be useful for the proof of Theorem 5.

LEMMA 3. Let G be any group and p a fixed prime. If $N \leq G$ then $Q_p^*(G)N/N \subseteq Q_p^*(G/N)$.

Proof. Let $1 = H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_n = Q_p^*(G)$ be the upper pquasicentral series of G. By Lemma 1, $H_1N/N = Q_p(G)N/N \subseteq Q_p(G/N) \subseteq Q_p^*(G/N) = L/N$. Thus $H_1N \subseteq L$. Now assume $H_iN \subseteq L$ and deduce that $H_{i+1}N \subseteq L$. Since $H_i \subseteq H_iN$, G/H_iN is a homomorphic image of G/H_i . Let ϕ be the natural homomorphism of G/H_i onto G/H_iN described by $(xH_i)^{\phi} = xH_iN$. Then Lemma 1 shows $(Q_p(G/H_i))^{\phi} \subseteq Q_p(G/H_iN)$. Since $Q_p(G/H_i) = H_{i+1}/H_i$, $H_{i+1}N/H_iN = (H_{i+1}/H_i)^{\phi} \subseteq Q_p(G/H_iH)$. Next let θ be the natural homomorphism of G/H_iN onto G/L given by $(xH_iN)^{\theta} = xL$. By Lemma 1, $(Q_p(G/H_iN))^{\theta} \subseteq Q_p(G/L) = L/L$. Since $H_{i+1}N/H_iN \subseteq Q_p(G/H_iN)$, $(H_{i+1}N/H_iN)^{\theta} = H_{i+1}NL/L \subseteq L/L$. Therefore $H_{i+1}N \subseteq L$ and the assertion follows.

LEMMA 4. If any two groups G_1 and G_2 are isomorphic under a map θ then $(Q_p(G_1))^{\theta} = Q_p(G_2)$.

LEMMA 5. For any group G and any prime p, the product of p-HQ subgroups of G is a p-HQ subgroup of G.

Proof. It suffices to show that for any p-HQ subgroups A and B of G, the product AB is a p-HQ subgroup of G. Let M be any normal subgroup of G with $M \subseteq AB$. If $M \subseteq A$ or $M \subseteq B$ then $AB/M \cap Q_p^*(G/M) \neq M/M$. Now suppose M is not a proper subgroup of either A or B. Since $A \cap M = A$ and $B \cap M = B$ together imply $AB \subseteq M$, we may assume $R = A \cap M \subseteq A$. Since A is p-HQ, $A/R \cap Q_p^*(G/R) \neq R/R$. Let yR be any nonidentity element of $A/R \cap Q_p^*(G/R)$. Then $y \in A$ and $y \notin R$ show $y \notin M$. Since $M/R \subseteq G/R$, Lemma 3 shows $Q_p^*(G/R) \cdot M/R/M/R \subseteq Q_p^*(G/R)/R$. It now follows from the isomorphism of G/R/M/R and G/M that yM is a nonidentity element of $Q_p^*(G/M)$. Therefore $AB/M \cap Q_p^*(G/M) \neq M/M$ and the assertion is proved.

THEOREM 5. For any group G and any prime $p, Q_p^*(G)$ is the product of all p-HQ subgroups of G.

Proof. Let S denote the product of all p-HQ subgroups of G. From Lemma 2 and the definition of p-HQ subgroup it is easily seen that $Q_p^*(G)$ is a p-HQ subgroup of G. Therefore $Q_p^*(G) \subseteq S$. Assume for the sake of contradiction that $Q_p^*(G) \subseteq S$. Since S is a p-HQ subgroup of G (Lemma 5) $S/Q_p^*(G) \cap Q_p^*(G/Q_p^*(G)) \neq Q_p^*(G)/Q_p^*(G)$. Since $Q_p^*(G/Q_p^*(G)) = Q_p^*(G)/Q_p^*(G)$, this is the desired contradiction.

It should be remarked that for a set of primes π , π -quasicentrality can be defined in a manner analogous to *p*-quasicentrality. The *p*quasicenter and *p*-hyperquasicenter can be extended in the natural way to obtain the notions of π -quasicenter and π -hyperquasicenter. It is easily checked that the results about the *p*-quasicenter and the *p*-hyperquasicenter of a group remain valid when *p* is replaced by π .

References

1. B. Huppert, Endliche Gruppen I, Springer-Verlag (1967).

2. W. Ledermann, Introduction to the Theory of Finite Groups, Interscience Publishers, Inc. (1964).

3. N. P. Mukherjee, The hyperquasicenter of a finite group I, Proc. Amer. Math. Soc., 26, No. 2 (1970), 239-243.

4. _____, The hyperquasicenter of a finite group II, Proc. Amer. Math. Soc., 32, No. 1 (1972), 24-28.

5. W. R. Scott, Group Theory, Prentice Hall, Inc. (1964).

Received April 12, 1971 and in revised form January 13, 1972.

WEST VIRGINIA UNIVERSITY

628