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ON BOREL PRODUCT MEASURES

W. W. BLEDSOE AND C. E. WILKS

It has been known for many years that the product of two
regular borel measures on compact hausdorff topological spaces
may not be borel in the product topology. The problem of
defining a new product measure that extends the classical
product measure and carries over this borel property has been
approached in different ways by Edwards, by Bledsoe and
Morse (Product Measures, Trans. Amer. Math. Soc. 79 (1955),
173-215; called PM here.) and by Johnson and Berberian.
Godfrey and Sion and Hall have shown that all three of these
methods are equivalent for the case of Radon measures on
locally compact hausdorff spaces.

Elliott has extended the results of PM by defining a
product measure for a pair, the first of which is a (generalized)
borel measure and the second a continuous regular conditional
measure (generalization of conditional probability), and proving
a corresponding Fubini-type theorem.

The purpose of this paper is to extend the results of PM
in a manner similar to Elliott’s, but with his continuity condi-
tion replaced by an absolute continuity condition and by a
‘‘separation of variables’’ condition. It is still an open question
whether Elliott’s continuity condition is necessary.

1. DEFINITIONS AND NOTATION'. By a measure (outer measure) p
on a space M is meant a nonnegative countably subadditive function
on 2%, the subsets of M. In a topological space (M, m), an m-borel
measure on M is any measure on M for which the open sets are
(Caratheodory) measurable, and the borel sets of (M, m) are the members
of the smallest g-algebra containing m. If G is any family of sets,
let ¢G be the union ,.,a of the family G. If HS2” and g is a
nonnegative function on H, then mss gMH is defined to be the funec-
tion on 2% such that mss gMH (A) = inf; >..s 9(a) where G varies over
all countable subsets of H for which A S 0G. + = mss gMH is called
the measure generated by the gauge g, and H is called the basis of .

2. Product measures. If ¢ measures M and v measures N, we
call a subset D of M x N a nilset (more correctly a py-nilset) if

Sgcrp(x, ) pdavdy = 0 = ”Crp(x, ydypde

where Cr, is the characteristic function on D. The ordinary product
measure of p and v is given by

1 Most of the notation used here is taken from [2] and [4].
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& = mss g(M X N)R

where R is the set of yy-measurable rectangles, and g(a X b) = p(a)-v(b)
for a x be R. The extended product measure of p and vy given in [2] is

¢ = mssg(M x N)(RU Z)

where Z denotes the set of sw-nilsets, and
o(D) = ||Cro(e, ypdoviy

for De (RU Z). (i.e., g(D) =0 for DeZ, and g(a X b) = t(a)-v(b)
for ¢ X be R).

It was shown in [2] that
¢ is an extension of +r,

(i.e., if A is -measurable then A is g-measurable and #(A4) = v (4)).
In cases where the nilsets are +-measurable then, of course, ¢ and
4 are identical; but the +r-measurability of nilsets is still an open
question in the interesting case when g and vy are regular borel
measures on compact hausdorff spaces.

A result from [2], (Thms. 5.11-5.13), is

THEOREM 2.1. If p measures M and v measures N and ¢ is the
extended product measure of p and v, then
$ is an extension of the ordinary product measure of (t and v,
py-measurable rectangles are ¢-measurable,
Lv-nilsets have ¢ measure 0, and
(F'ubini) if f is ¢-integrable, then

o o -

|\# @, pdavay = (@edz = | 7@, vodypas .

Elliott, in [4], has generalized this result by replacing the measure
v by a regular conditional measure, defined as follows. Let <Z be
a family of subsets of N for which ¢.<Z € &#. v is called a regular
conditional measure on M X <# if v is such a function on M X #
that

(i) for each xe M, vy, = v(z, -) is a measure for which members
of <# are v,-measurable, and

(i) for each be <, the function v(-, b) is p-integrable (i.e.,
Sv(w, by pdes < oo>

A rectangle a x b is a pv.Z-basic rectangle if a is p-measurable,
be &, and
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SCra(x)v(x, Bpds < oo .
A set CEM x N is called a py-nilset if

HC’TC(%, Py dyxr = 0.

The pyZ-product measure (of Elliott) is defined as mss g(M X N)F,
where F is the family consisting of all pw.<#-basic rectangles and
py-nilsets, and

9(C) = |[Crete, yw.dypda

for Ce F. A corresponding ordinary (conditional) product measure
for ¢ and v can be defined on M x N using only pw-basic rectangles [9].
Elliott [4, Thms 1.0, 1.4], generalized 2.1 as follows:

THEOREM 2.2. If p measures M, & is a o-algebra of subsets of
N, 02 = Ne 2, v is a regular conditional measure on M X F#, and
¢ 18 the pyZ-product measure, then

1 ¢ is an extension of the ordinary (conditional) product measure
of 1 and v,

2 v @-basic rectangles are ¢-measurable,

3 py-nilsets have ¢-measure 0, and

A4 (Fubini-like) if f is ¢-integrable, then

gf (z)pdz = ng (x, y)v.dypde .

3. Topological measures. Let (M, m) be a topological space
with a measure g on M. p is said to be an m-borel measure if
members of m (open sets) are p-measurable. If, additionally, for each
Aem,

p(A) = sup ©(C),

where C varies over all closed subsets of A for which y(C) < o, then
u¢ is called an m-inner regular borel measure. m is said to be p-
almost lindelof if for each subfamily H of m for which M = ¢H, and
for each S< M for which p(S) < o, there is a countable subfamily
G of H for which ¢(S — oG) = 0.

A regular conditional measure on M x <2 is said to be m-continuous
if, for each be &2, y(-, b) is an m-continuous function.

3.0. Throughout the remainder of this paper we shall assume
that
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.1 (M, m) and (N, n) are topological spaces and that (P, p) is
their topological product.

.2 p is a finite,® m-inner regular borel measure on M, and m is
p-almost lindelof. ' is a finite,” n-inner regular borel measure on N,
and #n is v'-almost lindelof.

3 A is a o-algebra of subsets of N such that nS 2.

4 v is a regular conditional measure on M x <#, with the
properties that for each xe M, v, is a finite #n-inner regular borel
measure, 7 is v,-almost lindelof and each member of <2 is v,-measurable.

It should be noted that conditions 3.0 are satisfied if (M, m) and
(N, n) are locally compact hausdorff spaces, and ¢ and v, are finite
regular borel measures on M and N respectively, for xe M.

One of the principal results (Th. 7.7) of [2] is the following:

THEOREM 3.1. If p and Y' are measures satisfying conditions
3.0.1 and 3.0.2, and ¢’ is the extended product measure of g and v/,
then

A1 ¢ is a p-inner regular borel measure on P, and

2 p is ¢’-almost lindelof.

Elliott, in 2.3 of [4], generalized this result as follows:

THEOREM 3.2. If ¢ and v satisfy conditions 3.0, and ¢ is the
1y Z-product measure, and if v is m-continuous, then

d @ is a p-inner regular borel measure on P, and

2 p is ¢-almost lindelof.

The continuity condition of 3.2 can be replaced by an absolute
continuity condition, as follows:

THEOREM 3.3. If p,v, and V' satisfy the conditions of 3.0, #
8 the set of V' measureable sets, ¢ is the py B -product measure, and if

Vo< <y, <<y

for each xe€ M, then
1 ¢ is a p-inner regular borel measure, and
2 p is ¢-almost lindelof.

Proof. Let v'(x, B) = v'(B) for each x€ M, Be <&#. Then V" is
a regular conditional measure which is constant in & and therefore
continuous. Let ¢’ be the (Elliott) " cZ-product measure and com-
plete the proof in Parts V, VI and VII below.

2 Many of the results that follow hold also for non-finite measures.



ON BOREL PRODUCT MEASURES 573

Part I. ¢(A) =0—-¢'(4) =0
— A is a py-nilset — A is a p”-nilset.

Proof. #(A) =0
— A is a py-nilset (by 2.2.4, .3)
- SSC?A(x, Y, dypdr = 0
-y, (A,) = 0 for p-almost all xe M, where A, = {y|(x, y) € A}

—V'(4,) = 0 for p-almost all x (since v <<y << V)
—v/(A,) = 0 for p-almost all z

— “Cr,,(x, Y/ dypde = 0

— A is a p'-nilset

—¢'(4) = 0. (by 2.2.4, .3)
Part II. ¢’ << ¢ << ¢
Proof. Use Part I.

Part. III. If Aep (an open set) then for some countable sub-
family G of mmn-open rectangles, G <= A, and ¢'(4 — dG) = 0.

Proof. This is Th. 2.2.3 of [4].
Part IV. mmn-open rectangles are g-measurable.
Proof. This follows from 2.2.2.

Part V. ¢ is a borel measure.

Proof. Let Aecp. By Parts III and IV we can find a family G
for which 6GES A4, oG is ¢-measurable and ¢'(A — ¢G) = 0. But by
Part I, ¢(A — 0G) = 0, and hence A is ¢-measurable.

Part VI. p is g-almost lindelof.
Proof. Use 3.2.2 and Part L.
Part VII. ¢ is p-inner regular.

Proof. Let Aepand e > 0. Check that ¢'(4) < u(M) - V(N) < o,
and use 3.2.1 to secure such a sequence ¢ of p-closed sets that ¢; =
;& A, and

#(4) = lim g'c) -



574 W. W. BLEDSOE AND C. E. WILKS

Let C = U;c. ¢y and using Parts I and V, observe that ¢'(4 — C) = 0,
(A — C) = 0, $(4) = lim,_... #(c.).
Consequently, ¢ is p-inner regular.

It is interesting to consider whether the conclusions of Theorem
3.3 remain valid when the condition v <<y, <<V is lessened to
y, < <V, or when this condition is removed altogether. The authors
have been unable to settle these questions.

Theorems 3.4 and 3.5 below are further results in the spirit of
3.2 and 3.3, in which the continuity hypothesis has been replaced by
a “separation of variables” condition.

THEOREM 3.4. If p and v satisfy conditions 3.0, and ¢ is the
m.FZ-product measure, and if there exist a p-integrable function f
and a measure r on N such that

v(x, b) = f(@) - ()

for each xe M and be <2, then
1 @ is a p-inner regular borel measure on P, and
2 p is ¢-almost lindelof.

Proof. For each set C, let

C.= 1yl yeCl.

If f(x) = 0 for each xe M, or if 4(N) = 0, then the conclusions hold
trivially. So we assume that f(x,) > 0 for some x,€ M and that f(x) < o
for all xe M. Hence (b) = v(x,, b)/f(x,), for all be &2, and by 3.0.4,
we conclude that + is an #n-inner regular borel measure and 7 is -
almost lindelof. Let G be the family of p-measurable sets, and for
each Ae @G, let

h(A) = SAf(x)p.dx and v = mss kMG .

This defines a measure v on M, and v(4A) = h(A) for AeG. Since
is m-continuous (indeed it is constant on M) we can define the v+.7-
product measure, ¢, and conclude from 3.2 that ¢’ has the desired
properties .1 and 2. We complete the proof by showing that ¢ = ¢.

Let F be the family of pv<Z-basic rectangles and py-nilsets, let
F" be the family consisting of v+.<#-basic rectangles and v+r-nilsets,
and let

9(0) = |[Crote, yw.dypds,

7€) = ||Cro@, yyays,
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for Ce F.
First, if @ X b is a pv.<Z-basic rectangle, then

¢@x b) = |[Cruta, vdyds
= 4(b) - 7(a)
= 40| F@)pds
= S v(x, bpdx
= S Sblvmdy;zdx
= SSCraxb(x, yv.dypds
=g(a x b .
Secondly, if C is a py-nilset, then for p-almost all =,
0 = |Cro@, wy.dy = v(@, C) = f@) - ¥(C)
and hence,
7(0) = |[Crefe, vyrdyras
[wicovis

= \¥(C.) - flx) nda
=g(C) .

I

Thus ¢'(C) = g(C), for Ce F.
Now let Z = {xe M|f(x) = 0} and observe that Z is y-measurable,
and

(1) Z X NeF' and ¢'(Z x N) = 0.
Let
F, ={(@aU=? X bla is p#-measurable, 2= Z, and be #},

and check that F, = F"’.
Therefore,
¢’ = mss g’ PF’
= mss g’ PF,
= mss g’ PF (using (1))
= mss gPF
=¢.
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The result in 3.4 leads to the following

THEOREM 3.5. If p and v satisfy conditions 3.0 and ¢ is the
MY FZ-product measure, and if there exist, for each i € w, p-integrable
functions f; and measures +; on N such that

(2) Mo, B) = 3Fa) - 4(0)

for each xe€ M and be 2, then
1 ¢ is a p-innmer regular borel measure on P, and
2 p s ¢-almost lindelof.

Proof. For each 1ew,xe M, and be .2, let

vi(@, b) = fi(@) « 4i(d) ,
¢; = (the py;oZ-product measure) ,
¢’ = 1% B;
By 3.4 learn that, for each icw,
¢; is a p-inner regular borel measure on P, and
P is ¢;-almost lindelof ,

and hence, since these two properties carry over to countable sums,
we have

¢’ is a p-inner regular borel measure on P, and
p is ¢-almost lindelof .

We complete the proof by showing that ¢ = ¢'.
Let F be the family consisting of all pv.cZ-basic rectangles and
pv-nilsets. For each t1cw and Ce F, let

0:0) = | [Cro, yedypds
9(C) = SgCrc(x, Y. dypdx .
Thus
9(C) = 3,9:0)

for Ce F, and

#(A) = mss g(M X N)F(A)
= mss (2] g)(M X N)F(A)

1€W
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= 3, mss g:(M x N)F(A)
= 344(4)

= ¢'(A) ’

for AS M x N. The third step above follows from Theorem 3.8 below
and the fact that F' is disjunctive (See Definition 3.7), and the fact
that the g; are nonnegative and countably additive on disjointed
subsets of F.

The desired coneclusion is at hand.

Questions that naturally arise are: when can a representation of
the type (2) be obtained? How useful therefore is Theorem 3.57 No
satisfactory answer to these questions is known to the authors at this
time.

Theorem 3.2 (Elliott) generalizes Theorem 8.1 (Morse-Bledsoe) in
yet another way, in that it uses one-sided nilsets C, where

SSCfrg(x, yv,dypds = 0,
instead of two-sided nilsets D, where
SSCrp(x, yyvdypds = 0 = SSCrp(x, y)pudxvdy .

Thus Theorem 3.1 is equally valid if the definition of py-nilset given
in §2 is amended to read: a subset D of M x N is a pv-left nilset if

“Crb(w, yyvdypds = 0 .

Similarly, we could use gy-right nilsets.
The remainder of the paper gives results needed in the proof of
Theorem 3.5.

LeEmMA 3.6. If T is a directed set with respect to the relation <
and if 0 < A, < A;, whenever 1w, teT,t'cT, and t<t, and f
Slico Ay, < oo for some t,e T, then

>,inf A;, = inf > A4,, .

1€w teT teT icw

Proof. Let ¢ >0 and select New so that

3 A< el2,
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and then choose £ e T so that

A < .nj 4 ., + —_— f()[‘ { 3 [V .
it = }’GT it 2 Ky t -< ) () <

1€w

N—1 o
ZlAit = ;)Ait + %Ait

A

N—1 oo
S A+ 3 Aa,

1A

N—1
> A + /2
izo

A

Ni‘f(inf Ao+ ) + 62
1= t'e”l i 2N/

N—1 .
= >, infA,, +¢

=1 t'eT
<>, infA, +¢.
iewt’eT

Therefore

inf 3 A;, < Sinf A,, .

teT icew 1ew teT

Since the reversed inequality is well known, the desired conclusion
is at hand.

DEFINITION 3.7. We say that a family H is disjunctive if for
each G, and each G, which are countable subfamilies of H, there is
a countable pairwise disjointed subfamily G of H which is a refinement
of both G, and G, and such that oG = oG, N 0G,.

THEOREM 3.8. If
1  H s disjunctive,
2 for each 1€w, g; =0,
g; 18 subadditive® on H,
g; 18 countably additive on disjointed subfamilies of H,
3 ACSS, and
4 mss (Qlicw 9:)SH (4) < oo,
then

mss (Xlico 9:)SH (A) = Dlico mSS 9isu(4) .
Proof. Let

3 A function f is said to be subadditive on H if for each B and each countable
subfamily G of H for which B < ¢G, we have f(B) < > aecc fl@).
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= {G| G is a countable subfamily of H for which A& oG} .

Since H is disjunctive it follows that H, is a directed set with respect
to the refinement relation. Also using .2 it follows that

0 §a§’gi(a) = égi(a)

whenever 1cw,Ge H,, G € H,, and G is a disjointed refinement
of G. Furthermore, from .4 we know that for some G, H,,

2, 3 gia) < oo

aeGpicw

Thus by Lemma 3.6 (identifying H, with T, and A,, with >,..; 9:(®)),
we conclude that

>, inf Zgz(a) = mf > Z gi(a@) .

iew GeHy4 aelG Hyicew aelG

Consequently,

mss (3, 9;)SH(A) = inf >, > g:(@)

i€ew GeHy aeGicw

= inf 3 > g:(@)

GeHy iew acl@

=2, inf 3, g.(a)

icw GeH4 aec@G

= >, mss g;SH(A) .

1€
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