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EXTENSIONS OF AN INEQUALITY BY POLYA AND

SCHIFFER FOR VIBRATING MEMBRANES

CATHERINE BANDLE

The inequality by Pόlya and Schiffer considered in this
paper is concerned with the sume of the n first reciprocal
eigenvalues of the problem Ju+λu= 0 in G, % = 0on dG. First
we extend this inequality to the problem of an inhomogeneous
membrane Δu + λpu = 0 in G, u = 0 on dG. Then we prove a
sharper form of it for a class of homogeneous membranes with
partially free boundary. The proofs are based on a varia-
tional characterization for the eigenvalues and use conformal
mapping and transplantation arguments.

The inequality by Pόlya and Schiffer considered in this paper is
concerned with the eigenvalue problem Δφ + \φ — 0 in a Jordan
domain G, φ = 0 on dG. It can be stated as follows: Among all
domains with given maximal conformal radius r, the circle yields
the minimum of the expression Σ?=i V1- This theorem is related to
the geometrical inequality

(1) πr2 ^ A ,

where A denotes the total area of G. The aim of this paper is (i)
to extend the inequality by Pόlya and Schiffer to the problem of an
inhomogeneous membrane fixed on the boundary, (ii) to sharpen it
for certain kinds of elastically supported, homogeneous membranes.
Instead of considering the problem of an inhomogeneous membrane
we will study the equivalent eigenvalue problem Lu + Xu ~ 0 where
L — Δfp is the Beltrami operator of an abstract surface with the line
element ds2 = p(dx2+dy2). With the help of inequalities by Alexandrow
[1], we will derive first some relations between r, p and the Gaussian
curvature of the surface. These results will be needed for the theo-
rem concerning the eigenvalue problem. Its proof is essentially based
on a method indicated by Hersch in [6] which uses conformal mapping
and transplantation arguments. In the last part, we give an isoperi-
metric inequality for a class of plane membranes. The extremal
domain is in this case the circular sector.

1* Geometrical preliminaries*

DEFINITIONS 1.1. Let Σ be an abstract surface given by a Jordan
domain G in the ^-parameter plane (z = x + iy), and by the metric
ds2 = ρ(z)\dz\2 where p(z) is an arbitrary positive function in C2.
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A(B) — \ I pdxdy is the area of a domain B S Σ and

L(7) - \VJ\dz\

is the length of an arc 7 £ Σ. The Gaussian curvature has the form

PΓβ s/̂ αW assume that the inequality KG ^ iΓ0 /̂ oWs in G. Consider
a surface ^g£0 of constant curvature if0 given in the following iso-
thermic representation:

( i ) w-plane (w = u + iv) with the metric

(ii) interior of the unit circle {w; \w\ < 1} with the metric

(1 - \w\2)2

(iii) w-plane with the metric ds2 — \dwf if Ko — 0.
We shall define the metric of ^€ i 0 by ds2 — g(w) \dw |2, where g(w)
depends on Ko and is determined by one of the preceding formulas.
Let fa(z) be the conformal mapping from G onto the unit circle
{w; I w I < 1} with fa(a) = 0 and /α'(α) > 0. The conformal radius of
the point α with respect to G is then defined as ra(G) — l//ά(α) [9,
p. 16]. We set

α) ra(G) if iΓ0 = 0 .

EXAMPLE. If G is a circle with the radius r0, the center in the
origin and p(z) = g(z), then RQ(G) = r0. wβ(«) = Ra(G)fa(z) maps G
onto the circle {w; |w| < Ra(G)}, and 2β(w) denotes its inverse. We
shall denotes the circle {w; \w\ < ε} by Cε. i2α(G) has been chosen in
such a way that

( 3 )

Since

it follows

w
that

I I g(w)dudv

g(w)dudv =

= 11 p(z)dxdy -

j4πc 2 s 2 + o(e)2

ITΓS2

if

if

f o(ε2) .
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( 4 ) lim — I I g(w)dudv = lim — \ \ p(z)dxdy

exists and is different from zero.

1.2. Some Properties of Ra(G).

(a) Ra(G) is invariant under conformal mapping.

Proof. Let ξ(z): Σ => Σ be a conformal mapping and let z(ξ) be
its inverse. We set ξ(a) = a and ξ(G) = G. The line element of Σ
is ds2 = β(ξ)\dξ|2 with β(ξ) = /o(s(f)) | <te/eZf |a. Since ifG is a conformal
invariant, we have

5) RA(G) = ±Vp{a) IKQQ \
dz
dξ ξ=a

Because of the relation \dz/dξ\ξ^n(G) = rα(G) [9], it follows that
2fc(<5) - Λ.(G).

(b) If Ko < 0, then Ra(G) < 1 /or any aeG

Proof. The function p{w) — p(za(w))\dzjdw\2 satisfies in

C = {w;\w\ ^Ra(G)}

the inequality Δw\nβ(w) ^ (2/c2)β(w). By a theorem of Osserman [7]

(6) β{w)S JfRl^ (r=\w\,Ra = Ra(G) for any weC).

Since £(0) = 4c2, (6) implies Ra £ 1.
(c) Let μe = μ(dC, dCε) be the modulus of the annulus

D = C\Cε [C = {w;\w\ < Ra}, dC the boundary of C; Cε = {w; |w | <
ε}, 9Cε the boundary of Cε]. Let /ι be the solution of the Dirichlet
problem Ah = 0 in C\Cε, & = 0 on δC:, h — 1 on 3C and let D(&) denote
the Dirichlet integral of h. Then μ8 = {JD(A)}""1. In an analogous may
we define ^(Γ1, Γε), where Γ and J1, are boundaries of G and za(Ce).
Since the modulus is invariant under conformal mapping, we conclude
that

and thus

( 7 ) Ra = e e ^ = l i m e e ^ [10, p. 45] .

If G is contained in (?', then it follows from (7) and the Dirichlet
principle that Ra(G) ^ R*(G').
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(d) Let A = A{G) = \ \ pdxdy be the total area of G
JJG rr

with respect to the metric ds2 — p \ dz \2, and let Ac = 11 g{w)dudv be

the total area of C with respect to the metric ds2 — g(w) \ dw |2. Ac takes
the values

( 8 )

4πc2ElJ(l + Rl) if Ko = cΓ2

4πc*Rl/(l - Rl) if Kΰ = - c " 2

TΓS2 if X. = 0 .

The following result is an extension of a classical theorem [9, problem
125 IV]. We have

(9) A^AC.

Equality holds in (9) if and only if G is a geodesic circle on a surface
of constant curvature Ko. (If Ko > 0 we have to assume that A <

Proof. Let A^e) and AJ(e) denote the area of za(Cε) and Cc. By
(7) and Corollary 2 [3] it follows t h a t

(10) μ{Γ, Γ.) = — I n ^f ^ — { i n ^ - j - In

Equality holds only if Γ and Γε are two "concentric" circles on a
surface of constant curvature Ko. Suppose that Ko Φ 0. From (8) we
have A[(e) = 4πc2ε2 + o(ε2). Substituting this expression in (10), we
obtain

l A(4π - K,A,(ε)) = φ f ,
AJ(e) + o(ε2) - A1(e)(4τr - K0A) '

Since limε_>0(Aί(ε)/A1(ε)) = 1 (cf. (3), (4)), it follows t h a t

(11) Rl = Ψ/Λ

 A° A χ ^ l im A : ( ε ) + 9

Q ( ε 2 ) Φ ( ε ) = 1
ττ - KOAC) ~ -o 4OT2 C2 (4π - K0A)

This inequality implies Ac ^ A. The case K0 = 0 can be treated in
exactly the same way and will therefore be omitted.

REMARKS. (1) Let gz{z, a) be the Green's function defined by

4agβ(z, a) = —δa(z) in G, gz(z, a) = 0 on Γ. flrw(w, 0) is the corresponding

Green's function in C. We shall use the following notations G(t) —

{z e G; gβ(z, a) > t}, C(t) = {weC; gw(w, 0) > t}; Af(t) - (( pdxdy and

Aw(ί) = \ 1 g(w)dudv. By the same reasoning as before we can show
J JC(ί)
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that

(12) Az(t) ^ Aw(t) .

Equality holds if and only if G is a geodesic circle on a surface of
constant curvature Ko. If Ko > 0, we have, of course, to assume
that Az(t) < Aπ/K0.

(2) We define R(G) = maxtte(?Ra(G). If G is a circle of radius
r with the center at the origin and the metric ds2 — g{w) \ dw |2, then
Ra(G) = (r2 - |α|2)/(l ± \a\2)r [9]. In this case, R(G) = R0(G). Because
of (11) we have the isoperimetric inequality: Among all domains with
given total area A and with given KQ, the geodesic circles on a sur-
face of constant curvature Ko have the largest value of R(G). From
(11) it follows that

(13) rl(G) ^
p(a)(4π - K0A)

If p = 1, then (13) reduces to πr\{G) ^ A.

2* Bounds for the eigenvalues of an inhomogeneous mem-
brane* Let Σ be an abstract surface given in an isothermic represen-
tation (cf. §1.1). We consider the following eigenvalue problem

A

I — φ(x, y) + Xφ(x, y) = 0 in G
P

φ = 0 on Γ (boundary of G) .

AJp represents the Beltrami operator of Σ. Suppose that a countable

number of eigenvalues 0 < λx < \ <Ξ exists. R[v] = D(v) \ \ v2pdxdy
rr η / J J G

D(v) — \ \ grad2 vdxdy is the Rayleigh quotient of Problem I. Let
Ln be an ^-dimensional linear space of continuously diίferentiable func-
tions which vanish on Γ, and let vl9 , vn be an orthogonal basis in
Ln with respect to the Dirichlet metric, i.e.,

= 11 grad ^ grad Vjdxdy = 0 if %Φ j

Following [6] we define TRinv [Ln] = Σ?«i {#!>«]}-1. F ^ r the sums of
the reciprocal eigenvalues we have the variational characterization
[5,6]

(14) Σ λr ι - max TRinv [Ln] .

The maximum is attained if v{ = <pt i — 1, , n are the first n eigen-
functions of Problem I. Assume that (—Az In p)/2p ^ Ko = ±c~2 in G,
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where Ko is any real number. In addition to Problem I we consider
the auxiliary problem

II - A - £ + \φ = 0 in C = {w; \w\ < Ra}

φ = 0 on dC = {w; \w\ = Ra) .

flr(w) depends on Ko and was defined in §1.1; and Ra = Vp{a)rJ2c or
Ra = i/^(α) rα (cf. §1.1). The eigenfunctions of this problem are either
of the form

(15) φk(r, θ) = R0(Xk, r)

or

(16) φk(r, θ) = Rm(λk, r) cos mθ and <^+i(r, θ) = Rm(λk, r) sin mθ

m = 1, 2, ••• .

In (0, i?β), 22w(λfc, r) satisfies the differential equation

K } K J ~7~ (1 ± r2)2 "

if iΓ0 = ±c~ 2, and

(18) (r^ ') f - ^ ^ + λ4Λ = 0 if lfo = O.
r

The boundary conditions are

(19) R'(0) < oo and R(Ra) = 0 .

We shall call m the order of R. By introducing the new variable

ί(r2 - 1)/(1 + r2) if Ko > 0

((r2 + 1)/(1 - r2) if KQ<0

(17) is transformed into the Legendre equation

χ ) dp χ) (z) ψ
dzL dz J z2 — 1

> =

The following result is a generalization of a theorem of Pόlya-Schiffer
[8]. We shall use a method of proof devised by Hersch [6]

THEOREM 1. // (-Jlnp)/2p ^ Ko, 2π - K0A > 0, and n is a
natural number, then we have the isoperimetric inequality
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, 1
"T" ~^Γ~

λ
(20) — + i + ••• +±^-L + ±

Λι± Λ/2 A ι w Λ/^ A/2

where λ$ is the ith eigenvalue of Problem II.

Proof. Let φ^w), •••, φn(w) be the first w eigenfunctions of
Problem II and let E7i(s), •••, E7»0s) be the transplanted functions
£7i(«) = φi(wa(z)). Because of the invariance of the Dirichlet integral
under conformal transformation, we have DG(Ui9 Us) — Dc(φi, φs) = 0
if i φ j . Ui{z) ί = 1, , n can therefore be used as trial functions
for the variational characterization (14). Thus,

(21) 2-i hi —
* = i

dza

dw
p(za(w))dudv

Dc(Φi)

Let φk(w) and φk+1(w) be two functions of the type (16). In this case

(22) {R[Uk]Γ +

We observe that

(23)

CRaΓ2π

(Φl
Jo Jo

+ dw
sLrdrdθ

i>c(Φ*)

φ\{w) + φl+ι(w) = Φ(r)

is independent of θ. By the Schwarz inequality,

( 2 4 ) Γ- dz, >p{za(w))rdθ ^ ([* dz, VJrdθ)Ί\**g(w)rdθ .
Jo dw g(w) VJo dw / / Jo

We note that for fixed r

dw
V prdθ = Lβ(ί) ,

where Lβ(ί) is the length of the level line gz(z, a) = t — (l/2ττ) In (JBβ/r)

S 2,τ

g(w)rdθ = L2

w(t)/2πr,
0

where Lw(ί) is the length of the level line gw(w, 0) = t with respect
to the metric of ^ ^ 0 .

In order to estimate L\{t), we use the following geometrical iso-
perimetric inequality of Alexandrow [1]: If G is a domain on Σ home-
omorphic to a circle, and if KG ^ Ko, then the following relation holds
between the area A of G and the length L of the boundary dG:

(25) U ^ Aψz - iί0A) .

Equality holds iff G is isometric to a geodesic circle on a surface of
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constant curvature K0.
ω From this inequality we conclude that

(26) L\(t) ^ A.(t)(4π - KQAz(t)) = f(Az) .

Az(t) has been defined in §1.2. If Ko ̂  0, then f(Az) is a monotone
increasing function; if Ko is positive then f(Az) is monotone increasing
in the interval [0, 2π/K0]. By (26), (12) and our assumption on A, it
follows that

L\(t) ^ Aw(t)(4π - K0Aw(t)) = Uw{t) .

This implies

Jo dw\ g(w)

From this inequality and from (22) and (23)

If φn and φn+1 belong to the same order m [cf. (16)], we denote by
φn(w) the function for which

(27) {R[Un]}~ι^Kι.

By the same arguments as before, (27) holds also for the functions
φk(w) of order 0 [cf. (15)]. This establishes the theorem.

REMARKS. If p is constant we obtain the theorem of Pόlya-Schiffer
[8, 6]. It is easy to see that (20) is optimal if we choose a such that
Ra(G) = msiXpeGRp(G).

3* Generalization* Let Σ' be a piece of an abstract surface with
the line element ds2 — \z — a\~ωfπv(z) \dz|2 where v(z) e C2 and 0 ̂  ω < 2π.
Σr includes the regular surfaces in the usual sense which have at the
point a corner of curvature ω [cf. 1]. We assume that (—Δz In v)J2v S
Ko. In this case we define

2 - ω/π
(28) Ra(G) = '

if

Δ -/v{a)r{G) if Ko = 0 .2 - ωjπ

We consider a circular cone <^Ko in a three-dimensional space of con-
stant curvature Ko with the curvature ω at the corner [1]. It can
be represented by

1 This inequality is valid for more general surfaces. A brief summary can be found
in [1, pp. 509, 514].
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( i ) sector 0 < θ < 2π — ω (θ,r polar coordinates of the w-plane)
the lines θ — 0 and θ — 2π — ω identified, and the metric

(ii) sector 0 < θ < 2π - ω, 0 <r <1 with the lines θ = 0 and θ =
2π — ω identified, and the metric

(iii) wedge 0 < θ < 2π — ω with the lines θ = 0 and (9 = 2π — ω
identified and the metric ds2 = Idwl2 (iΓ0 = 0).

With the help of the function £ = w**n**-*>\ the sector O<0<27Γ- ω
is mapped into the f-plane. βf(^) is then transformed into g(ξ) =
g(w(ξ))\dw!dξ\2 which is g(ζ) = c2(2 - ω/ττ)2|f | - β / V(l±|f Γω/*)2 if ίΓ0 -
± c " 2 or g(ξ) - ((2ττ - ω)/2πγ\ξ\~«lπ if iΓ0 - 0.

EXAMPLE. Let G be a circle with the radius r0, the center in
the origin and the metric ds2 — g(ξ) | df |2. In this case R0{G) = r0. Let
C = {f; |f I < Ra(G)} be a circle on the cone ^ o . The line element is
then ds2 = g(ξ)\dξ\2. In this metric

ί2(2ττ - ω)c2Rl-ωlπ/(l ± Rl~ωj:z) if Ko = ±c

= 2^-ω^, i f 1 Γ β = = 0

is the total area of C. A — \\ \z — a\~ωlτv(z)dxdy represents the total

area of G All properties (a), (b), (c) and (d) remain valid in this
case. The proofs are the same as in §1.2 except for (d) where we
use Theorem 2 [3] instead of Corollary 2 [3].

We now consider on Σ' the eigenvalue problem I, and on Ce ^KQ

the auxiliary problem II (cf. §2). By transplanting the last into the
w-plane, it becomes equivalent to the following eigenvalue problem:

A w φ + λ ^ = 0 in {w;\w\< Rι~ωl2π and 0 < a r g w < 2π - ω}
g(w)

φ = 0 on

θ=2π-ω

By a separation of the variables it follows that φ(r, θ) is either of
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the type φk = J20(λ4, r), or else φk — J?m(λft, r) cos m# and
i2m(λfc, r) sin ra# with m == 2πn/(2π - ω) (n = 1, 2, •). In (0, i2Γω/2ίΓ)
-Bm(λΛ, r) satisfies the differential equation (17) with the boundary
conditions (18). In the same way as in §2 we can prove

THEOREM Γ. If {-A In v)/2v ^ KQ and 2π - ω - K0A > 0, then

ΐs inequality is valid for arbitrary n.

4. Bounds for the eigenvalues of plane membranes with par-
tially free boundary* Let G be a Jordan domain in the 2-plane.

Suppose that its boundary consists of three analytic arcs OA, AB and

BO where OA and BO are concave with respect to G. We assume

further that OA and BO meet in 0 at an angle α(0 < a ^ π).
There exists a conformal mapping f(z) from G into the circular

sector 0 ^ θ <̂  a, r ^ 1. (r, θ polar coordinates of the w-plane) such
that /(0) - 0,/(A) = 1,/(B) = βία and /'(0) > 0 [4, p. 378]. If we put
r0 = {/'(O)}"1, then tt;^) = rof(z) = z + α2z

2 + . Its inverse will be
called z(w). We consider the following eigenvalue problem of the
membrane with partially free boundary:

(A) Δzφ + \ψ = 0 in G

9> = 0 on AB

d^ = 0 on OA U BO .

These eigenvalues will be compared with the eigenvalues λ of the
problem

(B) Δwφ + Xφ = 0 in G = {w; \ w \ < r0 and 0 < arg w < a}

φ = 0 on r = rQ

The solutions of (B) are

Φk(r, θ) =

or

and

cos
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a

Jβ(r) is the Bessel function of order β. (B) can be interpeted as the
problem of a vibrating membrane on a circular cone.

THEOREM II. For an arbitrary integer n we have

λ, \

+ 1 .

Proof. Let f(w) = f(r) be a function depending only on r. We
first show that every function F(z) — f(w(z)) satisfies the inequality

(29)

dz
dw

dθ\^F*(z)dxdy =

^ a[°Γ(r)rdr = \\fdudv .

By the Schwarz inequality, we have

(30)
dw af dw

We observe that L(t) = \ | dz/dw \ tdθ is the length of the arc z(Ct)
Jo

where Ct is the circular arc w = tew 0 ^ ^ ^ α. Let A(ί) denote the
area of the domain z(Gt), where Gt is the circular sector 0 ^ r ^ t,
0 ^θ <^ a. Because of the concavity of the arcs OA and BO it fol-
lows from a reflection argument and an isoperimetric inequality by
Alexandrow [1] that

L\t) ^ 2aA(t) .2

The function ξ = w2πla maps the sector 0 ^ ^ ^ α onto the f-plane.
Let θ and r be the polar coordinates of the f-plane. We have

A(t) - (T
Jo Jo

dz
dw

rdrdθ

(31)

Since

0

at2

 m 1 [2π

2 2π Jo

ψίa-2π)lπγdγ[27ΐ

JO

dw
dθ .

2 A detailed proof with more general results can be found in [2].
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dw
ψ-
dw

it follows that

and

(32)

(32)

(33)

hence

and (30) imply

1
2π

Γ2π

i. dz
dw

'a* dz
dw

A(t) > f

dz
dw

c

Λil

= 1

a

which proves (29).
The remaining part of the proof proceeds as in Theorem I (§2).
We transplant the eigenfunction φi into the #-plane. Uι{z) =

φi(w(z)) are admissible for the variational characterization (14), and
we thus have

(34)

If

and

Γ1 ^ Tήn v[L(Ulf = gίί.« dz
dw

dudv

Φu(r, θ) = J*J(/\kr) cos

φk+1(r, θ) = j2Ξnt

2πmθ
a

a

then (29) implies

(35)

For functions φk which depends only on r we have {R[Uk]}~~1 Ξ> Xk.
It is always possible to choose φn(r, θ) such that the last inequality
remains true for k = n. These relations together with (34) establish
the theorem.

The first eigenvalue \ of problem (B) is the same as the first
eigenvalue v19 of the problem Δwφ + vφ — 0 in G, ψ — 0 on r = r0,
dφ/dn = 0 on θ — 0 and θ — a. Theorem II and Theorem III in [2]
yield the
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COROLLARY. If A denotes the total area of G and j0 = 2,4048
is the first zero of the Bessel function J0(r)9 then

(36) -g-jl <£ Λ* ̂  (AY .
2A \r0/

Equality holds in both cases if and only if G is a circular sector.

The right-hand side of (36) is a generalization of an inequality

by pόlya and Szego [8]. The following charaterization of r0 is based

on the one indicated in [8] for the conformal radius. Let μ{AB, Γε)

be the modulus of the domain Gε^G bounded by AB, BO, OA and

Γε = {z; \z\ = e}. It is defined as μ(AB, Γe) = 1/D(h) where Ah = 0 in

Ge, h = 1 on Γ£ and h — 0 on AB. An easy computation (cf. §1 (c))

yields

(37) r0 = limee*^*'^
ε-vθ

Let D denote the shortest distance from the arc AB to the origin 0.

By (37) and the monotonicity of μ(AB, Γε) it follows that D ^ r0.
This inequality together with the corollary implies X1 fg (jΌ/D)2.
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