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DECOMPOSITION OF SEMILATTICES WITH
APPLICATIONS TO TOPOLOGICAL
LATTICES

JoE B. RHODES

Every element with finite extent in a meet-continuous semi-
lattice with complete chains is the meet of a finite number
of meet irreducibles. This includes both semilattices with the
ascending chain condition and compact topological semilattices
with finite breadth. By applying this decomposition to to-
pological lattices on an n-cell, the following results are obtained:
If L and M are topological lattices on » and m-cells respec-
tively and there is an order isomorphism between the bound-
aries of L and M, then L and M are homeomorphic. If, in
addition, L and M are distributive, L and M are isomerphic.

1. Finite extent. The most general existence theorem for meet
irreducible decompositions in a lattice has been proved for com-
pactly generated (algebraic) lattices by Dilworth and Crawley [4].
While this includes the theory of lattices with ascending chain con-
dition, it does not include the class of topological lattices on an #-
cell. The results herein include the latter class and lattices with
ascending chain condition. We do not know of existence theorem
which includes these topological lattices and compactly generated
lattices as well.

Several concepts are needed. A subset A of a poset is called a
factor of B and we write A|B when for each z € B, there exists ye
A such that © = y. A subset of a poset is ndependent when no two
elements in it are comparable. It is easy to prove the following.

THEOREM 1.1. If P is a poset, the factor relation on the subsets
of P is reflexive and transitive. The factor relation on the independent
subsets of P is a partial order.

An element x of a semilattice S has extent n iff z is the irre-
dundant meet of a set M with n elements but M is not a factor
of a finite set with more than =»n elements whose irredundant
meet is x. We say that x has breadih n iff x is the irredundant meet
of a set with » elements but x is not the irredundant of a finite set
witc more than n elements. A semilattice has breadth m iff one of
its elements has breadth % and the breadth of every other element is
less than or equal to #. It should be clear that breadth of elements
is a function from a lattice to Z* U {o}; extent, on the other hand, is
not, as the next example shows.
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ExaMPLE 1.2. For each positive integer u, let Bn be the Boolean
Algebra of all subsets of a set with n elements, chosen so that Bn N
Bm = {¢}if n = m. Let S= Uy_, Bn be the semilattice with operation
set intersection. The element ¢ has extent = for each positive
integer n. Moreover, ¢ does not have finite breadth, even though
every chain in S is finite.

THEOREM 1.3. If © has breadth n, x has extent mo greater than
n. The breadth of x is the least positive integer n such that if © = A
M and M 1is finite, then there exists a subset F of M such that card
F<nand N F=ux.

The proof of Theorem 1.3 is a straightforward application of the
definitions.

We shall rely on the following result of Birkhoff [2, p. 182] in
the proof of two subsequent theorems. His result is stated dually
for our purposes.

THEOREM 1.4. Let P be a poset with ascending chain condition
and let S be the set of finite independent subsets of P. If S is ordered
by the factor relation, S has the ascending chain condition also.

THEOREM 1.5. FEach element of a semilattice with ascending chain
condition has finite extent.

Proof. Suppose a does not have finite extent. Let M, = {a}.
Since a does not have extent 1, M, is a factor of a finite set M, with
more than one element such that a is the irredundant meet of M,. Since
the meet is irredundant, M, is independent. By an inductive process
we may define an infinite ascending chain of finite independent sets

M, | M| M - -

contrary to the preceding theorem. Hence the assumption that «
does not have finite extent is incorrect, and this proves the theorem.

THEOREM 1-6. Let S be a semilattice with ascernding chain
conditton with x€S. The breadth of x i1s m = sup{j|x has extent j}
of this supremum exists.

Proof. Clearly, x has extent n, so there exists a set M with »n
elements such that « is the irredundant meet of M. Suppose x is
the irredundant meet of a finite set M, with more than n elements.
Since x does not have extent greater than #, there exists a finite
set M, with more elements than M, such that M,|M, and « is the
irredundant meet of M,. As in the preceding theorem, this procedure
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generates an infinite ascending chain of finite independent sets, contrary
to Birkhoff’s theorem. Hence 2 is not the irredundant meet of a
set with more than % elements, and thus x has breadth =.

2. Meet decompositions. A subset A of a poset is (up) directed
when it contains an upper bound for each pair of its elements. A
semilattice S is meet-continuous if for each directed subset A of S
for which v A exists, we have V (w A A)eS and w A\ VA=V
(w A A) for all weS.

We now prove the basic existence theorem for finite meet-decom-

positions.

THEOREM 2.1. If S is a meet-continuous semilattice in which all
chains have suprema, then each element of S with extent wn 1is the
wrredundant meet of n irreducibles.

Proof. Let a be an element of S with finite extent. By definition,
there exists a set F' with n elements such that a is the irredundant
meet of " and F is not a factor of a finite set with more than n
elements whose irredundant meet is a. Enumerate F' by F = {x,, ,,
<o}, Let C, be a maximal chainin M, ={x =z, |a AN A --+ N2, =
a} and let b, = \/ C,. By meet-continuity b, € M,; hence b, is a maximal
element in M,. With a similar argument, a maximal element b, in
{ =, |0, A 23] A @3 A -+« A2, = a} may be obtained, and this process
is continued until the set B = {b,b,---b,} is achieved. Clearly,
AN B=a. Suppose be Band b =2 A y. Since Fis a factor of (B\b)U
{x, vy} and this set has more than % elements, its meet is redundant.
Since A (B\b) > a, A [(B\b) U {z}] = a or A [(B\b) U {y}] = a, either of
which contradicts the maximality of b unless # = b or ¥y = b. Thus
the elements of B are irreducible. Moreover, the meet of B is
irredundant since F'|B and a is the irredundant meet of F. This
completes the proof. Notice that the set B is maximal with respect
to these properties: F'|B, card B = card F', and a is the irredundant
meet of B.

Stralka and Baker [10] independently of the author and at about
the same time proved that a complete meet-continuous lattice with
finite breadth has finite irreducible decompositions. This is a special
case of Theorem 2.1: however, the proofs are quite similar.

By virtue of the fact that a semilattice with ascending chain
condition is meet-continuous [4], we have the well-known corollary:

COROLLARY 2.2. Ewvery element of a semilattice with ascending
chain condition is the irredundant meet of a finite number of irre-
ducibles.
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Finite extent is not a necessary condition for the existence of
finite irreducible representations. There are, however, some special
cases in which the stronger condition of finite breadth is necessary.

THEOREM 2.3. Let S be a semilattice with finite trreductble de-
compositions for each y = x. If all irredundant irreducible decom-
positions of © have n elements, then x has breadth n.

The straightforward proof of Theorem 2.3 is omitted. Modular
semilattices were defined in [8] and the semilattice version of the
Kurosh Ore theorem was proved.

CORCLLARY 2.4. If S is a modular semilattice with finite irre-
ductblz decompositions for each element, then each elewent of S has
findte breadth.

THEOREM 2.5. (Newman [7, p. 31]) If every element of a com-
plete distributive lattice L has a finite meet irreducible decomposition,
thew L s wmeet-continuous.

THEOREM 2.6. Let L be a complete distributive lattice. Hvery
element of L has a wuwnique trredundant decomposition into a finite
meet of trreducibles if and only if L is meet-continuous and each
element of L has finite breadth.

The uniqueness of decompositions in a distributive Iattice was
first shown by Birkhoft.

The next two theorems deal with decompositions of product
semilattices.

THEOREM 2.7. If each element of each S has an trreducible
decomposition and precedes a maximal element, then every element
of @S« has an trreducible decomposition.

Proof. Let fenSa. Let f(a) = A @;,. be an irreducible decom-
position of f{w) in Sa. Define

] /t) j:l}i,a if t=a«
Zi rxt\ - .
' [mt ift+a

where m, is a maximal element containing f(¢). Ciearly, each %,;, is
irreducible and A, . = f.
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THEOREM 2.8. If every element of wSa has an irreducible decom-
position, then every element of each Sa has an irreducible decomposi-
tion. If there is an « such that some element of Sa does not precede
a maximal element, then every element of SB precedes a maximal
element if B # a.

Proof. We prove only the second part. Suppose there exist Sy,
S; with z,€ S, and x;€ S; and neither x, nor x, precedes a maximal
element. By the Axiom of Choice, there exists xzexwS, such that
2(B) = x; and 2(0) = x,. Suppose mexnS, and m = x. Since m(0) =
%y and m(B) = x; and neither of these elements precedes a maximal
element, there exist ¥, > m(B) and y, > m(d). Define

if if 0
ha) = m(c.r) ifa+p and g(a) = m(o.z) if @+
y ifa=p Y ifa=20.

Then m = h A g. This proves that every element greater than 2 is
reducible, contrary to hypothesis, and this contradiction completes
the proof.

3. Applications to topological semilattices and lattices. A
semilattice whose operation is continuous in an underlying Hausdorff
topology is called a topological semilattice. Continuity of the semilattice
operation does not imply meet-continuity generally, but there are
exceptions.

THEOREM 3.1. S be a semilattice and a topological space in which
each ascending met converges to the supremwm of its range. If the
operation of S is continuous, then S is meet-continuous.

Lawson [5] has shown that ascending nets converge to suprema
in a compact topological semilattice. Thus a compact topological
semilattice is meet-continuous.

THEOREM 3.2. Let {S,|ae '} be a family of compact topological
semilattices with finite breadth. Then every element of nS, has an
wrreducible decomposition.

Proof. Combine Theorems 2.1 and 2.7 with the preceding remarks.

THEOREM 3.3. (Lawson [6]) Let S be a locally compact topological
semilattice in which M(x) = {y|y = ®} s connected for each x€S. If
S has positive codimension m, S has breadth less than or equal to
n+ 1. If each pair of elements of S has an upper bound, then S
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has breadth less than or equal to n.

The special case of Theorem 3.3 for distributive lattices was first
proved by Anderson [1].

THEOREM 3.4. Let S be a compact topological semilatiice in which
M(x) is connected for each x. If x has positive codimension n, then
each element of S has an irredundant decomposition into no more than
n + 1 irreductbles. If S 1is a lattice, each element of S has an
irredundant decomposition into mo more than n irreducibles.

In particular, topological semilattices on the n-cell have irreducible
decompositions.

THEOREM 3.5. Let S be a topological semilattice on an n-cell
(m = 2). Then all the trreducibles of S lie on the boundary.

Proof. Modify the proof of Theorem 1, p. 37, in Brown [3].

THEOREM 3.6. (Lawson [5, p. 89], and Strauss [11].) A compact
metrizable topological lattice has the order topology.

THEOREM 3.7. Let L and M be topological lattices on m and m
cells respectively. If there is an order isomorphism between the
boundaries of L and M, then m = m and L and M are homeomorphic.

Proof. The case m = 1 is straightforward. Assume m > 1. By
Theorem 3.6, L and M have the order topology and by Theorem 3.3,
L and M have finite breadth. In lattices of finite breadth the order
topology coincides with the interval topology [2, p. 250]. Thus the
closed intervals [a, b] constitute a subbasis for L and M.

Let f: B(L) — B(M) be an order isomorphism from the boundary
of L onto the boundary of M. We must show f is continuous, that
is, f™([e, ] N B(M)) is closed in B(L). Let x be a sequence in f™*
([e, b] N B(M)) with x converging to some x,e B(L). Clearly f(z,) is
defined and f(x,) € B(M). By Theorem 3.4, b has an irreducible
decomposition & = A B and by Theorem 3.5, B < B(M). Since f(x,) =
b for every u, f(z,) <y for every ye B. Since f is an isomorphism,
z, = f(y) for every y € B. By continuity of the semilattice operation,
%, =< f'(y) for every ye B. Hence f(x,) < A B=5b. Using join
irreducible decompositions we may show a < f(v,). Thus 2,€ f (e,
b] N B(M)) and this set is closed. This proves that f is continuous
and since B(L) and B(M) are compact Hausdorff spaces, f is a
homeomorphism. Since the boundaries are homeomorphic, 7 — 1 =
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m — 1. Hence n = m and L and M are homeomorphic.

Shields [9] has shown that if there is a homeomorphism ¢ from
the boundary of a topological semigroup S on an #-cell onto the
boundary of the product semigroup T on the same cell, and @ is an
isomorphism, then S and 7" are isomorphic. The above theorem shows
that order isomorphism is sufficient in the lattice case when one is
the product lattice. Theorem 3.8 below shows that the requirement
that one be the product lattice may be dropped if both lattices are
distributive. We note that distributive lattices on an #n-cell are not,
in general, isomorphiec.

THEOREM 3.8. If L and M are distributive topological lattices
on an n-cell, and f: B(L) — B(M) is an order isomorphisms, then there
exists a lattice isomorphism g: L — M that is an extension of f.

Proof. The case #n = 1 is trivial. Assume »n > 1. Define g: L —
M by

9@y = fw) N f@) A oo A F(@)

where x =2, A2, A -+« A &, is the unique irredundant decomposition of
2 into irreducibles. Since this representation is unique and irreducibles
lie in the boundary, g is well-defined. The proof is carried out in a
sequence of lemmas.

1. IfANR= AT and R and T are finite sets of irreducibles in
L (in M), then A f(R) = N f(T) A f(R) = A f(T)]-

Proof. We prove only the first part. Suppose x€ R. Since 2 is
irreducible, L is distributive, and > A T,x = y for some ye 7.
Thus T'| R and since f is an order isomorphism, f(T)|f(R). Similarly,
F(R)| f(T); hence A f(R) = N f(T).

2. g ts a semilattice homomorphism.

Proof. Supposex = A Xand y = A Y are irredundant irreducible
decompositions in L. There is a set TS XU Y suchthat t Ay = AT
is an irredundant irreducible decomposition of © A y. Then by part(l),

ge Ny =gi\NR) =N f(B)=NfXUY) =g A gy .
3. The tmage and preimage of vrreducibles wnder f are irreducible.

Proof. Suppose x is irreduciblein L. Let f(@) = 2, A T A <+ A
%, be an irreducible decomposition of f(x) in M. Since x, %, +++ @, €
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B(M) and f is an order isomorphism, x = f~z) A f7Y®) A ¢+ A
fX(=,); this implies that « = f~'(x;) or f(x) = «; for some ¢. Thus the
image of an irreducible is irreducible and a similar argument holds
for preimages as well.

4. g 1is an injection.

Proof. Suppose g(x) = g(y) with x =2, A2, A ++- N2, and y =
Y A\ +++ A ¥, the irredundant irreducible decompositions of x and y
in L. Then f@)A ++« A f@,)=FW)A -+ A f(¥p). These meets are
irredundant, for if A,.; f(x;) = A f(x;), then by part 1, A2, =A%,
contrary to the irredundancy of the decomposition of %. Since each
f(z;) and f(y;) is irreducible (by part 3) and M is distributive, {f(z;)} =
{f(¥)}. Thus {x;} = {y;} because f is an isomorphism; and it follows
that © = y.

5. g 1s a surjection.

Proof. Suppose ye M. Let y = y,A\ +-- A ¥, be the irredundant
irreducible decomposition of yin Mand let = f™ (y) A +e* A F7 (Yn).
Clearly g(x) = v.

This proves that g is a semilattice isomorphism and since L and
M are lattices, g is a lattice isomorphism.

COROLLARY 3.9. If L and M are distributive topological lattices
on n and m cells respectively, and the boundaries of L and M are
isomorphic, then L and M are homeomorphic and isomorphic.

The preceding results, with the exception of Theorems 3.7, 3.8
and 3.9, were part of a paper presented to the American Mathematical
Society in January, 1969, under the title “Chain Conditions in To-
pological Semilattices”.

I would like to thank Professor Don E. Edmondson for his advice
during the preparation of this paper.
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