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EQUILIBRIUM OF INVERSE-DISTANCE FORCES
IN THREE-DIMENSIONS

T. S. MOTZKIN AND J. L. WALSH

This paper is about the field of force in three dimensions
due to particles that repel according to the inverse-distance
law, the analog of the field in the complex plane used by
C. F. Gauss in studying the zeros of the derivative of a
polynomial. In particular it deals with the analog in three
dimensions of Jensen's theorem and related theorems in the
plane, shows that the positions of equilibrium in the field of
force when the total mass is zero are invariant under spherical
transformation, and gives a geometric construction to find
the force due to an axially symmetric distribution of matter.

To be more explicit, it is classical that C. F. Gauss indicated
that in the complex plane the zeros of the derivative p'(z) of a
polynomial p(z) (not multiple zeros of p(z)) are precisely the positions
of equilibrium in the field of force due to particles at the zeros of
p(z)9 where each particle z0 has as mass the multiplicity of z0 as a
zero of p(z), and where each particle repels with a force equal to
its mass times the inverse distance. Gauss's theorem has been widely
used in the study of the location of the zeros of p'(z) by F. Lucas,
Bδcher, Jensen, and later writers [see for instance Marden, 2; Walsh,
6]. Also in three-dimensions, G. Sz. Nagy [4] has introduced the
concept of distance polynomial, namely as

F(x, y,z)^cf[ l(x - xk)
2 + (y- ykf + (z - zk)

2] , C> 0 ,
1

whose derivative is defined

F'(x, y,z)^± (Fl +F?; + F;)βF ,
1

when the n points Pk: (xk, yk, zk) are given, Sz. Nagy then sets up
the Gaussian field of force, namely a set of (possibly multiple) particles
at the respective zeros of F(x, y, z), where each particle repels with
a force equal to its mass times the inverse distances; each zero of
F'(x, y, z) not a multiple zero of F(x, y, z) is then a position of equi-
librium in the corresponding field of force.

This field of force may now be regarded as an appropriate object
of independent study, and is so regarded in the present note. New
results are obtained beyond those already in the literature. Appli-
cations to distance polynomials are immediate, and are left to the reader.
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F. Lucas's theorem asserts that the smallest convex set of the
plane containing the zeros of a nontrivial polynomial p(z) contains
also the zeros of p'(z). The analog clearly holds in higher dimension,
as Sz Nagy indicates, and the results that follow are complementary
to the analog of Lucas's theorem.

1* An extension of Jensen's theorem* We recall the statement
of Jensen's theorem:

THEOREM 1 (Jensen's theorem). Let p(z) be a nonconstant real
polynomial, let all circles (Jensen circles) be constructed, each having
as diameter the line segment joining a conjugate pair of zeros of
p(z). Then each nonreal zero of the derivative p'(z) lies in the closed
interior of a Jensen circle.

The first published proof of Jensen's theorem was given by Walsh
[6], who also laid the foundation for the deeper study of the zeros of
the derivative of a real polynomial. Under the hypothesis of Jensen's
theorem, the force in the Gaussian field due to two equal conjugate
imaginary particles has [Walsh, 7, §1.4.1] a nonzero component toward
the axis of reals, parallel to that axis, or away from that axis at
every non-real point respectively interior to the Jensen circle, on the
Jensen circle, or exterior to the Jensen circle. Thus at each non-real
point P exterior to all Jensen circles the force due to each conjugate
pair of particles has a nonzero component away from the axis of
reals, and at each such point P the force due to each particle at a
real zero has also such a nonzero component, so the total force at
P is not zero. Thus P is neither a point of equilibrium in the field
of force nor a multiple zero of pr(z), hence is not a zero of p'(z), and
Jensen's theorem is established.

This same proof gives at once:

THEOREM 2. In three dimensions let there be a finite number of
positive Gaussian particles situated symmetrically with respect to the
(x, y)-plane, and let all (Jensen) spheres be constructed whose diameters
are line segments joing pairs of points symmetric in the (x, y)-plane.
Then each position of equilibrium lies in the closed interior of some
Jensen sphere.

Theorem 2 is given by Sz. Nagy [4].

Another result in three dimensions is analogous to a result [Walsh,
7, §2.2.2, Theorem 3] in the plane:
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THEOREM 3. In three dimensions, let a positive distribution of
total mass n consist of two particles (0, 0, ± 1) each of mass k, and
particles of total mass n — 2k in the (x, y)-plane. Then each equilibrium
point lies either in the (x, y)-plane or in the closed sphere whose center
is the origin and radius [(n — 2k)/n]112.

In the proof we shall need

LEMMA 1. If the force at a point P due to m variable unit par-
ticles in a plane π not containing P has the direction of a line λ
through P then the force is not greater than it would be if all m
particles were concentrated at the intersection of π and λ.

Denote by π' the inverse of π in the unit sphere S whose center
is P. The force at P due to a particle at Q is in magnitude, direc-
tion, and sense the vector Q'P, where Q' is the inverse of Q in S.
The force at P due to the m given particles is equivalent to the force
at P due to an m-fold particle on λ situated at the inverse Qo of the
center of gravity QΌ of the points Q', inverses of the given particles
Q on π. Since the points Q lie on π, their inverses Qf lie in π\ and
QΌ lies on or within πf and on λ. The greatest force Q[P is exerted
if QΌ lies at the intersection (other than P) of πf and λ, which implies
that all m particles are concentrated at the intersection of π and λ.

The present Lemma 1 combined with [Walsh, 7, Lemma 2, §2.2.2]
and the method of proof of [Walsh, 7, §2.2,2, Theorem 3] now estab-
lishes the present Theorem 3.

2* Second extension of Jensen's theorem* We turn now to an
analog of [Walsh, 7, §2.5, Theorem 1]:

THEOREM 4. Let a positive distribution of mass consist of a pair
(0, 0, ± 1) of equal particles, plus a distribution of mass in the (x, y)-
plane in the disk x2 + y2 rg r. Then all positions of equilibrium not
in the (cc, y)-plane lie in the spindle-shaped region whose boundary is
formed by the rotation about Oz of the shorter arc bounded by (0, 0, ± 1)
of the circle through those two points tangent at those points to the
lines joining those points to (r, 0, 0).

It will be noticed [Walsh, 7, §2.2.1, Theorem 1] that the circular
arc (except for z = 0 or ± 1) is precisely the locus of points of equi-
librium in the (x, ?/)-plane due to the two given particles and to a
single particle of suitably variable mass in the point (x0, 0, 0) as x0 > 0
varies. If P: (xQ, y0, z)9 z0 Φ 0, is a point exterior to the spindle, then
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the line of force at P due to the two given particles lies in the
plane yQx -~ xQy — 0 and passes through the point (xu yu 0), where
#i + vl > ^ (loc. cit.) On the other hand, the line of resultant force
at P due to the given particles in the (x, ?/)-plane cuts that plane in
a point (x2, y2, 0) where x\ + y\ g r2, for that fact is true for the line
of force at P due to each given particle in the (x, τ/)-plane. Conse-
quently the total force at P is not zero, and Theorem 4 is proved.

By way of contrast to Theorem 4 and to [Walsh, 7, §2.5, Theorem
1] we now indicate that the replacement of the region x2 + y2 <£ r2

in the (x, ?/)-plane of Theorem 4 by the region x2 + y2 ^ r2 in the (x,
?/)-plane gives no diminution in the interior of the Jensen sphere
(Theorem 2) as the locus of positions of equilibrium. Let P be a point
not in the {x, 2/)-plane interior to the Jensen sphere corresponding to
the two equal particles (0, 0, ± 1); we shall show that P is a position
of equilibrium in the field of force due to the those particles and a
suitable distribution in the (x, ?/)-plane satisfying x2 + y2 > r2. Choose
for deίiniteness P in the (x, z)-plane, z > 0. The force at P due to
the two given particles is represented by a certain vector λ in that
plane with a nonzero negative z component. The inverse in the sphere
of radius unity whose center is P, of the entire (x, τ/)-plane is a spherical
shell S of which P is the point furthest from that plane. The inverse
of the region x2 + y2 >̂ r2 is a spherical cap of S containing P and
bounded by a circle Γ which is the inverse of the circle x2 + y2 = r2

in the (xy ?/)~plane. The spherical cap and the plane of Γ bound a
closed region R which is a convex subregion of the closed interior
of S. Any set of particles in the region x2 + y2 ^ r2 of the (x, y)-
plane have inverses which lie on the spherical cap, and the corres-
ponding force which they exert at P is represented by a single
nonzero vector of corresponding multiplicity whose initial point Q in
R is the center of gravity of those inverses and whose terminal point
is P. Then Q is a point in the convex closed region R, and conversely
any point Q of R may be chosen as the initial point of the vector QP by
suitably choosing the position and (integral) masses of the distribution
in the region x2 + y2 >̂ r2 of the (x, τ/)-plane. In particular the distribu-
tion may be so chosen that the corresponding force exerted at P is the
negative of λ, so P is a point of equilibrium, as we have asserted.

Theorems 3 and 4 are in a sense mutually complementary; each
limits the possible point sets on which the equilibrium points are
situated, the one based on magnitude of the masses on and off the
(x, ?/)-plane, the other based wholly on the position of those masses;
they both apply in any specific case when the masses at (0, 0, ± 1)
(supposed to be the only masses exterior to the (x, τ/)-plane) and those
in the (x, τ/)-plane are given.
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Of course the analog of Lucas's theorem is available too, for the
purpose of further limiting the possible point sets where the equilibrium
points are located; thus if a closed dihedral angle less than π contains
all masses, it contains also all equilibrium points.

With the hypothesis of Theorem 3, a point P: (xu ylf zj not (0, 0, ±
1) but on the surface of the sphere mentioned, is a point of equilibrium
when and only when all the (n — 2k) units of mass in the (x, τ/)-plane
are concentrated at the point of the (x9 ?/)-plane where the tangent line
at P to the circle through P and (0, 0, ± 1) cuts the (x, y)-plane;
compare [Walsh, 7, §2.2.1].

Likewise, with the hypothesis of Theorem 4, a point P of the sur-
face of the spindle (other than (0, 0, ± 1) is an equilibrium point when
and only when the mass in the (x, τ/)-plane is concentrated in a single
point in the (x, y)-plane on the circle x2 + y2 = r2, in the plane through
Oz and P, and that mass has a single suitable value (not necessarily
integral) depending on the masses at (0, 0, ± 1).

3* Transformation of force field* The study of the location of
critical points of a polynomial may be interpreted as a chapter of circle
geometry, and the study of the location of equilibrium points in three
dimensions as a chapter of sphere geometry. Circle and sphere trans-
formations may be a convenient tool in the respective theories, as we
now indicate. The following theorem is essentially due to Bδcher
(1904) for two dimensions; we use the the phraseology for three
dimensions.

THEOREM 5. In any finite number of dimensions, the direction
of the force (including sense) in a field due to a finite number of
positive and negative particles of total mass zero which repel according
to the inverse distance law is invariant under spherical tranformation.

If such a field of force is given, and the total mass is not zero,
we may adjoin suitable particles at infinity so that the total mass
becomes zero. These new particles then persist under a spherical
transformation that carries the point at infinity into a finite point.

Let P be a point in the field of force due to particles Qu Q2, ,
Qk of respective positive masses ml9 m2, •••, mk. The force at P due
to the particle Qx is represented in magnitude, direction, and sense
by the mrfold vector Q[P, where Q[ is the inverse of Qλ in the unit
sphere whose center is P. The force at P due to all the particles
Qi is represented by the sum of the vectors Q P, of respective multi-
plicities mi9 where Q\ is the inverse of Q{ in that same sphere. The
total force at P due to the particles Qι is thus represented by a
vector Q[P of multiplicity mι + m2 + + mk = M where QΌ is the
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center of gravity of the weighted points Q , so the total force at P
due to the particles Qi is equivalent to the force at P due to a particle
of mass M situated at Qo, the inverse of QΌ in the same unit sphere.

We introduce the concept of center of gravity with respect to P
of the weighted points Q^ This shall be the ordinary center of gravity
of the Qi when P lies at infinity, and otherwise is defined to be
invariant under any spherical transformation, in particular under a
transformation that carries P to infinity and carries the Qi into finite
points. It will be noted that the point Qo previouly defined is precisely
the center of gravity with respect to P of the given points Q^

If now the field of force of Theorem 5 is due to k positive par-
ticles at points Qi of respective masses m1M m2, , mk, and to j negative
particles Rt of respective masses nlf n2, •••, % (^ < 0), where m1 +
m2 + + mk — M — — nx — n2 — — nj9 the total force at P is
the force due to an M-ΐold particle situated at the center of gravity
Qo with respect to P of the Qif plus the force exerted at P by a (— M)-
fold particle situated at the center of gravity Ro with respect to P of
the Ri. The total force at P is thus the force at P due to the positive
particle of mass M at Qo plus the force at P due to the negative particle
of mass (— M) at Ro, which is known [Walsh, 7, §4.1.2] to have the
direction and sense at P of the circular arc Q0PRQ, on which P separates
Qo and i?0 Infinity is defined to be a position of equilibrium if it can
be carried into such a finite position under spherical transformation
of the given masses. The direction of the total force at P (which is
zero if and only if QQ and Ro coincide) is thus expressed in a form
invariant under spherical transformation, and Theorem 5 is established.

An equivalent statement of the theorem is that the lines of force
(including sense) are invariant under spherical transformation. Thus
the surfaces orthogonal to the lines of force are also invariant. We
have too the

COROLLARY. Under the conditions of Theorem 5, positions of
equilibrium are invariant under spherical transformation of space.

Positions of equilibrium are points different from the given particles
where the force is zero, hence where direction of the force is not
defined.

It is obvious that the theorem extends to distributions of matter
not in discrete particles, but such that the field of force can be
approximated by a field due to such particles. Proofs of Theorem 5
for stereographic projections of the plane are given not merely by
Bδcher but also by Marden [2, §11] and Walsh [7, §4.1.2].
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4* Axial symmetry* As an application of Theorem 5, we prove

THEOREM 6. With force proportional to inverse distance in three
dimensions, let C be a uniform circumference of center 0, radius p,
and total mass unity in a plane π, and let the axis of C be a. Then
the total force at a point P of π interior to C is zero, that at a point
P of π exterior to C is 1/OP, and that at a point not in π nor a has
a nonzero component sensed away from a.

At a point P in π, the logarithmic potential due to mass C is a
constant or log OP plus a constant according as P is interior or exterior
to C, for the potential is harmonic and behaves like log OP when OP
is sufficiently large; thus the force at P is as asserted. If now P
lies on one side of π, let (λ be the point of a farthest from π on the
sphere through P and C and separated by re from P. Let the line
OγP cut π at some point P1 interior to C. The total force, at P is
due to C of mass unity and to a particle at infinity of mass minus
unity. Invert the space in the sphere S of center Oλ passing through
C. Then Ou C, P, S are transformed into oo f C, Pί9 and π respectively.
By Theorem 5, the force at Px due to the transformed mass is propor-
tional to the force (zero) at Pt due to C, plus the force at Px due to the
(negative) particle at O19 in direction and sense PxOl9 Then the original
force (reversed in sense by inversion) exerted at P has direction and
sense 0^, hence has a nonzero component at P directed away from
a, so Theorem 6 is established.

The proof just given determines the equivalent particle, preserving
the force exerted by C at P, hence the components of that force too
are immediately determined by construction.

In the plane πx through a and the same point P, the line PO1

bisects the angle at P between the two chords PCι and PC2 from P
through C in πιy where d and C2 are distinct and lie in πx on C.
Thus the line of force at P has the direction of a hyperbola in πx

with foci C1 and C2. We state the

COROLLARY L If a distribution of positive mass M has axial
symmetry in a line a and lies in a plane π orthogonal to a, then
there is no position of equilibrium except in π; at any point not on
a nor π the force has a nonzero component away from a. There is
no position of equilibrium in π except interior simultaneously to all
the circumferences in M having a as axis.

COROLLARY 2. // a distribution of positive mass M has axial
symmetry in a line a and lies in more than one plane orthogonal to
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a, let the planes be in order πlf π2j • ••, 7ΓV. Then there is no position
of equilibrium on τz1 or ττv. Except on a there is no position of
equilibrium, for the total force has a nonzero component directed away
from a.

It is obvious that if a finite number of circular wire distributions
of uniform positive masses lie in a plane, and if the corresponding
circular discs have a region D in common, then each point of D is
a position of equilibrium.

Under the conditions of Theorem 6, each line of force is a hyper-
bola whose axes are a and a line in π through a, with force on C,
which may degenerate to a or a line in π through 0. The orthogonal
surfaces to the lines of force are oblate ellipsoids with a as axis of
revolution; a degenerate case is the disk of C.

There are naturally numerous other geometric results which cor-
respond to known and even to new theorems in the plane, compare
[Walsh, 7, Ch. 3], As simple examples corresponding to new theorems
in the plane we mention:

With the inverse distance law, let pairs of equal positive particles
mutually inverse in the (x, y)-plane lie on or interior to the sphere,

' x2 + y2 + z2 = 1, and perhaps other positive particles lie in the (x, y)-
plane. Then all position of equilibrium lie in the closed interior of
the ellipsoid x2 + y2 + 2z2 — 2«

With the same law, let pairs of equal positive particles mutually
inverse in the (x, y)-plane lie on or interior to the circumference x2 +

' z2 — 1, y = 0, and perhaps other positive particles lie in the (x, y)-
planeo Then all positions of equilibrium lie in the closed interior of
the ellipsoid x2 + 2y2 + 2r = 2,

In these respective cases, ail closed Jensen spheres for the given
particles lie in the closed ellipsoids defined. Indeed, the new theorems
just proved determine the actual loci of the position of equilibrium
under the several hypotheses on the given particles, now no longer
required to be of integral masses.

These ellipsoids are the analogs of the Jensen ellipses, first
introduced by Jo L. Wo Vβ Jensen, For proofs of the theorems compare
[Walsh, 7, §3o8]. The former of these theorems is valid for several
given spheres containing particles, and several ellipsoids similar to
x2 + y2 + 2z2 = 2 are constructed; other positive particles are permitted
in the (x, ̂ )-plane. Likewise the latter of these theorems is valid for
several given circumferences whose centers lie in the (x, ̂ /)-plane,
and ellipsoids are constructed similar to x2 + 2y2 + 2z2 = 2. Here of
course the word similar is used in the technical sense.
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We remark that results in the plane concerning critical points
of rational functions [Walsh, 7, Ch. 4 and 5] have as analogs in
higher spaces results involving both positive and negative distributions
of matter.

5* Extrema of potential* Inverse-distance forces in any number
d of dimensions correspond to the logarithmic potential logr. This
potential for a positive mass distribution and exterior to it, is super-
harmonic for d — 1, harmonic for d = 2, and subharmonic for d > 2.
Hence its critical points (positions of equilibrium in the corresponding
force field) cannot be strong minima for d ^ 2 nor strong maxima
for d ^ 2, but may be weak minima or weak maxima for d = 2. For
d = 1 two positive mass-points produce a maximum on the segment
joining them; for two mass-points of unequal sign not of total mass
zero, an extremum occurs outside the segment. For a homogeneous
circular wire of positive mass in three-space each point of the closed
disk bounded by the wire gives a weak global minimum of the potential.

To obtain a strong minimum of the potential for d = 3 consider
the vertices (± 1, 0, 0), (0, ± 1, 0), (0, 0, ± 1) of a regular octahedron
as point unit masses. The potential at (x, y, z) is

H(x, y,z) = ±. log {[(x - I)2 + y2 + z2].[(x + I)2 + y2 + z2] ...}
Δ

= i - log [(a;2 + y2 + z2 + 1) - 4a;2] + ,

so the first partial derivative of the potential is

H Ξ 2x(x2 + y2 + z2 + 1) - 4x 2x(x2 + y2 + z2 + 1)

(x2 + y2 + z2 + I) 2 - 4.τ2 (x2 + y2 + z2 + I ) 2 - 4y2

2x{x2 + y2 + z2 + I)

(x2 + y2 + 22 + I)2 - 422

Hence #,.(0, 0, 0) = (2 - 4) + 2 + 2 - 2, fΓw(O, 0, 0) = 0, Hxt(0, 0, 0) -
0. Thus H has a strong minimum at (0, 0, 0).

Since H(x, 0, 0), 0 ^ x ^ 1, has a local minimum at x = 0 and is
— oo at α? = 1, it must have a maximum at some intermediate point.
It is easy to verify (by the formula for Hx) that such a maximum
occurs for x2 = 1/3 and only there. Obviously this is a point of
equilibrium of the force-field, yet not an extremum of the potential,
for the latter is subharmonic.

For a mass distribution which is spherically symmetric with respect
to a point 0 and lies exterior to some sphere with center 0, the point
0 must be an extremum of the potential. Hence for d = 2, the
potential, being harmonic, is constant in a neighborhood of 0. In the
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case of a positive mass distribution, 0 is necessarily a local maximum
of the (superharmonic) potential if d = 1, and a local minimum if d ^ 3.

To study the force-field generated by a homogeneous distribution
of total mass one on the surface of the unit sphere, consider a point
(0, 0, a), 0 < a Φ 1. The vertical component of the force exerted at
this point is

4τr )sχ2 + y2 + (α — z)2 4π J-*J-| ά'+ y2 + (a- z)2 4π J-*J-f α2 + 1 - 1 - 2α sin

I f 1 a-u

2 J-iα2 + 1 -

2a 8α2 V 2α

2α 1 + a

For α < 1, this force is

a _|_ α _i_ α +
1-3 3-5 5-7

Thus when a increases from zero to one, this force increases from
zero to one-half. The potential has a single minimum, namely at the
center of the sphere. Both force and potential are continuous through-
out space; this is in contrast to potential and force due to a circular
wire, where the force is not continuous.
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