THE EVALUATION MAP AND EHP SEQUENCES

George E. Lang, Jr.

Let $L(\Sigma B, X)$ be the space of maps from ΣB (the reduced suspension of B) to X with the compact-open topology, let $\iota: \Sigma B \rightarrow X$ and $L(\Sigma B, X ; \iota)$ the path component of $L(\Sigma B, X)$ containing ℓ. For nice spaces the evaluation map ω : $L(\Sigma B, X, \ell) \rightarrow X$ defined by $\left.\omega(f)=f^{*}\right)$ is a fibration and gives rise to a long exact sequence in homotopy. The purpose of this paper is to show that the boundary map in that long exact sequence can be given by a generalized Whitehead product and that the sequence generalizes the $E H P$ sequence of G. W. Whitehead.

1. Preliminary definitions. All spaces are assumed to be $C W$ complexes with base point at a vertex. Maps are base point preserving. The cartesian product $A \times B$ is assumed to be based at (a_{0}, b_{0}), the unit inverval, I, is based at 0 , and quotient spaces are based at the image of the base point under the natural quotient map. Where the space is clear * will denote the base point as well as the constant map with image at the base point.

We use the following notations. $L(A, B)$ will denote the space of maps from A to B with the compact-open topology and $L(A, B ; \iota)$ the path component of $L(A, B)$ containing $\ell: A \rightarrow B . \quad L_{0}(A, B)$ and $L_{0}(A, B ; \ell)$ will denote the space of base point preserving maps in $L(A, B)$ and $L(A, B ; \ell)$ respectively. Let $A \vee B$ and $A \# B$ denote the one point union and smash product respectively.

Since spaces are assumed to be $C W$ complexes the smash product can be taken as $A \times B$ with $A \vee B$ identified with (a_{0}, b_{0}). $q: A \times B \rightarrow$ $A \# B$ will denote the quotient map. Note that $S^{p+q}=\Sigma^{p} S^{q}=S^{p} \# S^{q}$, $\Sigma^{p} A=S^{p} \# A$, and $\Sigma(A \vee B)=\Sigma A \vee \Sigma B$.

Let $p_{1}, p_{2}: A \times B \rightarrow A \vee B$ be defined by $p_{1}(a, b)=a \vee b_{0}$ and $p_{2}(a, b)=a_{0} \vee b$. Define $k: \Sigma(A \times B) \rightarrow \Sigma A \vee \Sigma B$ by $k=\Sigma p_{1}+\Sigma p_{2}-$ $\Sigma p_{1}-\Sigma p_{2}$. Since $k \mid \Sigma(A \vee B)$ homotopically trivial, by the homotopy extension property there is a map $k^{\prime}: \Sigma(A \times B) \rightarrow \Sigma A \vee \Sigma B$, homotopic to k, such that $k^{\prime} \mid \Sigma(A \vee B)=^{*}$. k^{\prime} then induces a map $\tilde{k}: \Sigma(A \# B) \rightarrow$ $\Sigma A \vee \Sigma B$. Arkowitz [1] has shown that [$\widetilde{k}]$ is uniquely determined by the requirement $k \cong \widetilde{k} \circ \Sigma q$. The following definition is due to Arkowitz [1].

Definition 1.1. For $\alpha=[f] \in[\Sigma A, X]$ and $\beta=[g] \in[\Sigma B, X]$, the generalized Whiteheal product $[\alpha, \beta]$ is defined by $[\alpha, \beta]=[(f \vee g) \circ \tilde{k}]$ $\in[\Sigma(A \# B) X]$.

Hardie shows (Theorem 2.3 in [2]) that the map $\Sigma p_{1}+\Sigma p_{2}+$ $\Sigma q: \Sigma(A \times B) \rightarrow \Sigma A \vee \Sigma B \vee \Sigma(A \# B)$ is a homotopy equivalence for A and $B C W$ complexes with a single vertex. Then there is a map $\phi: \Sigma(A \# B) \rightarrow \Sigma(A \times B)$ such that $\Sigma q \circ \phi \cong 1_{\Sigma(A \neq B)}$.

Definition 1.2. If $f: A \times B \rightarrow X$, where A and B have a single vertex, the element obtained from f by the generalized Hopf construction is defined to be the map $\Sigma f \circ \rho: \Sigma(A \# B) \rightarrow \Sigma X$.

Hardie shows in [2] that if A and B are spheres, Definition 1.2 reduces to the classical definition of the Hopf construction.

Let $\phi_{r}: S^{r} \rightarrow S^{r} \vee S^{r}$ be the map which identifies the equator of S^{r}. G. W. Whitehead (Theorem 1.17 in [6]) shows for $n<p+q+$ $\min (p, q)-3 \quad$ that $\quad \pi_{n}\left(S^{p} \vee S^{q}\right)=\pi_{n}\left(S^{p}\right) \oplus \pi_{n}\left(S^{q}\right) \oplus \pi_{n}\left(S^{p+q-1}\right)$. Let $Q: \pi_{n}\left(S^{p} \vee S^{q}\right) \rightarrow \pi_{n}\left(S^{p+q-1}\right)$ be the natural projection onto the direct summand $\pi_{n}\left(S^{p+q-1}\right)$.

Definition 1.3. For $n<3 r-3$ the generalized Hopf invariant $\hat{H}: \pi_{n}\left(S^{r}\right) \rightarrow \pi_{n}\left(S^{2 r-1}\right)$ is defined by $\tilde{H}=Q \circ \phi_{r^{*}}$.

Definition 1.4. For $\lambda=[\zeta] \in[\Sigma B, X]$ the λ-Whitehead homomorphism $P_{\lambda}:[\Sigma A, X] \rightarrow[\Sigma(A \# B), X]$ is defined by $P_{\lambda}(\alpha)=[\alpha, \lambda]$.

Definition 1.5. If $F: A \rightarrow L(B, X)$ the map $G: A \times B \rightarrow X$ given by $G(a, b)=F(a)(b)$ is said to be an associated map for F.
2. The λ-component $E H P$ sequence. The purpose of this section is to show that the map P_{2} of Definition 1.4 is embedded in a long exact sequence resulting from the fibration $\omega: L(\Sigma B, X ; \iota) \rightarrow X$. Each $\lambda \in[\Sigma B, X]$ determines a path component of $L(\Sigma B, X)$ and ω restricted to each path component determine a fibration and a long exact sequence. In $\S 3$ the relationship between these sequences and the James suspension sequence is explored and it is shown that G. W. Whitehead's EHP sequence [7] is a special case of an c_{n}-component EHP sequence where $\iota_{n}=\left[1_{S^{n}}\right]$ in $\pi_{n}\left(S^{n}\right)$.

Lemma 2.1. For $\ell \in L_{0}(\Sigma B, X), L_{0}\left(\Sigma B, X ;{ }^{*}\right)$ is homotopy equivalent to $L_{0}(\Sigma B, X ; \iota)$.

Proof. Let $\hat{\ell}: L_{0}\left(\Sigma B, X ;^{*}\right) \rightarrow L_{0}(\Sigma B, X ; \varnothing)$ be defined by $\hat{\ell}(g)=$ $g+\ell$ and $\hat{\iota}^{-1}: L_{0}(\Sigma B, X ; \iota) \rightarrow L_{0}\left(\Sigma B, X ;{ }^{*}\right)$ by $\hat{\iota}^{-1}(g)=g-\ell$. Then it is clear that $\hat{\ell}^{-1}$ is a two sided homotopy inverse of $\hat{\ell}$.

In remaining parts of this section the map $\hat{\ell}$ will be taken to be given by

$$
\hat{\ell}(g)(b, t)= \begin{cases}g\left(b, \frac{5}{4} t\right) & 0 \leqq t \leqq \frac{4}{5} \\ \epsilon(b, 5 t-4) & \frac{4}{5} \leqq t \leqq 1\end{cases}
$$

Lemma 2.2. $[\Sigma(A \# B), X]$ is isomorphic to $\left[A, L_{0}\left(\Sigma B, X ;{ }^{*}\right)\right]$.
This fact is well know. For the remainder of this section the isomorphism will be denoted by $\theta:[\Sigma(A \# B), X] \rightarrow\left[A, L_{0}\left(\Sigma B, X ;{ }^{*}\right)\right]$ defined as follows. If $f: \Sigma(A \# B) \rightarrow X, \theta(f)(a)$ is the map taking (b, t) to $f((a, b), t)$ in X.

Definition 2.3. $A @ B$ is defined as $A \times B$ with $A \times\left\{b_{0}\right\}$ identified with $\left(a_{0}, b_{0}\right)$.

Let $m: A \times \Sigma B \rightarrow(A \# \Sigma B) \vee(A @ \Sigma B)$ be defined by

$$
\left(m(a,(b,))= \begin{cases}\left(a,\left(b, \frac{5}{4} t\right)\right) \vee * & 0 \leqq t \leqq \frac{4}{5} \\ * \vee(a,(b, 5 t-4)) & \frac{4}{5} \leqq t \leqq 1\end{cases}\right.
$$

Now let $G: A \# \Sigma B \rightarrow X$ be a map associated with $[g] \in$ $\left[A, L_{0}(\Sigma B, X ; *)\right], \ell \in L_{0}(\Sigma B, X)$, and $p_{2}: A @ \Sigma B \rightarrow \Sigma B$ the natural projection.

The following lemma can be easily verified.
Lemma 2.4. $\left(G \vee\left(\ell \circ p_{2}\right)\right) \circ m: A \times \Sigma B \rightarrow X$ is an associated map for $\hat{\iota}_{*}([g]) \in\left[A, L_{0}(\Sigma B, X ; \ell)\right]$.

Let $h_{1}: A \times S B \rightarrow \Sigma(A \times B)$ be defined by $h_{1}(a,(b, t))=((a, b), t)$, where $S A$ is the unreduced suspension.

By the homotopy extension property the quotient map $q_{1}: S B \rightarrow \Sigma B$ is a homotopy equivalence. Its homotopy inverse will be denoted $q_{1}^{-1}: \Sigma B \rightarrow S B$.

Lemma 2.5. Let $\alpha=[f] \in[\Sigma A, X]$ and $\lambda=[\zeta] \in[\Sigma B, X]$, then $(f \vee \ell) \circ\left(\Sigma p_{1}+\Sigma p_{2}-\Sigma p_{1}-\Sigma p_{2}+\Sigma p_{2}\right) \circ h_{1} \circ\left(1_{A} \times q_{1}^{-1}\right): A \times \Sigma B \rightarrow X$ is a map associated with $\hat{\ell}_{*} \circ \theta([\alpha, \lambda]) \in\left[A, L_{0}(\Sigma B, X ; \iota)\right]$.

Proof. Let $m_{1}: \Sigma(A \times B) \rightarrow \Sigma(A \times B) \vee \Sigma(A \times B)$ be given by

$$
m_{1}((a, b), t)= \begin{cases}\left((a, b), \frac{5}{4} t\right) \vee * & 0 \leqq t \leqq \frac{4}{5} \\ * \vee((a, b), 5 t-4) & \frac{4}{5} \leqq t \leqq 1\end{cases}
$$

Consider the following diagram:

$q^{\prime}: A \# \Sigma B \rightarrow \Sigma(A \# B)$ is the homomorphism defined by $q^{\prime}(a,(b, t))=$ $((a, b), t)$ and k is as in Definition 1.1. It is easiest to check the homotopy commutativity of this diagram by looking first at the lower four fifths of the t coordinate in $S B$ and then at the upper fifth.

Part 1. $\Sigma p_{1}+\Sigma p_{2}-\Sigma p_{1}-\Sigma p_{2}+\Sigma p_{2} \cong\left((\tilde{k} \circ \Sigma q) \vee \Sigma p_{2}\right) \circ m_{1}$.
The lower four fifths of $\Sigma(A \times B)$ is mapped in one case by $\Sigma p_{1}+\Sigma p_{2}-\Sigma p_{1}-\Sigma p_{2}$ and in the other by $\widetilde{k} \circ \Sigma q$. But these are homotopic by the definition of \tilde{k}. The upper fifth is mapped by Σp_{2} in either case.

Part 2. $(f \vee \ell) \circ\left(\tilde{k} \circ \Sigma q \vee \Sigma p_{2}\right) \circ m_{1} \circ h_{1}=\left(\left((f \vee \ell) \circ \tilde{k} \circ q^{\prime}\right) \vee \ell \circ p_{2}\right) \circ m \circ$ $\left(1_{A} \times q_{1}\right)$.

On the lower four fifths the maps "meet" at $\Sigma(A \# B)$. In either case the point $(a,(b, t)) \in A \times S B$ is mapped to $((a, b),(5 / 4) t) \in \Sigma(A \# B)$. On the upper fifth both maps are given by taking $(a,(b, t))$ to $\ell((b, 5 t-4)$ in X.

By Lemma 2.4 and the definition of $[\alpha, \lambda],\left(\left((f \vee \ell) \circ \widetilde{k} \circ q^{\prime}\right) \vee\left(\kappa \circ p_{2}\right)\right) \circ$ m is an associated map for $\ell_{*} \theta([\alpha, \lambda])$. This is the lower route in the above diagram. Since q_{1} and q_{1}^{-1} are homotopy inverses

$$
\begin{aligned}
(((f & \left.\left.\vee \ell) \circ \tilde{k} \circ q^{\prime}\right) \vee \ell \circ p_{2}\right) \circ m \\
& \cong\left(\left((f \vee \ell) \circ \tilde{k} \circ q^{\prime}\right) \vee \ell \circ p_{2}\right) \circ m \circ\left(1_{A} \times q_{1}\right) \circ\left(1_{A} \times q_{1}^{-1}\right) \\
& \cong(f \vee \ell) \circ\left(\tilde{k} \circ \Sigma q \vee \Sigma p_{2}\right) \circ m_{1} \circ h_{1} \circ\left(1_{A} \times q_{1}^{-1}\right) \\
& \cong(f \vee \ell) \circ\left(\Sigma p_{1}+\Sigma p_{2}-\Sigma p_{1}-\Sigma p_{2}+\Sigma p_{2}\right) \circ h_{1} \circ\left(1_{A} \times q_{1}^{-1}\right)
\end{aligned}
$$

The last two homotopies follow from Part 2 and Part 1 respectively. But the last map is the one claimed to be an associated map for
$\hat{\iota}_{*} \theta([\alpha, \lambda])$ and the lemma is proven.
For $\lambda=[\iota] \in[\Sigma B, X]$ the evaluation map $\omega: L(\Sigma B, X ; \iota) \rightarrow X$ is a fibration with fiber $L_{0}(\Sigma B, X ; \iota)$. Then there is a long exact sequence of homotopy groups

$$
\begin{aligned}
\cdots \longrightarrow & {\left[\Sigma^{r+1} A, X\right] \xrightarrow{\partial}\left[\Sigma^{r} A, L_{0}(\Sigma B, X ; \iota)\right] \xrightarrow{i_{*}} } \\
& {\left[\Sigma^{r} A, L(\Sigma B, X ; \iota)\right] \xrightarrow{\omega_{*}}\left[\Sigma^{r} A, X\right] \xrightarrow{\partial} \cdots \longrightarrow \xrightarrow{\longrightarrow}[\Sigma A, X] \xrightarrow{\partial} } \\
& {\left[A, L_{0}(\Sigma B, X ; \iota)\right] \xrightarrow{i_{*}}[A, L(\Sigma B, X ; \iota)] \xrightarrow{\omega_{*}}[A, X], }
\end{aligned}
$$

where exactness at the last two stages is as pointed sets. Recall that Lemma 2.2 shows there is an isomorphism $\theta:[\Sigma(A \# B), X] \rightarrow$ $\left[A, L\left(\Sigma B, X ;{ }^{*}\right)\right]$.

THEOREM 2.6. For $\alpha \in\left[\Sigma^{r} A, X\right], \partial(\alpha)=\hat{\iota}_{*} \circ \theta \circ P_{\lambda}(\alpha)$.
Proof. Let α be represented by a map $f: \Sigma^{r} A \rightarrow X$ and let $q_{2}: C\left(\Sigma^{r-1} A\right) \rightarrow \Sigma^{r} A$ be the natural quotient map from the cone to the suspension. Define $F: C\left(\Sigma^{r-1} A\right) \times S B \rightarrow \Sigma\left(\Sigma^{r-1} A\right) \vee \Sigma B$ by

$$
F((a, r),(b, t))= \begin{cases}q_{2}(a, r+3 t) \vee * & 0 \leqq t \leqq \frac{1}{3} r \leqq-3 t+1 \\ * & 0 \leqq t \leqq \frac{1}{3} r \leqq-3 t+1 \\ * \vee q_{1}(b, 3 t-1) & \frac{1}{3} \leqq t \leqq \frac{2}{3} \\ * & \frac{2}{3} \leqq t \leqq 1 r \leqq 3 t-2 \\ q_{2}(a, 3+r-3 t) \vee * & \frac{2}{3} \leqq t \leqq 1 r \leqq 3 t-2\end{cases}
$$

where $(a, r) \in C\left(\Sigma^{r-1} A\right), r$ being the level on the cone and $(b, t) \in S B$, t being the level on the suspension. At $t=1 / 3$ or $2 / 3$ and on the lines $r=-3 t+1$ and $r=3 t-2$, the image of F is at $*$ and F is well defined and continuous at these points. Since F is independent of a at $r=1$ and independent of b at $t=1$ and $t=0, F$ is well defined. Let $\Sigma^{r-1} A \times S B \rightarrow C\left(\sum^{r-1} A\right) \times S B$ be induced by including $\Sigma^{r-1} A$ at the 0 level of $C\left(\sum^{r-1} A\right)$. Consider the following diagram:

The map $\left(\Sigma p_{1}+\Sigma p_{2}-\Sigma p_{1}\right) \circ h_{1}$ is given by

$$
(a,(b, t)) \longrightarrow \begin{cases}(a, 3 t) \vee^{*} & 0 \leqq t \leqq \frac{1}{3} \\ * \vee q_{1}(b, 3 t-1) & \frac{1}{3} \leqq t \leqq \frac{2}{3} \\ (a, 3-3 t) \vee^{*} & \frac{2}{3} \leqq t \leqq 1\end{cases}
$$

But this is the same as $F((a, 0),(b, t))$, that is $F \mid \Sigma^{r-1} A \times S B$. Therefore the lower square commutes. In the upper triangle, when $t=0$ (the base point of $S B), F((a, r),(b, 0))=q_{2}(a, r)$ by definition. At the base point of $C\left(\Sigma^{r-1} A\right)$ consider

$$
F\left(\left(a_{0}, 0\right),(b, t)\right)= \begin{cases}q_{2}\left(a_{0}, 3 t\right) \vee^{*}=^{*} & 0 \leqq t \leqq \frac{1}{3} \\ * \vee q_{1}(b, 3 t-1) & \frac{1}{3} \leqq t \leqq \frac{2}{3} \\ q_{2}\left(a_{0}, 3-3 t\right) \vee^{*}=^{*} & \frac{2}{3} \leqq t \leqq 1\end{cases}
$$

But this is clearly homotopic to ${ }^{*} \vee q_{1}$, thus the upper triangle commutes up to homotopy. Now consider the map $\widetilde{F}: C\left(\Sigma^{r-1} A\right) \times \Sigma B \rightarrow$ X given by $\widetilde{F}=(f \vee \ell) \circ F \circ\left(1_{C\left(\Sigma r-1_{A}\right)} \times q_{1}^{-1}\right) . \quad \widetilde{F}$ is then an associated map for an element of $\left[\left(C\left(\Sigma^{r-1} A\right), \Sigma^{r-1} A\right),\left(L(\Sigma B, X ; \iota), L_{0}(\Sigma B, X ; \ell)\right)\right]$. Since $\widetilde{F} \mid C\left(\Sigma^{r-1} A\right) \times^{*}$ is given by $f \circ q_{2}, \widetilde{F}$ is associated to the class $[f] \in\left[\Sigma^{r} A, X\right]$ under the bijection (see p. 104 in [5]) $\omega_{*}:\left[\left(C\left(\Sigma^{r-1} A\right)\right.\right.$, $\left.\left.\Sigma^{r-1} A\right),\left(L(\Sigma B, X ; \ell), L_{0}(\Sigma B, X ; \ell)\right)\right] \rightarrow\left[\Sigma^{r} A, X\right]$. Then by definition of the boundary homomorphism, $\partial([f])=\partial(\alpha)$ has associated map $\widetilde{F} \mid \Sigma^{r-1} A \times \Sigma B$. But by commutativity of the above diagram $\widetilde{F} \mid \Sigma^{r-1} A \times$ $\Sigma B \cong(f \vee \ell) \circ\left(\Sigma p_{1}+\Sigma p_{2}-\Sigma p_{1}\right) \circ h_{1} \circ\left(1_{\Sigma^{r-1}} A \times q_{1}^{-1}\right)$ and by Lemma 2.5 this is an associated map for $\hat{\ell}_{*} \circ \theta \circ([\alpha, \lambda])=\hat{\ell}_{*} \circ \theta \circ P_{\lambda}(\alpha)$.

The existence of the λ-component $E H P$ sequence now can be shown. Let $i_{*}^{\prime}:\left[\Sigma\left(\Sigma^{r-1} A \# B\right), X\right] \rightarrow\left[\Sigma^{r-1} A, L(\Sigma B, X ; \ell)\right]$ be given by $i_{*}^{\prime}=i_{*} \circ \hat{\ell}_{*} \circ \theta$.

Theorem 2.7. There is a long exact sequence

$$
\begin{aligned}
\cdots \longrightarrow & {\left[\Sigma^{r} A, L(\Sigma B, X ; \ell)\right] \xrightarrow{\omega_{*}}\left[\Sigma^{r} A, X\right] \xrightarrow{P_{2}} } \\
& {\left[\Sigma\left(\Sigma^{r-1} A \# B\right) ; X\right] \xrightarrow{i_{*}^{\prime}}\left[\Sigma^{r-1} A, L(\Sigma B, X ; \ell)\right] \longrightarrow \cdots }
\end{aligned}
$$

Proof. Since $\hat{\lambda}_{*}$ and θ are isomorphisms, the exactness of this sequence is immediate from the exactness of the homotopy exact sequence of the fibration $\omega_{*}: L(\Sigma B, X ; \iota) \rightarrow X$ and Theorem 2.6.
3. The Whitehead and James sequences. The purpose of this section is to compare the λ-component $E H P$ sequence with the classical $E H P$ sequence of George W. Whitehead [7] and the suspension sequence of I. M. James [4]. The spaces A and B will be assumed to be $C W$ complexes with a single vertex. For $\alpha \in[A, L(\Sigma B, X ; \iota)]$ the element $H(\alpha) \in[\Sigma(A \# \Sigma B), \Sigma X]$ is defined by the element obtained from a map associated with α by the Hopf construction of Definition 1.2. The homomorphism $E:[A \# \Sigma B, X] \rightarrow[\Sigma(A \# \Sigma B), \Sigma X]$ is defined by $E([f])=$ [$\Sigma f]$.

Lemma 3.1. The following diagram commutes:

Proof. Let $f: A \# \Sigma B \rightarrow X$ represent an element of $[A \# \Sigma B, X]$. Then $\hat{\iota}_{*} \circ \theta([f])$ has an associated map $F: A \times \Sigma B \rightarrow X$ given by

$$
F(a,(b, t))= \begin{cases}f(a,(b, 2 t) & 0 \leqq t \leqq \frac{1}{2} \\ \iota(b, 2 t-1) & \frac{1}{2} \leqq t \leqq 1\end{cases}
$$

Let $\phi: \Sigma(A \# \Sigma B) \rightarrow \Sigma(A \times \Sigma B)$ and $q: A \times \Sigma B \rightarrow A \# \Sigma B$ be as in the comments preceding Difinition 1.2. Consider the following diagram:

where i_{1} is the inclusion of $\Sigma(A \# \Sigma B)$ in $\Sigma(A \# \Sigma B) \vee \Sigma \Sigma B$. The homotopy commutativity of this diagram will establish the result since $\Sigma F \circ(\phi+*) \cong \Sigma F \circ \phi$ which by definition is the element obtained from
$\hat{\iota}_{*} \circ \theta([f])$ by the Hopf construction and $(\Sigma f \vee \Sigma<) \circ i_{1}=\Sigma f$, a representative of $E([f])$.

In the lower triangle of the diagram $\left(\Sigma q+\Sigma p_{2}\right) \circ(\phi+*) \cong \Sigma q \circ \phi$ which is homotopic to i_{1} by the definition of ϕ.

In the upper triangle

$$
\Sigma F(a,(b, t), r)= \begin{cases}(f(a,(b, 2 t)), r) & 0 \leqq t \leqq \frac{1}{2} \\ (\iota(b, 2 t-1), r) & \frac{1}{2} \leqq t \leqq 1\end{cases}
$$

and

$$
(\Sigma f \vee \Sigma \iota) \circ\left(\Sigma q+\Sigma p_{2}\right)(a,(b, t), r)= \begin{cases}(f(a,(b, t)), 2 r) & 0 \leqq r \leqq \frac{1}{2} \\ (\iota(b, t), 2 r-1) & \frac{1}{2} \leqq r \leqq 1\end{cases}
$$

The usual homotopy to interchange the roles of t and r for homotopy will work in this case since f is defined on $A \# \Sigma B$ and is independent of a. Thus the upper triangle is homotopy commutative and the lemma is established.

Definition 3.2. The classical $E H P$ sequence is given by:

$$
\begin{array}{r}
\pi_{3 n-2}\left(S^{n}\right) \xrightarrow{E} \pi_{3 n-1}\left(S^{n+1}\right) \longrightarrow \cdots \longrightarrow \pi_{n+p}\left(S^{n}\right) \longrightarrow \\
\pi_{n+p+1}\left(S^{n+1}\right) \xrightarrow{H^{\prime}} \pi_{p}\left(S^{n}\right) \xrightarrow{P} \pi_{p+n-1}\left(S^{n}\right) \xrightarrow{E} \cdots
\end{array}
$$

where E is the suspension homomorphism, $H^{\prime}=-E^{-n-1} \circ \tilde{H}$ where \tilde{H} is the Hopf invariant of Definition $1.8, P=P_{\iota n}$, where $\iota_{n}=\left[1_{S^{n}}\right] \in \pi_{n}\left(S^{n}\right)$.

This sequence was shown exact in [7]; the form used in Definition 3.2 is that of P. J. Hilton and J. H. C. Whitehead in [3]. The classical $E H P$ sequence can now be compared with the ι_{n}-component $E H P$ sequence for the fibration $\omega: L\left(S^{n}, S^{n} ; 1_{S^{n}}\right) \rightarrow S^{n}$.

Theorem 3.3. For $q \leqq 3 n-2$ the following exact ladder is commutative and H is an isomorphism:

Proof. The left square commutes by Lemma 3.1 since, by defini-
tion, $i_{*}^{\prime}=i_{*} \circ \hat{\ell_{*}}{ }^{\circ} \circ$. The right square commutes by the definition of P. For the range $q \leqq 3 n-2$, G. W. Whitehead shows (Corollary 6-4 in [7]) that every element $\alpha \in \pi_{q+1}\left(S^{n+1}\right)$ is obtainable from a map $F: S^{q-n} \times S^{n} \rightarrow S^{n}$ of type ($\left.H^{\prime}(\alpha), \iota_{n}\right)$ by a Hopf construction. Thus if F is considered as an associated map for an element $\beta \in$ $\pi_{q-n}\left(L\left(S^{n}, S^{n} ; 1_{S^{n}}\right)\right), \beta$ has type $\left(\omega_{*}(\beta), \iota_{n}\right)$ and $H(\beta)$ is obtainable by a Hopf construction from a map of type $\left(\omega_{*}(\beta), t_{n}\right)$ as well as a map of type $\left(H^{\prime}(\alpha), \iota_{n}\right)$. But then by 5.1 in [6], $\omega_{*}(\beta) * \iota_{n}=H^{\prime}(\alpha) * \iota_{n}$, where $*$ is the join operation. Since ι_{n} is the homotopy class of $1_{S^{n}}, E^{n+1} \omega_{*}(\beta)=$ $\omega_{*}(\beta) * \iota_{n}=H^{\prime}(\alpha) * \iota_{n}=E^{n+1} H^{\prime}(\alpha)$. Now $q \leqq 3 n-2$ so $q-n \leqq 2 n-2$ and by the Freudenthal suspension theorem E^{n+1} is an isomorphism, thus $\omega^{*}(\beta)=H^{\prime}(\alpha)=H^{\prime}(H(\beta))$. This establishes the commutivity of the ladder. That H is an isomorphism follows from the five lemma.

Since the bottom line is the ${c_{n}}_{n}$-component $E H P$ sequence, the classical $E H P$ sequence can be considered as the ι_{n}-component $E H P$ sequence for spheres in the range $q \leqq 3 n-2$.

Some definitions will be required before describing the suspension sequence of James. Let D^{n} denote the solid n-ball. Then $\partial D^{n}=S^{n-1}=$ $D_{+}^{n-1} \cup D_{-}^{n-1}$ where D_{+}^{n-1} and D_{-}^{n-1} are the northern and southern hemispheres of S^{n-1} respectively. Note that $D_{+}^{n-1} \cap D_{-}^{n-1}=S^{n-2}$.

Definition 3.4. For A and B subspaces of X such that $A \cap B \neq$ ϕ let $\pi_{n}(X ; A, B)$ be the set of homotopy classes maps of $f:\left(D^{n}, D_{+}^{n-1}\right.$, $\left.D_{-}^{n-1}\right) \rightarrow(X, A, B)$.

There are natural boundary operators $\partial_{1}: \pi_{n}(X ; A, B) \rightarrow$ $\pi_{n-1}(A, A \cap B)$ and $\partial_{2}: \pi_{n-1}(A, A \cap B) \rightarrow \pi_{n-2}(A \cap B)$ defined by restriction to (D_{+}^{n-1}, S_{-}^{n-2}) and S^{n-2} respectively.

Definition 3.5. The repeated boundary operator $\Delta: \pi_{n}(X ; A, B) \rightarrow$ $\pi_{n-2}(A \cap B)$ is defined by $\Delta=\partial_{2} \circ \partial_{1}$.

The following result of James will be useful.
Theorem 3.6. There is a pairing $\{\beta, \gamma\} \in \pi_{p+q+1}\left(\Sigma X ; C_{+} X, C_{-} X\right)$ for $\beta \in \pi_{p}(X)$ and $\gamma \in \pi_{q}(X)$ such that
(i) $\Delta\{\beta, \gamma\}=[\beta, \gamma] \in \pi_{p+q+1}(X)$, the usual Whitehead product and
(ii) If $i_{*}: \pi_{p+q+1}(\Sigma X) \rightarrow \pi_{p+q+1}\left(\Sigma X ; C_{+} X, C_{-} X\right)$ is the natural inclusion, an element $\alpha \in \pi_{p+q+1}(\Sigma X)$ is obtainable by a Hopf construction of type (β, γ) iff $i_{*}(\alpha)=\{\beta, \gamma\}$.

Proof. See § 4 and Theorem 2.17 in [4].
Definition 3.7. The James suspension sequence is

$$
\longrightarrow \pi_{p+q}(X) \xrightarrow{E} \pi_{p+q+1}(\Sigma X) \xrightarrow{i_{*}} \pi_{p+q+1}\left(\Sigma X ; C_{+} X, C_{-} X\right) \xrightarrow{\Delta} \pi_{p+q-1}(X)
$$

where E is the suspension homomorphism and Δ is the repeated boundary operator.

Theorem 3.8. The following exact ladder is commutative:

where H is as in Lemma 3.1, $\widetilde{P(\alpha)}=\{\alpha, \lambda\}$, and $\lambda=[\zeta]$ for any $[~ C] \in \pi_{q}(X)$.

Proof. The left square commutes by Lemma 3.1 since $i_{*}^{\prime}=i_{*}{ }^{\circ}$ $\hat{\iota}_{*^{\circ}} \theta$ by definition. If $\alpha \in \pi_{p}\left(L\left(S^{q}, X ; \iota\right)\right)$ then by definition of $H, H(\alpha)$ is obtainable by a Hopf construction of type $\left(\omega_{*}(\alpha), \lambda\right)$ and by Theorem 3.6, (ii), $i_{*} H(\alpha)=\left\{\omega_{*}(\alpha), \lambda\right\}=\widetilde{P} \circ \omega_{*}(\alpha)$. Thus the middle square commutes. The right square commutes by Theorem 3.6, (i).

Theorem 3.8 clearly indicates the extent to which the map $i_{*}^{\prime}=$ $i_{*^{\circ}} \hat{\iota}_{*} \circ \theta$ of the λ-component $E H P$ sequence approximates the suspension homomorphism. Indeed, $E=H \circ i_{*}^{\prime}$. While the James sequence contains the suspension homomorphism in a straight forward form, the λ-component $E H P$ sequence contains the generalized Whitehead product in a more direct form.

References

1. Martin Arkowitz, The generalized Whitehead product, Pacific J. Math., 12 (1962), 7-23.
2. K. A. Hardie, A generalization of the Hopf construction, Quart. J. Math. Oxford Ser., (2) 12 (1961), 196-204.
3. Peter Hilton and J. H. C. Whitehead, Note on the Whitehead product, Ann. of Math., (2) 58 (1953), 429-442.
4. I. M. James, On the suspension triad, Ann. of Math., (2) 63 (1956), 191-247.
5. Edwin H. Spanier, Algebraic Topology, McGraw-Hill Book Company, New York 1966.
6. G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math., (2) 51 (1950), 192-237.
7. On the Freudenthal theorems, Ann. of Math., (2) 57 (1953), 209-229.

Received June 7, 1971. This paper constituted part of the author's doctoral thesis written at Purdue University under Daniel H. Gottlieb.

Fairfield University

