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OPERATOR ALGEBRAS WITH REDUCING INVARIANT
SUBSPACES

T B. HOOVER

A weakly closed algebra of operators on a Hubert space
is reductive if every subspace which is invariant for the
algebra reduces. If Sf is a reductive algebra, let ̂  be the
von Neumann algebra genenerated by the projections which
commute with J ^ . If ^ is properly infinite, or it ^ has
a cyclic vector, then S*/ is self-ad joint. If ^ has no direct
summand which is abelian and of infinite uniform multiplicity,
then ^ is the commutant of

I* Introduction. In what follows, 3ίf denotes a Hubert space
(all our Hubert spaces are complex). The term operator is used to
refer to a bounded linear transformation, usually on Sίf, and operator
algebra or simply algebra means a weakly closed algebra of operators
which contains the identity operator. The algebra of all operators on
£έf is denoted by ^ ( ^ r ) , and if ^ is a subset of i f ( ^ ) , S?'
is the algebra of all operators which commute with S?. Finally, an
algebra s$? on 3$f is called reductive if every invariant subspace is
reducing. The study of reductive algebras was initiated by Radjavi
and Rosenthal in [10] where they extend to reductive algebras many
of the known theorems about transitive algebras (algebras with no
proper invariant subspaces). Certainly every self-adjoint algebra is
reductive, and, as Radjavi and Rosenthal point out, the major ques-
tion in the theory of reductive algebras is, are there any non-self-
adjoint reductive algebras? A negative to this question would solve
all the well known invariant subspace questions. In §2 of this paper
we study a reductive algebra s%f by borrowing conditions from the
theory of von Nemann algebras to impose on the lattice of projections
in J ^ \

Following Dyer, Pederson and Porcelli [7], we call an operator
reductive if the algebra it generates is reductive. In §3 we use the
results of §2 to show that every reductive operator is the direct
sum of a normal operator and a reductive operator of a special kind.

II* The invariant algebra* Let J ^ be a reductive algebra.

The invariant algebra for Szf, writted ^{jzf) or simply ^y', is

defined to be the algebra generated by the projections P^ where ^

ranges over all the invariant subspaces of j y , and P^ denotes the

orthogonal projection onto ^£'. Since the P^ are self-adjoint, *y is
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a von Neumann (self-adjoint) algebra. Further, each ^ reduces
so the P^ are in j / ' and thus ^ is a subalgebra of j ^ \ In fact,
^ is the largest self-ad joint sub-algebra of j ^ ' For any algebra
it is true that J ^ is in j&". But since our Szf is reductive, ^ is
in j ^ ' or %Jrf contains j#"r. Therefore j / g y , and J?' is the
smallest self-adjoint algebra with this property. Thus we must dis-
cover when Szf — ^'.

The following corollary to a theorem of Douglas, Pearcy, Herrero
and Salinas [5], [8] will be useful throughout this paper.

COROLLARY 1. If s%f is a reductive algebra and if P is a pro-
jection in the center of ^ , then P is in

Proof. If Q is the projection onto any invariant subspace of
then since P and Q commute, \\P — Q\\ = 1. It follows by [8, Corol-
lary 4.4] that the range of P is invariant for j&". But the same is
true of 1 — P, so P(3ίf) reduces j&" and P is in

If Stf is any algebra and if P is a projection in j / f , then
denotes the restriction of j ^ to the range of P. We call ,szfP a part
of szf. If Stf is reductive, then the weak closure of s^P is too, and
if P is central in ^ ( j ^ ) , then {J^{jzf))P = ^{j^fP). Our plan is
to break up the algebra ,J^ into parts of pure type and watch what
happens to the corrosponding parts of szf. Recall that if a is one of
the symbols II\, 11^, III or In with 1 <̂  n ^ dim {££?), then there is
a possibly zero central projection Pa in ^ such that ^Pa is of type
a. Further, these projections are pairwise orthogonal and sum to 1.
The pertinent definitions and theorems may be found in [9].

Before we can prove our first theorem we need some more nota-
tion. If n is a cardinal number, £ίfkn) denotes the orthogonal direct
sum of n copies of the Hubert space £ίf, and for A in £f(£ίf), A{n)

denotes the operator on ^f{n) which is a direct sum of n copies of
A. For an algebra j%? on ^f, J^{n) is the algebra on £tf{n) consist-
ing of all Ain) with A in j ^ . Finally, Mn{Ssf) is used to denote
the algebra of n x n matrices with entries in j y where the elements
of M%(s%?) act on <z%f{%) in the usual fashion. (If n is infinite, then
Mn{s%f) consists only of those matrices which represent bounded
operators.) Standard computations show that {j^f{n)y = Mn{jχff) and

THEOREM 2. If s^f is a reductive algebra and if its invariant
algebra ^ is properly infinite (Pa = 0 if a = II1 or In with n < oo)
then j^f is self-adjoint.
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Proof. By [10, Lemma 2], it suffices to show that J%f{n) is reduc-
tive every finite n. According to [4, p. 298, Corollary 2] there is a
sequence {PJ of pairwise orthogonal projections in ^ such that
ΣPi = I and P* is equivalent to / in the sense of von Neumann (P^ ~ /) .
A routine argument now shows that <sf, as a subalgebra of ^ ' , is
unitarily equivalent to j^**°. From this it follows that for every
finite n, S>f is unitarily equivalent to s$f{n). The property of being
reductive is preserved under unitary equivalence, so ,jy{n) is reductive
for every finite n and theorem is proved.

For our next theorem, we need more terminology. If & is a
maximal abelian self-adjoint algebra, then we say the algebra £${n)

has uniform multiplicity n. It is well known that any abelian von
Neumann algebra έ%? can be written as an orthogonal direct sum
& = Σ 0 &n where n ranges over a subset of the set of cardinal
numbers between 1 and the dimension of ^ , and &n is of uniform
multiplicity n.

Observe that if an algebra Szf is not only reductive but self-
adjoint, then ^

THEOREM 3. If s^ is a reductive algebra, and if its invariant
algebra ̂  contains no central projection P such that ^P is abelian
and of infinite uniform multiplicity, then Ssf' =

Proof. By Corollary 1, if P is a projection in the center of
then P is also in the center of jy". It follows that

' 0 (cl

where cl denotes the weak closure. Thus it suffices to consider the
special cases in which *J^ is of pure type. If *J^ is type III, 11^,
or In with n infinite, then by Theorem 2, Szf is self-adjoint and

If J? is of type II\, then by [9, Theorem 49], there are orthogonal
projections Pλ and P2 in <J^ such that Px ~ P2 and Pλ + P2 = 1. Thus
j ^ is unitarily equivalent to the algebra ^P*(2) where ^ = J ^ P l , and
j ^ " is Λf2(^') W e know that ^ " is the largest self-adjoint sub-
algebra of jy". Therefore to complete this case, it suffices to show
that s^r is self-adjoint but this will be true if and only if &' is
self-ad joint. Suppose T is an operator on Px{^f) = 3ίΓ which com-
mutes with έ%?. The subspace ^ defined by
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is invariant for ^ y ( 2 ) and, since ^ ( 2 ) is reductive ^ reduces
That is, for every B in & and x in J T , (5*)(2)(^, Γα) - (B*x, B*Tx) e
^y/t. This can happen if and only if TB*x — B*Tx. But x is arbitrary
in £έf, so for every B in &, T commutes with £*. Thus T* is in
^ ' and this case is complete.

If ^ is of type Iny 2 ^ n < <*>, we can use the same argument
given above, only we need n equivalent projections instead of just 2.

There remains the case in which ^ is type Il9 that is, ^ is
abelian. Here again it suffices to look at special cases separatly.
Therefore we assume ^ is of uniform multiplicity n with n finite;
say *J?~ = £${n) where £$ is a maximal abelian self-adjoint algebra
on a Hubert space J%~, and £ίf = 3%Γ{n). Suppose T is an operator
which commutes with jzf. By Corollary 1, and the fact that *J^ is
abelian, T commutes with the projections in ^ and so T is in ^ \
If n = 1, so that J 2 ' is maximal abelian, then ^ — ̂ ' and we are
done. If n > 1, then J?' = MJt&) and in particular T = (Tid)lj=ί

with each TiS in &. By [3, Theorem 2], there is a unitary operator
U in %Jrt such that UTU* is in upper triangular form; that is,
UTU* - (Sy)?,i=i with ^ in ^ and S^ = 0 for i > j . The algebra

= {UAU*, Ae Jϊf} is also reductive with invariant algebra
=^. Therefore, by replacing j y by UjzfU*, we may

assume that T itself is upper triangular.
Let T' = Γ - l y . Γ' is in j ^ ' since both Γ and T^] are. It

follows that *>*f, the kernel of Γ' is invariant for j ^ . But Tf has
all zeros in the first column, so ^/έ contains all vectors of the form
(x, 0, •••, 0), x in 3^. The only projection in ^ which leaves such
vectors fixed is 1. Therefore ^ = £έf', T = 0 and Γ = T7^ which
is in

A set S in £ίf is cyclic for ^ " if the set {Bx: B e J^, xeS} is
dense in J%*, and a vector x is cyclic if {α;} is a cyclic set. The
following theorem and its proof are closely related to a theorem of
Sarason [12].

THEOREM 4. // Jzf is a reductive algebra whose invariant algebra
^ has a cyclic vector, then Szf is self-adjoint.

Proof. Let A be any operator in s*f and let

U = { T : \ \ ( T - AηxtW < ε ΐ = 1 . . . w }

be any basic strong neighborhood of A*. The function φ which maps
T to Σ?= 1 (Txi9 Xi) is a positive, normal linear functional on uf'. But
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<J^ has a cyclic vector, so ^' has a separating vector, and by [4,
p. 222, Theorem 4] there is a vector x0 in ̂ f such that φ{T) — (TxQ, xQ)
for each T in ^f'. Let ̂ /ί be the smallest subspace of ^f which
is invariant for j ^ and which contains x0. The subspace ^€ reduces
j ^ , so that A*(^/f)tz^£ and in particular, A*x0 is in ^C . Thus
there is a S in j ^ such that \\Bx0 — A*#o|| < ε. On the other hand

ε2 > | | J5a?o ~ A*^ o | | - ((B - A*)*(B - A*)xQ, x0)

= £((B-A*)*(B-A)xi,xi)
i = l

— V II R 4 * ^ I I 2

Therefore ||(J5 — A*)^| | < ε for each i, B is in U, and the theorem
is proved.

COROLLARY 5, // the invariant algebra ̂  of a reductive algebra
has a cyclic set S of cardinality n < °o, and if s/{n) is also re-

ductive, then S^f is self-adjoint.

Proof. j$?{n) has invariant algebra Mn(^), and if S = {xu , xn}f

then the vector (xl9 " ,xn) is easily seen to be cyclic for Mn(
By Theorem 4, s$f{n) is self-adjoint and so is

It should be noted that Corollary 5 is still true if n is infinite
and the existance of the cyclic set S is not necessary. In this situa-
tion, ^(j^f{n)) is properly infinite so by Theorem 2 j ^ { % ) is self-adjoint
and so is

ΠL Reductive operators* In this section we are interested in
reductive operators—operators which generate reductive algebras. If
A is a reductive operator and jzf is the algebra generated by A, then
we write ^(A) for ^{Ssf). Porcelli, Pederson and Dyer [7] have
shown that every reductive operator on a separable Hubert space is
normal if and only if every operator has a proper invariant subspace.
Ando [1] has proved that compact reductive operators are normal,
and Rosenthal [11] has proved the same result for polynomially compact
operators.

THEOREM 6. If A is a reductive operator on a Hilbert space
then A can be written as a direct sum A1 0 A2 where Aι is normal
A2 is reductive and *J^(A2) is abelian and of uniform multiplicity
y$0. Furthermore, {A}' — {AλY φ {A2}' and all the invariant subspaces
of A2 are hypervariant (invariant for {A2}').
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Proof. Let P{ i = 1, 2, 3 be the projections in the center of
such that <JgjPl has no central projection Q for which

) is abelian and of infinite uniform multiplicity, %^r

P% is
abelian and of uniform multiplicity V$o, and ̂ 3 is abelian and has
no direct summand of countable uniform multiplicity. We let Ai

be restriction of A to the range of Pi9 Clearly A ^ Λ φ Λ © A3,
each At is reductive, and the invariant algebra ^(A*) is ^Jp..
All the projections in ^ 3 have nonseparable ranges, so A3 has no
nonzero separable invariant subspaces. On the other hand if # is a
nonzero vector in the range P3, then the smallest subspace which
contains x and which is invariant for Az is separable. This is a con-
tradiction unless the direct summand A3 is missing. Certainly Aι is
in {AJ', but by Theorem 3, {AJ' is the self-adjoint algebra ^(Ai) ,
so that Af is in {AJr and Aι is normal. Corollary 1 tells us that the
projections in ^ 3 are also in {A2}", so that all the invariant subspaces
of A2 are invariant for {A2}\ Finally, Pt is in the center of {A}', so

The following corollary is a consequence of the first few lines of
the proof of Theorem 6.

COROLLARY 7. If j y is a reductive algebra whose invariant al-
gebra has no abelian part of infinite multiplicity, then every operator
in the center of S^/ is normal.

COROLLARY 8. Let A = At φ A2 be a reductive operator written
according to its decomposition given in Theorem 6. A subspace ^/f
is hyperinvariant for A if and only if Λ? = ̂ C φ ^ ^ where ̂ /^ is
the range of a spectral projection for Ax and ̂ £1 is invariant for A2.

Proof. Since {A}' = {AJ φ {A2}, a subspace Λ? will be hyper-
invariant for A just in case it is the form ^ J 0 ^ C where ^gj is
hyperinvariant for A<. We know that all the invariant subspaces of
A2 are hyperinvariant, while the normal operator Aγ has the ranges of
its spectral projections for its hyperinvariant subspaces [5].

COROLLARY 9. A nonscalar reductive operator A which has an
invariant subspace, has a hyperinvariant subspace.

Proof. Write A as AiφA 2 according to Theorem 6. The oper-
ators Ai and A2 satisfy the conclusion of this corollary so A must
also.

IV* Remarks* A special kind of reductive algebra which is of
particular interest in the transitive algebra—an algebra with no proper
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invariant subspaces [2].
If Ssf is a transitive algebra on an infinite dimensional Hubert

space, then the invariant algebra ^{szf) is the algebra of all multiples
of the identity, which is an abelian algebra of uniform multiplicity
equal to the dimension of Sίf\ Even to show that the commutant
of a transitive algebra is the invariant algebra would solve the hyper-
invariant subspace question [6] Therefore it is not surprising that
we have learned nothing about reductive algebras with abelian invar-
iant algebras of infinite multiplicity.

There are, however, other special reductive algebras which offer
hope. Must a reductive algebra with an abelian invariant algebra of
finite uniform multiplicity be self-adjoint? What if the invariant
algebra is type IIJ The case in which the invariant algebra is type
In, n finite, is very close to the abelian case, and one would expect
the difficulties from the latter to carry over to the former.
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