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FIVE THEOREMS ON MACAULAY RINGS

M. HOCHSTER AND L. J RATLIFF, JR.

The first three theorems concern localizations of a Noe-
therian ring such that the localization is a Macaulay ring,
and the other two theorems give some necessary and sufficient
conditions for certain Rees rings and form rings of a Noe-
therian ring to be locally Macaulay. Numerous consequences
of the theorems are proved.

1* Introduction* Macaulay rings have been extensively studied,
and numerous properties of such rings are known. It is the purpose
of this paper to add to the knowledge of such rings (and Noetherian
ring theory in general) by proving five theorems in this area, and to
derive some consequences of these theorems.

Most of the results in §2 follow quite readily from the first
theorem, Theorem 2.2. Among the corollaries of this theorem, are
the following, where E is a finite module over a Noetherian ring R
such that EQΦ (0), for some Qe Spec it?. The Macaulay locus of E
(that is, the Q e Spec R such that EQ is Macaulay) is open in the VS
topology (Definition 2.3) on Spec R (2.4.1). If P e Spec 22 and height
P/(Ann E) > 1, then there exist infinitely many p e Spec R such that
Ann EapaP, height P/p = 1, and Ep is Macaulay (2.5.2). Rad(AnnE) =
fl{pe Spec R; Ep is Macaulay and p is a G-ideal} (that is, the G-ideals
of the Macaulay locus are Zariski dense in the set of prime ideals
containing Ann E) (2.12). (An important special case is when E — R
is a Hubert ring (2.17).) If EQ is Macaulay and P G Spec jβ is such
that Q c P and height P/Q = d, then, for i = 0,1, , d - 1, Q = Π
{p e Spec R; Q £ p c P, Ep is Macaulay, height p = height Q + i9 height
p/p = d — if and i — height p/Q} (2.19). Also these last intersectors
can be adjusted to not being contained in a finite set of prime ideals
which don't contain P (2.21), and to not containing a given element
not in Q (2.23). Then this section is closed by proving a result,
Proposition 2.26, which implies that, in a local ring (R, M), there
exists a system of parameters bl9 , ba such that, if P Φ M is a
prime ideal in R such that blf , bj e P, for some j < a, then the
images in RP of bu , b5 are an iϋP-sequence and, if P is a minimal
prime divisor of (bu •••, bά)R, then, for i — 0,1, , i, (6lf •••, bi)RP

is a primary ideal (by (2.26.3) and (2.27.1)).
In §3, two theorems concerning a finitely generated ring A over

a Noetherian ring R are proved. The first, Theorem 3.9, shows in
particular that, if A is an integral domain and R satisfies the condition:
(0) — n {M; M is a maximal ideal in R and RM is Macaulay}: then A
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does. The second, Theorem 3.12, gives a necessary and sufficient con-
dition for A to satisfy this condition, when R is semilocal and altitude
R > 1. The theorem implies that most non-integral extensions of R
do satisfy the condition and, if R is integrally closed, then every
proper extension domain of R satisfies the condition (Corollary 3.13).

The last two theorems are proved in §4. The first of these and
all its corollaries are closely related to (and/or are generalizations of)
the results in [11]. Specifically, it is proved in [11] that the Rees
ring &{A, Y) of a locally Macaulay ring A with respect to an ideal
Y generated by an A-sequence is locally Macaulay, and some related
results are obtained. In §4, a number of necessary and sufficient
conditions are given for the Rees ring & — &{R, B) to be locally
Macaulay, where (R; Mu , Me) is a semi-local ring such that height
Mi — altitude R = a(ί = 1, , e) and B is an ideal in R such that
Rad B = (Ί Mi. Namely, the following conditions are equivalent: (1)
& is locally Macaulay; (2) The form ring ^ of R with respect to
B is locally Macaulay; (3) ^{^^^{) (resp., 7̂.»-~û <>) is a Macaulay
ring, where the ^fίh (resp., ^Vl)(i = 1, , e) are the maximal homo-
geneous ideals in & (resp., ^ " ) ; (4) R is Macaulay and there exists
a system of parameters yu , ya in R such that, for each j = 1, ,
a and for all n, (yl9 , ys)R Π Bn = ΣilViB*"*** where yi e Bd% $ Bd^+1;
(5) R is Macaulay and there exists a positive integer g and a system
of parameters zu , za contained in B9 such that, for each j — 1, ,
a and for all n ^ g, ((zl9 , zό)R) n Bn - (zl9 , z^B^9 (by (4.4), (4.6),
and (4.11)). Further, if & is locally Macaulay, then following hold:
(a) Given any finite number (say, s) of prime ideals Pi in R which
have the same height (say, k), there exists an 22-sequence yu * ,yk

contained in Π Pi such that, for each j = 1, , k and for all n, (yί9

• •., yj)RΓ)Bn = ΣίViBn-di with d4 as in (4) (Corollary 4.5); (b) &e(R,
Bm) is locally Macaulay, for all m > 0 (Corollary 4.8.1); and, (c) For
all m > 0, R and R[Bm/b] are locally Macaulay for each nonzero-divisor
b e Bm (by 4.8.2) and [11, Theorem 3.8]). Also, (a) - (c) hold when B is
a power of an ideal generated by an j?-sequence (Corollary 4.9). The last
theorem (4.11) shows that (1) — (3) above are equivalent for an arbitrary
ideal B in a Noetherian ring such that B is contained in the Jacobson
radical of R, and each of (1) — (3) implies (c) for m = l Some related
information is given in Propositions 4.10 and 4.12.

2* Macaulay localizations* The terminology in this article is,
in general, the same as that in [8]. However, to keep the article
reasonably self-contained, a number of definitions will be given. In
particular, if R is a ring and E is an R module, then the (ordered
sequence of) elements bl9 , bn in R is an E-sequence in case: (bl9 ,

E; and, for i = 1, n, h isn't a zero-divisor on E/(bl9 , b^E.
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(As usual, the ideal generated by the empty set is defined to be the
zero ideal, and beR is a, zerodivisor on an iϋ-module E* in case bx =
0, for some nonzero xeE*.) Ass E = {p 6 Spec R; (0): (x) — p, for
some nonzero x e E], Ann E = (0): E = {reR rE = (0)}, Dim E =
altitude R/(Ann E), and Prof E is the length of a maximal ^/-sequence.
If R is a local (Noetherian) ring and E is a finite jβ~module, then E
is a Mαcαulαy ϋJ-module in case either E — (ϋ) oτ E Φ (0) and Dim E =
Prof i7. (However, m ίJWs paper, the statement that E is Macaulay
will always mean E Φ (0) and E is Macaulay ) A local ring R is a
Macaulay local ring in case R is a Macaulay jβ-module (that is, there
exists a system of parameters in R which is an JS-sequence). A
Noetherian ring R is said to be a locally Macaulay ring in case RP

is a Macaulay local ring, for all prime ideals P in R; and R is said
to be a Macaulay ring in case JK is a locally Macaulay ring and height
M — altitude R, for all maximal M in R.

Many basic properties of Macaulay rings and Macaulay modules
will be used implicitly throughout this paper. These properties can
be found in [2, Chapter 0, §16.5], [5, Chapter 3], and [8, §25].

The following lemma is of basic importance in this section. (It
should be noted that, in the lemma, & may be a finite set.)

LEMMA 2.1. Let Q be a prime ideal in a Noetherian ring R, let
Bl9 , Bh be ideals in R which are contained in Q, let ϊβ3- be the set
of prime divisors of Bj9 and let &> be the set of prime ideals p in
R such that Qap and height p/Q — 1. Then there are at most a
finite number of pe 3^ such that either p contains an ideal P e Uî βj
such that P&Q or height p > height Q + 1.

Proof. It is known [6] that there are only finitely many p e ^
such that height p > height Q + 1. Also, at most a finite number
of p e & can contain a fixed ideal which isn't contained in Q (since
R/Q is Noetherian). Hence, since Uô βj is a finite set, the lemma
follows.

Most of the results in this section follow quite readily from the
following theorem.

THEOREM 2.2. Let R, Q, and & be as in (2.1), and let E be a
finite R-module. If Eq is Macaulay9 then there are at most a finite
number of p e , ^ such that Ev is not Macaulay.

Proof. Let Dim EQ = h, and let bu , bh be elements in Q such
that their images in RQ are an ^-sequence and such that height
Bj = j(j = 0,1, , h), where B3 = (blf , b,)R. Then (Jί Ass (E/BjE)
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is a finite set of prime ideals in R, so, by (2.1) only finitely many
ideals in & can contain an element in this set which isn't contained
in Q or can have height greater than height Q + 1. Omitting these,
it is readily checked that, for all other p e ^ , Ep is Macaulay.

DEFINITION 2.3. Let R be a Noetherian ring, and let ί/g Speci?.
Then U is said to be VS-open in case the following condition holds:
If Q e U, then U contains all but finitely many prime ideals p in R
such that Q dp and height p/Q = 1. It is clear that the FS-open
sets are the open sets of a topology on Spec R called the very strong
topology (VS topology) on Specif.

A subset of Spec R which is either open or closed in the Zariski
topology on Spec R is FS~open (for Zariski open, see (2.1)). Also,
using (2.1) it is readily seen that the VS topology is Hausdorff and
totally disconnected.

REMARK 2.4. 2.4.1. It follows from (2.2) that if Q e Spec R is
such that EQ is Macaulay, then {p e Spec R; Q g p and Ep is Macaulay}
is FS-open. Thus, since, for each minimal prime ideal QeAssE, EQ

is Macaulay (since Dim EQ — 0), (2.2) asserts that the Macaulay locus
of E (that is, the set of Q in Spec R such that EQ is Macaulay) is
VS-open.

2.4.2. In [3, pp. 162-163], the question of whether the Macaulay
locus of R is always open in the Zariski topology was raised. An
affirmative answer is given there for homomorphic images of locally
Macaulay rings [3, (6.11,8)]. However, in [1, Proposition 3.5], an
example is given to show that, in general, the answer is "no".

COROLLARY 2.5. Let E be a finite module over a Noetherian ring
R, let P be a prime ideal in R such that Ann E £ P, and let height
P/(Ann E)=h>l.

2.5.1. If Q is a prime ideal in R such that Q czP, height P/Q > 1,
and EQ is Macaulay, then, for all but a finite number of prime ideals
p in R such that QapaP and height p/Q = 1, Ep is Macaulay.

2.5.2. There exist infinitely many prime ideals p in R such that
AnnEcpcP, height P/p = 1, and Ep is Macaulay.

Proof. On localizing at P, (2.5.1) follows immediately from (2.2),
and (2.5.2) follows from successive applications of (2.5.1) with Q a
minimal prime ideal in Ass E.
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It follows from (2 19) below that in (2.5.2) infinitely many of the
ideals p satisfy height p/(Arm E) — h — 1.

Some further corollaries to (2.2) will be given below. However,
before this, some topological remarks will be given The following
lemma sets the stage for these remarks. (In the lemma, Rc is the ring
Rs, where S = {c{; i ^ 0}.)

LEMMA 2.6. The following statements are equivalent for a prime
ideal Q in a Noetherian ring R:

2.6.1. The set of P in Spec R containing Q is finite,
2.6.2. Depth Q ̂  1 and R/Q is a semi-local ring.
2.6.3. There exists an element ceR, &Q, such that QRC is a

maximal ideal in Rc.
2.6.4. There exists a finitely generated extension ring R' of R

which contains a maximal ideal M such that M Π R = Q
2.6.5. Q is isolated in the VS topology on Spec R.

Proof. (2.6.2) <=> (2.6.4) follows from [8, (14.10)], and the rest of
the proof is straightforward.

DEFINITION 2.7. A prime ideal in a Noetherian ring R which
satisfies the equivalent conditions of (2.6) is a G-ideal.

It is easy to see that every prime ideal in R is an intersec-
tion of G-ideals. Also, the set of G-ideals is the least class of prime
ideals in R which has this property. Concerning G-ideals in an
arbitrary commutative ring with unit element, see [5, pp. 12-21].

DEFINITION 2.8. Let R be a Noetherian ring, and let B £ Spec R.
B is said to be big in case the following condition holds: If QeB
and Q isn't a G-ideal, then the set of p e B such that Q c p and
height pIQ — 1 is an infinite set.

REMARK 2.9. It is readily seen that FS-open sets are big. Also,
if U is FS-open and B is big, then U Π B is big.

For an example of a big set which may not be FS-open, see (2.18)
and the comment which follows it.

The notion of bigness is worth isolating because of the following
lemma and corollaries.

LEMMA 2.10. If R is Noetherian and B ϋ Spec R is big, then,
for each QeB,Q = Π{PeB;Q^P and P is a G-ideal}.

Proof. Suppose not, and let QeB be maximal for which the
lemma doesn't hold. Then Q isn't a G-ideal, so, since B is big, & =
{PeB QaP and height P/Q = 1} is an infinite set, hence Q = Π {P;
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Pe 0>}. By maximality of Q, a contradiction obtains, since each
is the intersection of the G-ideals in B which contain it.

COROLLARY 2.11 Let R be a Noetherian ring, Q a prime ideal
in R, and E a finite R-module. If EQ is Macaulay, then Q — Π {p e
Spec R; Q £ p, Ep is Macaulay, and p is a G-ideal}.

Proof. Let ̂  = {peSpec R; Q £ p and Rp is Macaulay}. Then
& is F£-open (2.4.1), hence big (2.9), and so the corollary follows
from (2.10).

The assertion in (2.11) that Q = Π Px says, geometrically, that
the pλ are Zariski dense in the locus of (set of prime ideals containing)
Q. Thus, this section of the paper is, in two related senses, concerned
with the fact that prime ideals Q such that EQ is Macaulay are
plentiful: openness in the VS topology, and density in various closed
sets in the Zariski topology.

If iϋ is a Noetherian ring of altitude one or a Noetherian domain
of altitude two, then RP is Macaulay, for all non-maximal prime ideals
P in R—even if R isn't Macaulay. On the other hand, if R is a local
ring with a prime ideal Q such that depth Q ̂  2 and RQ isn't Macaulay,
then there are infinitely many prime ideals p in R such that Qap
and, for each such p, Rp isn't Macaulay. Even so, the following
corollary shows, with R = E9 that, for an arbitrary Noetherian ring
R of altitude greater than one, there are infinitely many prime ideals
P in R such that depth P ^ 1 and RP is Macaulay. (However, as
already noted, the Macaulay locus of R need not be Zariski-open [1,
Proposition 3.5].)

COROLLARY 2.12. If R is a Noetherian ring, and E Φ (0) is a
finite R-module, then Rad (Ann E) — Π {p e Spec R; Ep is Macaulay
and p is a G-ideal). Hence, {peSpecR;Rp is Macaulay and p is a
G-ideal} is Zariski dense in Spec R.

Proof. For each minimal prime ideal q in Ass E, Eq is Macaulay.
Hence the corollary follows from (2.11), since Rad (Ann E) = Π [q] Q e

Two special cases of the following corollary will be given in (2.14)
and (2.20).

COROLLARY 2.13. Let I and J be ideals in a Noetherian ring R
such that IS Rad J, and let E be a finite R-module. If EQ/IEQ is
Macaulay, for each minimal prime divisor Q of J, then Rad J — Π
{p; p is a G-ideal in R, J £ p, and EP/IEP is Macaulay}.
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Proof. Reducing to the case / — (0), the result follows from (2.11).

COROLLARY 2,14. For eaeh ideal J in a Noetherian ring R,
Rad J = Γ\ {p; V ^ a G-ideal in R, J ϋ p, and RP/JRP is Maeaulay}.

Proof. This follows from (2.13) with I = J and E = R.

REMARK 2.15. 2.15.1. It follows from (2.14) and [5, Theorem
156] that, if c is a nonunit regular element in R, then Rad cR = Π
{p; p is a G-ideal in R,cep, and Rp is Maeaulay}. A similar state-
ments holds for i?-sequences of length greater than 1.

2.15o2. In the case J = Q is prime and RQ is Maeaulay, (2.11)
and (2.14) give an interesting comparison of Q expressed as an inter-
section of G-ideals in R. In particular, such a comparison holds for
each minimal prime ideal in R) and also for each height one prime
ideal in R, if R is an integral domain. Also, such a comparison holds
for a radical ideal I in R such that Rp is Maeaulay, for each prime
divisor p of /.

DEFINITION 2.16. A Hubert ring is a ring R such that each prime
ideal in R is the intersection of the maximal ideals in R which contain it.

It is clear by the definition that a factor ring of a Hubert ring
is a Hubert ring, and it is known [5, Theorem 31] that a finite
extension ring of a Hubert ring is a Hubert ring.

COROLLARY 2.17. If R is a Noetherian Hubert ring and (0) Φ E
is a finite R-module, then Rad (Ann E) = C\{Me Spec R; M is a maximal
ideal and EM is Maeaulay}.

Proof. The only G-ideals in R are the maximal ideals in R, hence
the corollary follows from (2.12).

If P is a prime ideal in R and c is a non-nilpotent element in
PRP, then (RP)ΰ is a Hubert ring [4, (10.5.8)]. Using this and (2.17),
an alternate proof of (2.5.2) is readily obtained.

It will be seen in (3.3) that in some rings which are neither
Hubert, nor Maeaulay, Rad R is the intersection of the maximal ideals
M in R such that RM is Maeaulay.

To generalize (2.5.1) and to derive some further corollaries to
(2.2), the following lemma is needed.

LEMMA 2.18. Let Q aP be prime ideals in a Noetherian ring R
such that height PjQ > 1, and let ^ = {pe Spec R; QczpczP}. Then
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there are infinitely many pe&> such that height p = height Q + 1
and height P/p = height P/Q — 1.

Proof. In RP/QP each nonzero non-unit has depth equal to height
P/Q — 1 and has only a finite number of minimal prime divisors, at
least one of which must have depth equal to height P/Q — 1. Hence,
since at most a finite number of p e 0> have height greater than
height Q + 1 [6], the conclusion follows.

It follows from (2.18) that the set of prime ideals p between two
prime ideals Q c P in a Noetherian ring R such that height p = height
Q + height p/Q and height P/p = height P/Q-height p/Q is big in
Spec RP (where Spec RP £ Spec R in a natural way). Using [8, Example
2, pp. 203-205] an example can be given in which the set isn't FS-open.

Up to now we've seen that if EQ is Macaulay and Q isn't a G-
ideal, then Q = Γi pλ, where EPλ is Macaulay and either height pλ =
height Q + 1 or where the pλ are (?-ideals. The intermediate cases
are given in the following corollary.

COROLLARY 2.19. Let R he a Noetherian ring, let QczP be prime
ideals in R such that height P/Q — d, and let E be a finite R-module.
If EQ is Macaulay, then, for each i = 0, 1, , d — 1, Q — f] {p; pe
&*i}, where ^ — {peSpecR; Q^pcz P, Ep is Macaulay, height p =
height Q + i, height P/p — d —• i, and i — height p/Q}.

Proof. This follows from successive applications of (2.5.1) and
(2.18).

(2.19) Holds, with E — R, for each minimal prime ideal Q in R
(and for all but a finite number of height one prime ideals Q in R)
with P a maximal ideal in R such that QczP. If, moreover, depth
Q = d < oo, then P may be chosen such that height P/Q = d.

(2.20) shows that in (2.19) the case i = d can be included when
R is a Hubert ring.

COROLLARY 2.20. Let E be a finite R-module and let Q be a prime
ideal in a Noetherian Hilbert ring R such that EQ is Macaulay. Then
Q =z π {M; Me &*}, where S? — {M; M is a maximal ideal in R, Q £
My and EM is Macaulay}. Moreover, if depth Q — d < oo, then Q —
Π {M; Me 6^ and height M = height Q + d).

Proof. The first statement follows from (2.13) with I = (0) and
J=Q. For the second statement, if d = 0, then the conclusion is obvious.
If d > 0, then let & = {p e Spec R; Qap, height p = height Q + 1,
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and depth p = d - 1}. Then & is an infinite set (if d > 1, by (2.18);
if d = 1, by [6], since i2 is Hubert), hence &*' = {p e &\ Ep is Macaulay}
is an infinite set, by (2.2). Therefore, Q — Π {pi pe ,0*'}. Since each
pe^r satisfies depth p = d — 1, the corollary follows by induction
on d.

COROLLARY 2.21. Let R and E be as in (2.20), let Q c P be prime
ideals in R such that height P/Q > 1 and EQ is Macaulay, and let
Nu , Ng be prime ideals in R such that P §£ U N,. Then, for i —
1, , d - 1, Q = f]{p;pe ^ } , where ^ = {p6 SpecR QapaP,
height p — height Q + i, height Pip = height P/Q — i, i = height
pIQ, P §B Ό NJ, and Ev is Macaulay}.

Proof. If it can be proved that Q = Π {p; £> e ^ } , then the result
for i > 1 readily follows from (2.19), so only the case i = 1 will be
considered. Let &9 be the finite set of prime ideals p in R such
that QapaP and height p/Q = 1 < height p — height Q [6]. Let
δi, , bheQ such that their images in RQ are a maximal i^-sequence
and such that height {bu , δy)i? = j(j — 0, 1, , h). Let £% be the
set of prime ideals in Ass E/(bu •••, bά)E which don't contain P, and
let ^ * = (Uo^S ) U ̂ ' U {iVi, •••, iVJ. Then ^ * is a finite set of
prime ideals in R and P §£ U { # ; # £ ^ * } . Therefore, for each positive
integer n, there exist c1? •••, cn in P and not in any prime ideal in
^ * such that no height one prime ideal in R/Q contains more than
one ck (k — 1, , n), since each (Q, ck)R has only a finite number of
minimal prime divisors. Hence, if pk is a minimal prime divisor of
(Q, ck)R which is contained in P and is such that height P/pk — height
P/Q — 1, then EPjc is Macaulay and pk£ U Ni. It follows that Q =
n {p p }

To obtain another corollary to (2.2), the following lemma is needed.

LEMMA 2.22. Let S^ be a set of prime ideals in a Noetherian
ring R, let I — Π {p] pe S^}, let P be a minimal prime divisor of I,
and let ce R, g P. Then the following statements hold for £^f —
feey; eg p}:

2.22.1. P= f){p;pe ^~), and PRC = n {pRc; p e ^~), where ^ =

{pe^ P^p}.
2.22.2. If £S is big, then £f' is big.
2.22.3. // Sf is VS-open, then S?' is VS-open.

Proof. For (2.22.1) let K = n f c e y c e p and P g p } . Then
K n (Π J Π = P, hence P = Π J^7 and (2.22.1) follows from this. The
last two stements follow from the definitions and the fact that R/p



156 M. HOCHSTER AND L. J. RATLIFF, JR.

is Noetherian, for each pe£f.

COROLLARY 2.23 Let R, E, and Q be as in (2.20), so EQ is
Macaulay, and let be R, &Q. Then for each maximal ideal M in R
such that QaM, Q = f] {pe S?\ height M/p = 1 and height p = height
Q + height M/Q — 1}, where Sf — {p e Spec R; Q <Ξ pcM, δ £ p, and
Ep is Macaulay}. Moreover, if R is local, then 6^ is VS-open.

Proof. This is clear if height M/Q = 1, and, if height M/Q > 1,
then the first statement follows from (2.19) and (2.22.1), and the last
statement follows from (2.4.1) and (2.22.3).

REMARK 2.24. 2.24.1. In (2.23), if, moreover, R is a Hubert
ring, then Q = Π {M; M is a maximal ideal in R, QaM, b$M, and
RM is Macaulay} by (2.20) and (2.22.1).

2.24.2. If R satisfies the first chain condition for prime ideals [8,
p. 123], then it follows from (2.23) that Q = Π{pe Spec R QQ p,b<£p,
depth p = 1, and Rp is Macaulay}. Also, depth p = 1 if and only if
height p = altitude R — 1.

2.24.3. It follows immediately from (2.23) that, if P is a prime
ideal in a Noetherian ring R and be P is such that b is not in some
minimal prime ideal qaP, then q = Γ) {pe Spec R; q Q paP, b$p,
height P/p = 1, height p = height P/q — 1, and Rp is Macaulay}.

One final corollary, (2.25) below, which pertains to rather recent
research in local ring theory will be given. The following background
information on the corollary should be noted: It is known that, if P
is a prime ideal in an unmixed (resp., quasi-unmixed) local ring R9

then RP is unmixed (resp., quasi-unmixed) [7, Proposition 6] (resp.,
[10, Lemma 2.5]). It was recently shown that there exist quasiunmixed
local rings which are not unmixed (by [1, Proposition 3.3] together
with [12, Proposition 3.5]). Thus it seems natural to inquire if there
exist prime ideals P of depth one in a quasi-unmixed local ring R
such that RP is unmixed. It follows from (2.25) below that the
answer is yes.

COROLLARY 2.25. Let R be a local ring such that altitude R =
a > 1. Then S^ — {pe Spec R; Rp is unmixed} is VS-open in Spec R
and {p e S?\ height p — a — 1} is an infinite set and is Zariski dense
in Spec R.

Proof. Tne first statement follows from (2.4.1) with E — R,
since a Macaulay local ring is unmixed [8, (34.9)]. The second statement
follows from [8, (34.9)] and (2.19) with Q a minimal prime ideal and
P the maximal ideal in R.
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This section will be closed with the following proposition and
remarks. The proposition is closely related to a number of the results
in this section, and it gives, in particular, some interesting supple-
mentary information to (2.5.2) in the case E = R.

PROPOSITION 2.26. Let Pu , Pe be prime ideals in a Noetherian
ring R which have the same height say height Pi = a > 0. Then there
exist blf , 6α_i in Π P* such that, with B3 = (bly , b3)R:

2.26.1. Height B3 = j(j = 0, 1, , α - 1).
2.26.2. If Q ^ Pi(i — 1, , e) is a prime ideal in R such that

Bj £ Q, for some j ;> 1, then the images of bu , δ̂  m i2ρ are an
Resequence.

2.26.3. If P is a minimal prime divisor of Bk, for some k (0 g
& ίj a — 1), then RP is Macaulay and B3RP is a primary ideal (j =
0,1, •-.,&).

2.26.4. If a > 1 and ^ is the infinite set of height a — 1 prime
ideals pa Pi such that Ba_2 c: 2? cmd J?p is Macaulay, then, for each
i = 1, ••, e, at most a finite number of pe^i donyt satisfy: B3RP

is primary, for j = 0, 1, , a — 2.

Proof. The proposition is trivial for a = 1, so it may be assumed
that α > 1. Let Ŝo be the set of prime divisors q of zero in R such
that q =S Pί(i = 1, , e), let Gc0 be the set of minimal prime divisors
of zero in R, and let % be the set of height one prime ideals in R
which contain more than one element in ^30. Then, 2ί0 U ̂ β0 is a finite
set of prime ideals, by (2.1). Thus, since a > 1, there exists bλe Π Pi
such that bx isn't in any ideal in %0 U ̂ βo Then, wτith Bx = bxR, it
is readily checked that, if a = 2, then (2.26.1)-—(2.26.3) hold; and
(2.26.4) holds by (2.1).

Assume a > 2 and φA__!, G?Λ_i, S t^ , and 6X, , bk have been defined
(1 <; k < α — 1), and let ^3/c be the set of prime divisors q of Bk such
that q =g Pi(i = 1, -, e). Assume (2.26.1) holds for i = 0, l , k,
let @fc be the set of minimal prime divisors of Bk, and let SIΛ be
the set of height k + 1 prime ideals in R which contain an element
in Grfc and also contain more than k + 1 prime ideals in Uo^Pi Assume
further that bu •••, bk have been chosen such that (2.26.2) holds for
j <; A: and, for 0 ^ h ^ k and each p e @Λ, 5yi2p is a primary ideal
0" = 0, 1, , h). Then U - (Uo^βy) U 2tfc is a finite set of prime ideals,
by (2.1). Therefore, there exists bk+1 in ΓΊ P* which is not in any
prime ideal in U. Then it is easily checked that, if P is a minimal
prime divisor of Bk+1 = (Bk9 bk+1)R, then RP is Macaulay and B3RP is
a primary ideal (j = 0, 1, , fc + 1), and (2.26.1) and (2.26.2) hold
for j <^ k + 1. Therefore, it follows that the desired elements bu ,
δα_! exist such that (2.26.1)—(2.26.3) hold.
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To show that (2.26.4) holds, note that, if p e . ^ , then there exists
a minimal prime divisor q of Ba_2 contained in p, and then BjRq is
primary (j = 0, 1, , a — 2), by (2.26.3). Hence, since J3α_2 has only
a finite number of minimal prime divisors contained in Piy (2.26.4)
holds by (2.1).

REMARK 2.27. Let the notation be as in (2.26).
2.27.1. If the P* are maximal, then (2.26.2) shows that there

exist bu •••, 6α_! in Π P< such that, for all prime ideals P&{PX, •••,
Pe) such that B3 g P, for some j , the images in RP of bu ••-, b5 is
an i?p-sequence.

2.27.2. It follows from (2.1) and (2.26.3) that, if R is Hubert
and altitude R — a, then there are infinitely many maximal ideals M
in R such that RM is Macaulay and B3RM is primary (j = 0, 1, •••,
a- 1).

2.27.3. If P is a prime ideal in R such that a = height P ^ 2,
then (2.26.4) shows that there exist an infinite subset &' of the set
of prime ideals Q a P such that height Q = height P — 1 and RQ is
Macaulay such that Qe<0*' if and only if there exists a system of
parameters cl9 , cα_x in i?ρ such that (cl9 , ĉ JKρ is a primary ideal
( i - 0 , 1 , . . . , α - l ) .

2.27.4. Let Qx, , Qz be prime ideals in R such that no P4(i = 1,
•••, e) is contained in IJQi Then the proof of (2.26) can be readily
adapted to show that the elements bu , ba^ can be chosen to satisfy
the further condition that no bh is contained in U Qj

REMARK 2.28. It is natural to inquire if (2.5.2) holds on replacing
Macaulay by Gorenstein (or, regular). The answer is no. For, let
R = A[XU •••, Xn], where (A, q) is a primary ring whose zero ideal
isn't irreducible, and where the Xi are indeterminates. Then, for
each prime ideal P in R, RP isn't Gorenstein, since qR § P and RqR

isn't Gorenstein.

3* Condition (*) and affine rings* In this section two theorems
concerning a finitely generated ring A over a Noetherian ring R will
be proved. The first, Theorem 3.9, shows, in particular, that if A
is an integral domain, then condition (*) (Definition 3.2) is in-
herited by A, and the second, Theorem 3.12, shows that, if R is
a semi-local domain and altitude R > 1, then "most" finitely generated
integral domains over R which aren't integrally dependent on R satify
condition (*).

Definition 3.1. For a ring R, let ^f(R) be the set of maximal
ideals M in R such that RM is Macaulay.

Definition 3.2. A ring R is said to satisfy condition (*) in case
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Rad R = n {M; Me
It follows from (2.17) that a Noetherian Hubert ring satisfies

condition (*). The next lemma shows that there exist rings which
satisfy condition (*) and yet are neither locally Macaulay nor Hubert
rings (since R[X] is Hubert if and only if R is Hubert [5, Theorem
31]).

LEMMA 3.3. If R is a Noetherian ring, then, for all n^l, the
polynomial ring R[XU •• ,X%] satisfies condition (*).

Proof. It may clearly be assumed that n = 1. Let P e g 7 =
{P; P is a G-ideal in R and RP is Macaulay}. (& isn't empty by
(2.12) with E - R.) If P is a maximal ideal in R, then let ^ ( P ) be
the set of maximal ideals in R[X] which contain PR[X]. Then
R[X\N is Macaulay, for each Ne &>(F), and PR[X] = Π {N; Ne &>(F)}.
On the other hand, if P isn't maximal, then let Mu * ,Me be
the maximal ideals in R which contain P. Let be f] Mjy £ P,
and, for i > 0, let P< = (P, VX - Ϊ)R[X]. Then the P< are dis-
tinct prime ideals, each ϋ?[X]Pί is Macaulay, PR[X] = Π {Pi,# i > 0},
and each Pt is a maximal ideal in R[X]. Hence, since Radi2= Π {P;

} (2.12), the lemma follows from Rad R[X] = (Rad i?) i?[X] =

COROLLARY 3.4. If I is an ideal in a Noetherian ring R and X
is an indeterminate, then Rad IR[X] = Π {M; IR[X]dM and M/IR[X] e
^(R[X]/IR[X])}. In particular, if b is a nonunit regular element
in R, then RadbR[X] = Π {M; be Me

Proof. This follows from R[X]/IR[X] - (R/I)[X] and [5, Theorem
156].

On the other hand, of course, there are height one prime ideals
in R[X] which aren't even an intersection of maximal ideals; for
example, XR[X] when R is a local domain.

To prove the first theorem in this section, a number of lemmas
will first be proved.

LEMMA 3.5. Let R be a Noetherian ring.
3.5.1. If A is a Noetherian ring such that A is integrally depen-

dent on R and R g A § Rc, for some nonzero-divisor ceR, and if A
satisfies condition (*), then R does.

3.5.2. If R satisfies condition (*), then, for all nonzero-divisors
c in R and for each ring A such that R £ A £ Rc, A satisfies con-
dition (*).

3.5.3. If R satisfies condition (*), then each free principal integral
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extension ring of R (that is, R[X]/(f), where f is monic) satisfies
condition (*).

Proof. 3.5.1. If A satisfies condition (*), then Ac = Rc does
and n {MAC; Me ^t(A)} = (0), by (2.22.1). Hence, since A is integrally
dependent on R} R satisfies condition (*). For (3.5.2), if R satisfies
condition (*), then Π {MRC; Me ^t(R)} = (0), by (2.22.1), so Π {MRC n
A Me^f(R)} = (0). Hence, since RC/MRC = R/M and RM = (Rc)MBc

(if c&M), A satisfies condition (*).
For (3.5.3), let B = R[X]/(f). Then, for each maximal ideal M

in R, (Rad MB)d £ MB, where d is the degree of f (consider R[X]/
(M, /)). Therefore, if u e Π {N; Ne ^f(B)}> then, for each Me ^?(R),
u e Rad MB (by freeness), so ude n {MB; tfe ^ ( B ) } = (by freeness)
(Π {M; Me^£r{R)})B, and so ud is nilpotent. Thus ueRadB, hence
Z? satisfies condition (*).

In (3.6), we shall utilize [3, (6.10.6)]. The result is essentially
local, and passing from the language of preschemes to the language
of commutative rings we find that it asserts the following:

Let R be a Noetherian ring, let E be a finite i2-module, and
let / be an ideal in R such that q = Rad I is prime and Eq Φ (0).
Then there exists reR, £q such that, for each prime ideal Q in R
such that q £ Q and r £ Q, the following holds:

Dim EQ = Dim Eq + Dim (R/I)Q and Prof EQ = Prof #ff + Prof (i?//)ρ// .

LEMMA 3.6. Let q be a minimal prime ideal in a Noetherian
ring R. Then there exists an element reR, £q such that, for each
prime ideal Q in R which contains q but not r, RQ is Macaulay if
and only if (R/q)ς>iq is Macaulay.

Proof. If s e R, $q> then it clearly suffices to prove the lemma
for Rs instead of R. Hence it may be assumed that q is nilpotent.
Then, with q — I and R = E in Grothendieck's result quoted above,
Dim Eq = Prof Eq = 0 (since q is nilpotent). Therefore, for each prime
ideal Q in R such that r g Q, altitude RQ = altitude (Rfq)QJq and
Prof RQ = Prof (R/q)Q/q. Clearly, then, for each such prime ideal Q
in R, RQ is Macaulay if and only if (R/Q)Qjq is Macaulay.

LEMMA 3.7. A Noetherian ring R satisfies condition (*) if and
only if, for each minimal prime ideal q in R, R/q satisfies condition

Proof. Let R satisfy condition (*) and let q be a minimal prime
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ideal in R. Choose r e R as in (3.6). Since q = Π {M; q s Me
by hypothesis, q = Π {M; q § Me ^fί(R) and rgM} (2.22.1). Hence,
by (3.6), R/q satisfies condition (*).

Conversely, let ql9 , qg be the minimal prime ideals in R, and as-
sume that each R/qi satisfies condition (*). Then, for each i — 1, , g
and with ri as in (3 6), qt = Π {M; q g M, M/qt e ^{R/q%)> and r4 g Λf},
by (2.22.1). Thus, by (3.6), g, = n { I ; g { g l G ΛT{R) and r4 g Λf} (i =
1, •••,#), hence ϋ! satisfies condition (*).

COROLLARY 3.8. A Noetherian ring R satisfies condition (*) if
and only if R/(RadR) satisfies condition (*).

Proof. Clear by (3.7).

Since a finitely generated ring over a Noetherian Hubert ring is
again such a ring, it follows from (2.17) that a finitely generated
ring over a Noetherian Hubert ring satisfies condition (*). The follow-
ing theorem can be considered a generalization of this result.

THEOREM 3.9. Let A be a finitely generated extension ring of a
Noetherian ring R, and assume R satisfies condition (*). Then A
satisfies condition (*) if, for each minimal prime ideal Q in A, at
least one of the following conditions holds:

3.9.1. Q Π R is minimal.
3.9.2. R/(Q Π R) satisfies condition (*).
3.9.3. A/Q is not algebraic over R/(Q f] R)

Proof. A/Q satisfies condition (*) if (3.9.3) holds, by (3.3). Also
(3.9.1) implies (3.9.2), by (3.7). Therefore, since A satisfies condition
(*) if each A/Q does (3.7), it suffices to prove: If A is a finitely
generated integral domain over R and R satisfies condition (*), then
A satisfies condition (*).

For this, there exist algebraically independent elements Xl9 ,
Xn in A over R, and elements al9 , ak in A integral over Rn =
R[Xlf ., Xn] such that B = Rn[al9 . . . , α j g i g B[l/b], for some
nonzero element beB. Therefore, by (3.5.2), it suffices to prove B
satisfies condition (*). By (3.3), Rn satisfies condition (*), so it may
be assumed that B = R[al9 , ak]. Then the coefficients of the minimal
polynomial of aι over the quotient field of R are in a finite integral
extension Rx of R contained in the quotient field of R, and Rγ[a^\ is
a free principal integral extension domain of Rim Therefore, by (3.5.2)
and (3.5.3), Rι[a^\ satisfies condition (*), hence R[a^ does, by (3.5.1).
Therefore, the theorem follows by induction on k.
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COROLLARY 3.10. Let R and A be as in (3.9). // A contains an
indeterminate over R, say t, such that, for each minimal prime ideal
Q in A, Q Π R[t] = (On R)R[t], then A satisfies condition (*).

Proof. This follows from (3.3) and (3.9), since Q Π R[t] = (Qn
R)R[t] implies trd (A/Q)/(R/(Q Π R)) > 0.

Condition (b) in (3.9) suggests a way to construct extensions for
which R satisfies condition (*) and A does not. In fact, let R be a
Noetherian ring which satisfies condition (*) and which has a prime
ideal P such that R/P doesn't satisfy condition (*). (For example,
let Ro be a local domain such that altitude Ro — 1, let R = R0[X],
where X is an indeterminate, and let P = XR.) Let A = (R/P) 0 R,
and let f: R—> A by /(r) = (r + P, r). Then A is finitely generated
over f{R) by (1 + P, 0), /(22) satisfies condition (*) (since / is a
monomorphism), but A doesn't satisfy condition (*), by (3.7), since
Q — (0,1)A is a minimal prime ideal in A such that A/Q = R/P doesn't
satisfy condition (*).

The following lemma is needed to shorten the proof of (3.12)
below.

LEMMA 3.11. Let b and c be non-unit regular elements in a
Noetherian ring R, let y = c/b, let I — (y, b)R[y], and assume 6g
RadcR. If I Φ R[y], then height 1 = 2.

Proof. If 1 ί I, then height 7 ^ 2 . Suppose Q is a height one
prime ideal in R[y] such that IS Q. Localizing at Q Π R, it may
be assumed that R is a local ring with maximal ideal M and
Q Π R = M. Since height Q = 1, there exist s e i2[#], g Q, and w > 0
such that sbneyR[y]. Therefore, with s = Σr^ir^ R), rQbn eyR[y].
Now r0 ί M, since s $ Q, so r0 is a unit in R and 6% e 2/i?[2/] But
multiplying by a suitable power of b will clear of fractions on the
right and will show that b e Rad cR, a contradiction. Thus height
1=2.

Following the proof of the next theorem, an example will be given
to show that the assumption that altitude R > 1 is necessary. Before
stating the theorem, it should be noted that there may exist height
one maximal ideals in the integral closure of a Noetherian domain R,
even if R is local and altitude R > 1; for example, see [8, Example
2, pp. 203-205].

THEOREM 3.12. Let A be a finitely generated integral domain
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over a semi-local domain R, and let altitude R > 1. A satisfies
condition (*) if and only if A §5 R[, where R1 is the integral closure
of R in the quotient field of A and c is either a unit in Rf or depth
cR' = 0.

Proof. If trdA/J?>0, then A satisfies condition (*), by (3.9),
and A isn't contained in any quotient ring of R', so it may be assumed
that A is algebraic over R. Then, since there is a finite integral
extension ring B of R contained in A such that B and A have the
same quotient field, it may be assumed that R and B have the same
quotient field.

Assume first that A g R'c, for some such element ce Rr. Then,
since A is finitely generated over R, there exist cu , ck in Rf such
that B — R[c, cu , ck] §Ξ A[c] £ Bc. Since Bc has only a finite number
of maximal ideals (since its integral closure R[ does (every prime
ideal in B which contains c has height one, since depth cR' = 0)), Be

doesn't satisfy condition (*). Therefore, since (A[c])c = Bc, it follows
from (3.5.2) that A[c] doesn't, hence A doesn't satisfy condition (*),
by (3.9).

Conversely, assume, for each such element ce R', A£ R[. Then,
there exists xeA such that x&R'M>, for some maximal ideal Mr in
Rf such that height Mf > 1. Fix one such M'. By (3.5.1), by adjoining
to R a finite number of elements from Rf, it may be assumed that
R and Rf have the same number of maximal ideals, so, in particular,
R'u, is the integral closure of RM, where M = M' (Ί R. If l/xeR'M,,
then 1/x e M'Rf

M, Π RM[l/x], so lϋ^M = RM[l/%, %] is a Noetherian Hubert
domain [4, (10.5.8)]. Let &* = {Pe Spec R PaM, R/P is local, depth
P = 1, and it!P is Macaulay}, let a? = δ/c with 6 and c in M, and let
^ = {Ne ^ff(RM[x\); N = P(RM)C Π ^ [ ^ ] , for some Pe^}. (For each
P e ^ , P(RM)CΓ\RM[%] is maximal, since each P(RM)C is maximal and
^[a;] is Hubert.) Then f]{P;Pe &>} = (0) (by 2.21) with Q = (0) and
N19 , Ng the other maximal ideals in R), so Π {N; Ne S^) — (0), by
(2.22.1). Fix Ne £f, let p = N f] R[x], and let Q be a maximal ideal
in i?[a;] such that p Q Q. Then Q n R S ikf, since p Π ̂  e &*. There-
fore, since iV is maximal, it follows that Q — p (since Mr is lost in
Rf[x] implies M is lost in R[x]). Hence, since ΓΊ {p; p = N f] R[x],
for some Ne ^} = (0), R[x] satisfies condition (*). Therefore, A
satisfies condition (*), by (3.9).

Therefore, assume x and l/x&R'M,, and let x— b/c with b and
c e M\ Then bR': cRf and cRf\ bRf have no common prime divisors,
since, for each height one prime ideal p in R', b/c or c/b e R'p. Let
debRr:cRr such that d isn't in any prime divisor of cR':bR', and
let e e cR': bR' such that dc = be. Then x = d/e, so (d, e)i?' S M'
(since Λί'iί'M is a depth one prime ideal [17, Corollary, p. 20]), so it
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may be assumed that b = d and c = e and, by (3.5.1), that 6 and c
are in R. Then b $ Rad cR, since, for each prime divisor p of cR':bR',
p is a prime divisor of cRr, hence p π R is a prime divisor of cR [8,
(33.11)] and bgpf) R. Let y = 1/x = c/b, and fix j > 0. Then be is
not in any minimal prime divisor of (y — bj)R[y]; for, if Q is a height
one prime ideal in R such that (6c, # — 6O-R[2/] £ Q> then 6 or c and
2/ — bj are in Q, and this implies the contradiction (b, y)R[y] Sϋ Q
(3.11). Thus, for all j ^ 1, there exists a minimal prime divisor Pj
of (c — bj+1)R contained in M such that be g pyβ Fix j , and let ^ =
{Pe &\ beg P and p5 S P}, where ^ is as in the preceding paragraph.
Then it follows from (2.21) and (2.23) (with P = M, Q = £>;, and iV1?

• ",Ng the other maximal ideals in iϋ) that Pj = n { P ; P e ^ }, so
Py£, Π J2M - Π {iV; Ne Sf% where ^ ' = {N; N= PRC Π JK[α?], for some
Pe.^} (2.22.1). Now, if NeS^f then N is a maximal ideal in U[α?]
(since Vx - 1 e N and iί/P g i2[α;]/ΛΓg i?c/P.#c - the quotient field of
RIP). Since Π {p,-^ Π i?M;i ^ 1} = (0), R[x] satisfies condition (*).
Hence A satisfies condition (*), by (3.9).

A necessary and sufficient condition for A to satisfy condition
(*) was just given in (3.12), assuming a — altitude R > 1. If a — 1,
then the condition isn't necessary. For, let R be a discrete valuation
ring whose maximal ideal is generated by c, and let A = Rc. Then
A is finitely generated over R, A ϋ Rc = R'c, and depth cίϊ' = 0, but
A satisfies condition (*), since A is a field. On the other hand, the
condition is sufficient when a — 1. For, if A §£ i?/, for all nonzero
eeR', then A isn't contained in the quotient field of Rf (since α = 1
and i2' is quasi-semi-local), so A is transcendental over R. Therefore
A is finitely generated over a Noetherian ring of altitude greater
than one, hence A satisfies condition (*), by (3.12).

COROLLARY 3.13. Let R be a semi-local domain such that altitude
R > 1, let S be the integral closure of R in its quotient field, and let
A be a finitely generated integral domain over R such that A isn't
integral over R. Then A satisfies condition (*) in each of the following
cases:

3.13.1. R= S.
3.13.2. S is quasi-local.
3.13.3. S has no height one maximal ideals.
3.13.4. R satisfies the second chain condition for prime ideals.

Proof. (3.13.1) follows from (3.12), since the integral closure Rr

of R in the quotient field of A has no height one maximal ideals [8,
(10.14)]. Clearly, (3.13.2) implies (3.13.3), and (3.13.4) implies (3.13.3)
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[12, Theorem 3.1 and Proposition 3.5]. Finally, (3.13.3) implies that
R' has no height one maximal ideals [8, (10.14)], so (3.13.3) follows
from (3.12).

4* Rees rings and iϋ-sequences* Let B — (bl9 •••, bw)R be an
ideal in a semi-local ring (R; Mly , Me) such that B £ J — Π Mif let
t be an indeterminate, and let u = 1/t. The Rees ring & — &{R, B)
of R with respect to B is defined to be the subring & — R[tbu ,
tbWiu] of R[t,u].

The following remark summarizes the basic facts on Rees rings
which will be used in what follows.

REMARK 4.1. The elements in & are finite sums Σ-»A*S where
CiβB* (with the convention that Bι = R, if i ^ 0). Thus, & is a
graded Noetherian ring, % isn't a divisor of zero in ^ , and ^ ^ ? Π
R — B% for all i ^ 0. For a homogeneous ideal H in ^ and — oo <
n < oo, let [£Γ]% denote the set of elements reR such that rtneH.
Then, if also if is a homogeneous ideal in ^ , then [H + !£]„ = [iϊ]% +
[K]n, and if s K if and only if [H]n s [iί]w, for all w. Also, JBW 2
[iϊ]% 2 [H]n+ι 2 5[ ί ί ] % , for all rc [16, p. 11]. In particular, for an
ideal C in R, let C* - Ci2[£, u]Γ\&, so C* and (C*, t c ) ^ are homo-
geneous ideals in ^ , and [(C*, ^ 6 ) ^ ] u = ( C Π 5W) + Bn+1. I t follows
that 5* - (δ^, , δ w ί ) ^ , and ^ = ( ϋ ^ * ^ ) ^ = (Λf4, w, 5 * ) ^ are
the maximal homogeneous ideals in ^ ( i = 1, •••, e). Also, it follows
easily from the definition that, if C = ΓΊ Qi is a normal decomposition
of C, where Qy is P r primary, then P/ is prime, Q* is PJ-primary,
and C* = Π <?* is a normal decomposition of C* [15, Theorem 1.5].
Further, height C* = height C, height ^ = height M{ + 1, and alti-
tude & = altitude 1 2 + 1 [13, Remark 3.7].

Most of the results in this section follow from the following basic
lemma.

LEMMA 4.2. Let (R; Mu * ,ikfβ) be a semi-local ring such that
height Mi — altitude R = a(i = 1, , β). Lei J5 δe cm ideal in R such
that RadB = J = Π Λf4, and ϊeί & = &(R, B) be the Rees ring of
R with respect to B. Assume each &{{M\,%)^) is Macaulay, and
let Pl9 , Ps be homogeneneous prime ideals in &. Assume height
Pυ = k(v — 1, , s) and either ue Π Pv or u$ U Pv- Then there exist
homogeneous elements xίy , Xj in Π Pυ such that every permutation
of xlf , Xj, u is an &-sequence and j = k (if u£ U Pυ) or j — k —
1 (if ue n P f ) .

Proof. Every prime divisor of each homogeneous ideal in & is
homogeneous, hence is contained in ^/^ — (M*, u)&, for some i = 1,
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•••, e, and <%s is a Macaulay semi-local ring, where S = &~
Therefore, if xl9 , xj9 u is an ^-sequence of homogeneous elements
contained in (J*, v)&, then every permutation of it is an ^-sequence.
Thus it suffices to prove the existence of homogeneous elements x19

• , Xj in n P . Π J * such that some permutation of xly , xj9 u is an
^-sequence and j> = A: (if u g U Pv) or i = A: — 1 (if ue Π P v).

Since this is clear if k — 0, let & > 0, and assume the lemma
holds for such finite sets of homogeneous prime ideals in <% of height
less than k. For v = 1, , s, let Qv be a homogeneous prime ideal
in ^ ? such that QvczPv, height Qv — k — 1, and either u e Π Qv or
u £ UQ,. By induction, let xl9 *",xm be homogeneous elements in
Π Q, Π /* such that xly , a?m, u is an ^-sequence and m = height
Qv (if u & (J Qυ) or m + 1 = height Qv (if ue Π Qv). Let pl9 •••,#/ be
the prime divisors of (xί9 •••, α;m, u)&, let ^ = {p^ •••, p/}, and fix
p G ^ 5 . Then: (u9 J)& S p, since 6̂ 6 p and Rad B = J imply PfΊ i2 =
Mj, for some i — 1, , e; and, p is homogeneous, s o p £ ^€^, for some
i = 1, •••, e. Therefore, since each ^ L ^ is Macaulay, height p =
m + 1. If one the Pv is in ^ , then ue Pv (hence u e n Pv) and π ^
Qv (hence u $ U Qv), and so every Pv is in ^ , hence the lemma holds.
Thus it may be assumed that no Pv is &. Therefore, no ^ C is in
^ for, if one ^/^e ,ζp, then m = a and so 3P s {^ ,̂ , ^C} ? hence,
since A: ̂  m + 1, it follows that all Pve &*; contradiction.

For h = 1, , / , let JΛ - ΓWAP; Π 5* Π PiΠ Π P S . Then Ih

is homogeneous, and Ih ξ£ ph; for, JΛ ^ pA implies £>* £ p A , hence (u,
J, J B * ) . ^ g pA, and so pA = _//̂ , for some i — 1, , e; contradiction.
Therefore, there exists a homogeneous element zhelhj <£ ph; say 2/, =
rAίd*(dfc > 0, since, for n ^ 0, [Jfc]w S [5*]n - S £ J S [pΛ]H). Thus,
with iΛ = Kfrhdj, xm+1 = Σ 3?Λ is a homogeneous element in Π P , Π J*
and not in ply , py hence ^ , , a;m, u, xm+ί is an ^-sequence.

REMARK 4.3. The homogeneous elements x̂ (fe = 1, « , i) in (4.2)
must have positive degree, since u, xh is an ^-sequence and every
homogeneous nonunit of nonpositive degree is in some prime divisor
of u,^ (since (Rad u&) Π JK = Rad (μ,^ f] R) = Rad B = J ) .

The following two definitions are needed for (4.4) below.
A set of elements yl9 , ya in the Jacobson radical J of a semi-

local ring R is a system of parameters in R in case Rad (yl9 , τ/α)i2 =
J and a = altitude R [8, p. 77].

If 5 is an ideal in a ring R, and # 6 Ry then the degree of x with
respect to B, denoted dB{x), is the largest integer n such that xeBn,
if such n exists. If xeBn, for all n, then dB(x) = o°.

THEOREM 4.4. Let (R; Ml9 , Mβ), /, 5, α, απώ t ^ 6e as m (4.2).
^ is locally Macaulay if and only if R is Macaulay and there
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exists a system of parameters yl9 , ya in R such that, for each j =

1, , a and for all n^l, (yl9 , yά)R Π Bn = Σ ί ViB*~di, where dt =
d B ( 2 / i ) ( i = 1 , • • • , « ) .

Proof. If α = 0, then altitude & = 1. Therefore ^ is locally
Macaulay (since the prime divisors of (0) in & are the ideal g* with
q a prime ideal in R, and so have height 0). Hence the theorem is
trivially true upon defining Σ ? yiBn~di to be zero when are no yim

Therefore, let a > 0.
If & is locally Macaulay, then R is Macaulay [11, Theorem 3.8].

Also, by (4.2), there exist homogeneous elements xl9 •• ,α?βeJ* such
that xl9 , xa, u is an ^-sequence. For j = 1, , α, let X5 = (x19

• , % ) ^ , let &< = ytt
di with ^ e Bd% and let Γ, = (yl9 , %)i?. Then,

since xl9 , a;,-, w is an ^-sequence (j = 1, , α), <ZB(2/i) = d*. Also,
Y? = Γyi2[ί, u] Π & = Xj (hence Rad Ya = J ) , since β[ί, u] - ^ [ 1 / u ]
implies Y? = Xά: uk&, for all large k. Hence Γ, n Bn = [ Y?]n = [Xj]n =
Σ ί ViBn~~di, for y = 1, , a and for all n.

Conversely, assume R is Macaulay and such a system of parameters
yl9 ---9ya exists in R, let Γ,- = (yl9 , ^)JSO" = 1, , a), and let
xi — y^K To prove & is locally Macaulay, let N be a maximal
ideal in ^ .

( i ) If JSΓ = ^J?i = (Mi*, u)&9 for some i = 1, , e, then ^ is
a minimal prime divisor of (Y*9 v)&. Also, Yf = (^, , %j)&, since
[ Y/]n = [(α?!, , Xj)&]n, for all ^ (for π ^ 1, by hypothesis; for ^ <
1, this is clear). Hence, since the prime divisors of the Yf are the
ideals P* with P a prime divisor of Yj9 and since ugP*, xί9 "*9xa,
u is an ^-sequence, and so &N is Macaulay.

(ii) If Nφ ^,(i = 1, •••, e), then either u ί iV, or tbgN, for
some nonzero-divisor 6 e JB. (If (w, J B * ) ^ S iV, then, since Rad i? =
J9 N = ^€i, for some i; and, since a > 0 and i2 is Macaulay, 5 can
be generated by nonzero divisors [9, Lemma 10, p. 229].) If u$N,
then &N is Macaulay, since it is a quotient ring of ^[lju\ = R[t9 u],
and R[t, u] is locally Macaulay, since R is Macaulay. If tb 0 N, then
let A = R[B/b] denote the lϋ-subalgebra of R[l/b] generated by the
elements c/b with ceB. Let &* = ^[11 tb]. Then £f = A[tb91/tb],
and P ' = NS^ f l i is a prime ideal in A. Since N is maximal and
isn't homogeneous, P'Sf c NS^ and P = P'SS Π ̂  is a homogeneous
prime ideal (as in [13, Remark 3.11]). Also, height N/P = 1, since
N£f f] A = P£f n A = P' . Since P is homogeneous, (i) and (4.2)
imply there exists an ^-sequence of s = height P homogeneous ele-
ments in P, say xu ---9xs (possibly one xh is v). Since JV isn't
homogeneous, it follows that N isn't a prime divisor of (xl9 , α?β)^P.
Also, since R is Macaulay and height N/P = 1, height N = height
P + 1 [8, (34.8) and (25.10)]. Hence &N is Macaulay.
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The next result is a considerable strengthening of [11, Corollary 3.6].
It also shows the unexpected result that every prime ideal P in R
contains a prime sequence of height P elements which can be extended
to a maximal prime sequence which has the property described in (4.4).

COROLLARY 4.5. (cf. [11, Corollary 3.6].) Let (R; Mιy , Mβ), J, B,
a, and & be as in (4.2), assume & is locally Macaulay, and let Px,
•••, Ps be prime ideals in R. If height Pυ = k(v — 1, •••, s), then
there exists an R-sequence yl9 , ya such that yl9 , yk are in Γ) Pv

and, for each j = 1, , a, for each permutation π of {1, , a}, for
all positive integers fl9 , fk, and, for all n, (yf

π{, , yfj.) R f] Bn =
'ΣAyίίBn'~'difi, where di = dB(yπi).

Proof. By (4.2), let xl9 •••, xk be homogeneous elements in Π P *
such t h a t each permutat ion of xl9 * *,xk9u is an ^ - s e q u e n c e . By
t h e proof of (4.2), there exist homogeneous elements xk+l9 •••,&« in
& such t h a t each permutat ion of xu " ,xa,u is an ^ - s e q u e n c e .
Hence, for each j — 1, , a, xζ{9 , xζj, u is an ^ - s e q u e n c e . Let
%** = Vπitdί with yπi e Bdί(i = 1, , a), and, for j = 1, , α, let Y3 =
(vίl, ' , vί])R a n ( i -Xj — (xίl> ' β> ̂ i ) ^ Then Y}* = X3, since X,-:
t 6 ^ = Xj. Hence, since the prime divisors of F / are the ideals P *
with P a prime divisor of Y3i i t follows t h a t y{\9 ** ,y{a

a is an R-
sequence and, for i = 1, , a, Y3 f)Bn - [ Y3-*]n = [X3]n = Σ ί yίiBn~d^fK

The following corollary gives another necessary and sufficient
condition for & to be locally Macaulay.

COROLLARY 4.6. With the notation of (4.2), έ% is locally Macaulay
if and only if there exists a positive integer g and a system of para-
meters zl9 ••-,£<* contained in B9 such that, for each j = 1, -- , α ,
for each (or, for some) permutation π of {1, •••, a}, and for all n >̂
g, (zπl, , zπj)R Π B71 = («ffl, , zπj)Bn~9.

Proof. If ^ is locally Macaulay, then let ^ •••,#„ be elements
in J as in (4.5). Say ^ = dB{y^, so <̂  > 0, by (4.3). Let Z>f = πj¥=idjf

let gr = dijDi, and let ^ = yYι(%\— 1, , α). Then the conclusion follows
from (4.5). The converse follows from (4.4).

(4.7) and (4.8.1) below are known when R is Macaulay and B is
generated by an .B-sequence [11, Corollary 3.9 and p. 406]. (4.8.2) is
new even for the JS-sequence case but follows easily from (4.7) and
(4.8.1); and (4.9) follows from (4.5) - (4.8). The basis of the proof
of (4.7) is that, if & is a nonzero-divisor in a locally Macaulay ring
R, then R/bR is locally Macaulay.
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COROLLARY 4.7. (cf. [11, Corollary 3.9]•) With the notation of
(4.2), if & is locally Macaulay, then, for each nonzero-divisor beB,

R[bjb, •••, bw/b] is locally Macaulay, where B — (bl9 •••, bw)R.

Proof. The proof is the same as the proof of [11, Corollary 3.9].

COROLLARY 4.8. (cf. [11, p. 406 and Corollary 3.9].) With the
notation o/(4.2), if & is locally Macaulay, then the following statements
hold, for all positive integers m:

4.8.1. &(R, Bm) is locally Macaulay.
4.8.2. For each nonzero-divisor be Bm, R[βjb, , βjb] is locally

Macaulay, where Bm — (βl9 , βz)R.

Proof. 4.8.1. If & is locally Macaulay, then R is Macaulay
and there exists an iϋ-sequence yu , ya contained in J such that, for
all j = 1, , a and all positive integers m and n, (y?, , yf)R ΠSW =
ΣAyTBn'dirrι, where dB{y%) = dt ((4.4) and (4.5)). Then, with n = mh
(h^l), it follows from (4.4) that ^T(i?, Bm) is locally Macaulay, if
dB™(y?) — di. But this holds, since x?, * ,x™,u is an ^-sequence
(as in (i) in the proof of (4.4)), where x{ = y^. (4.8.2) follows from
(4.8.1) and (4.7).

Applying the last three corollaries to the case when R is Macaulay
and B is a power of the ideal generated by an 12-sequence, the follow-
ing corollary is obtained.

COROLLARY 4.9. With the notation of (4.2), ifB= Yn, where Y
is generated by an R-sequence (such that Rad Y = J) and n > 0, then
(4.5) - (4.8) hold.

Proof. This follows from (4.5) — (4.8), since R is Macaulay (since
Rad Y = J), hence & is locally Macaulay [11, p. 406].

The following proposition has the status of folklore—and may
even appear somewhere in the literature. It will be used in (4.11) to
prove a number of necessary and sufficient conditions for & to be
locally Macaulay. Also, the relationship, noted below, between Rees
rings and form rings together with (4.10) shows that much of the
material in this section really isn't so special.

PROPOSITION 4.10. Let R be a Noetherian ring, and let S be a
finitely generated positively graded R-algebra such that So = R. Then
S is locally Macaulay if and only if, for each maximal ideal M in
R. S(M+S+) is locally Macaulay, where S+ is the ideal in S generated
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by the forms of positive degree.

Proof. The condition is clearly necessary. Conversely, let Q be
a prime ideal in S, and let M be a maximal ideal in R such that
Q lΊ R ϋ M. Then SQ is a localization of RM (x) #£, so it may be
assumed that R is a local ring with maximal ideal M. Let R{X) =
jβfXĴ f̂x], where X is an indeterminate, and let i?* be the completion
of R(X). We can replace S by R* ®R S, so it may be assumed that
R is a complete local ring with an infinite residue field. Then S is
a homomorphic image of a regular ring, so the Macaulay locus of S
is Zariski open [3, (6.11.3)]. Suppose that the non-Macaulay locus of
S isn't empty, and let I be its defining radical ideal. Then it suffices
to show that I is homogeneous, for then I £ M + S+ which contradicts
the hypothesis.

If a e R, £ M, then there exists an i?-automorphism of S which
takes each form F of degree d to adF. Therefore, let Σo Ft e I (where
each Ft is a form of degree i) and choose units α0, , ad in R with
distinct residue classes modulo M(R/M is infinite). Then, since clearly
/ is invariant under every automorphism on S, Σ;=o cήFi is in 1(0 <̂  j
^ d). But Det (oJj) = ± TCi^-fai — αy) e R, £ M, hence is a unit in R.
Therefore each F{ e 7, as desired.

If B is an ideal in a Noetherian ring R, then, as in [15, Theorem
2.1], the form ring j^~ = J?~ {R, B) of R with respect to B is (iso-
morphic to) &\u&y and the I?-form ideal C of an ideal C in i? is
(isomorphic to) (C*, u)&/u&. This fact is used in (4.11) below.

If ilίj, , Me are special maximal ideals in a Noetherian ring
R such that each RM. is Macaulay, then it isn't true, in general, that
R is locally Macaulay. However, this is true for & and J^, as is
shown by the following theorem.

THEOREM 4.11. Let B be an ideal in a Noetherian ring R such
that B is contained in the Jacobson radical of R, let & — &{R, B),
and let j^~ — J^{R, B) be the form ring of R with respect to B. Then
statements (4.11.1)—(4.11.4) below are equivalent and each implies
(4.11.5).

4.11.1. & is locally Macaulay.
4.11.2. έ%Λ is Macaulay, for all maximal homogeneous ideals

^/f in &.
4.11.3. J^~ is locally Macaulay.
4.11.4. ^ S r is Macaulay, for all maximal homogeneous ideals

Λ" in J^.
4.11.5. R and all rings R[bjb, •• bw/b] are locally Macaulay,

where b is a nonzero-divisor in B — (bly , bw)R.
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Proof. Clearly (4.11.1) implies (4.11.2), and (4.11.3) implies
(4.11.4). Also, (4.11.1) implies (4.11.3), and (4.11.2) implies (4.11.4),
since JΓ = ̂ /u^ (as in [15, Theorem 2.1]). Further, (4.11.4)
implies (4.11.3), by (4.10). Now (4.11.3) implies &P is Macaulay, for
all prime ideals P in & such that ue P. Thus, if M is a maximal
ideal in R, then ^ = (M*, v)& is a maximal ideal in <% (since
B g ilί), so, since ^ ^ is Macaulay, ^ ^ * = R[u]MRM is Macaulay. It
follows that R is locally Macaulay, and so R[t, u] is locally Macaulay.
From this it follows that (4.11.3) implies (4.11.1), and so (4.11.1)—
(4.11.4) are equivalent and each implies that R is locally Macaulay.
Finally, since R[bjb, , bjb][tb, l/tb] = &[l/tb] and tb is transcendental
over 22, (4.11.1) implies (4.11.5).

This paper will be closed with the following result which gives
two equivalences of (4.11.5).

PROPOSITION 4.12. Let B be an ideal in a Noetherian ring R
such that B is contained in the Jacobson radical of R, and let & ~
&{R, B). Then the following statements are equivalent:

4.12.1. R and all rings R[bjb, * ,bw/b] are locally Macaulay,
where B = (bu , bw)R and b is a nonzero-divisor in B.

4.12.2. For each prime ideal P in & such that (u, B*) §S P, &P

is Macaulay.
4.12.3. For each homogeneous prime ideal P in & such that

(u, B*)& §= P, &p is Macaulay.

Proof. If if is a ring and X an indeterminate, then K is locally
Macaulay if and only if K[X, 1/X] is locally Macaulay. The equivalence
of (4.12.1) and (4.12.2) follows from this and the facts &[l/u] = R[t, u]
and &[l/tb] = A[tb, 1/tb], where A = R[bjb, , bjb]. Clearly (4.12.2)
implies (4.12.3). Also, R[t, u]MR[t,u] = &M* (where if is a maximal ideal
in R), and, if P' is a prime ideal in A, then P = P'&[l/tb] Π & is
homogeneous (as in [13, Remark 3.11]) and A\ib\P,A{m = <%P. There-
fore, (4.12.3) implies (4.12.1).
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