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DIFFERENTIAL INEQUALITIES AND LOCAL VALENCY

W. K. HAYMAN

An entire function f(z) is said to have bounded value
distribution (b.v.d.) if there exist constants p, R such that
the equation f(z) = w never has more than p roots in any
disk of radius R. It is shown that this is the case for a
particular p and some R > 0 if and only if there is a constant
C > 0 such that for all z

\fp+»(z)\ ^C max \f^(z)\ ,
v = l to p

so that f'(z) has bounded index in the sense of Lepson.

We consider the differential equation

(1.1) y{n) + α^— 1* + any = 0 ,

in the disk

(1.2) Z>0 = {z\ \z~ so | < R) ,

where 0 < R ^ oo and the functions ax to an are supposed to be
regular and bounded in J90. The solutions of (1,1) are regular in DQ

and possess there no zeros of order greater than n — 1. This prompted
Tijdeman to ask for a disk depending only on zQ, R and the coefficients
aγ to an, in which the equation (1.1) is dίsconjugate, he. no solution
has more than n — 1 zeros. He later solved this problem [10] using
a method due to Turan [12]. At about the same time a solution was
given by Kim [5], who obtained sufficient conditions on ax to an for
(1.1) to be disconjugate in the whole of Do.

An interesting special case occurs when R = oo, so that Do is
the open plane. In this case aγ to an must be constant and the solu-
tions take the form

(1.3) y(z) = Σ 2>v(s)eω*'

where the ωv are the roots of the characteristic equation

(1.4) P(ω) = ωn + Σ α^ω%-^ = 0 .

If ωu has multiplicity /by then pu(z) is a polynomial of degree at most
ku — 1. With his methods Tijdeman [11] has obtained a number of
striking results concerning the distribution of the zeros of (1.3).
Setting
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Δ — max \o)u\ ,
v = l to k

he proved that if NB is the number of zeros of y(z) in Do, then

NB ^ S(n - 1) + 4RΔ .

This sharpens considerably an earlier result of Danes and Turan [2].
He also proved [11, Theorem 2]

THEOREM A. If RΔ <£ min {n~\ (24)"2}, £/z,βw JVΛ ^ n — 1, so
(1.1) is disconjugate in Do.

We can clearly consider ?/(z) — w instead of w, where w is a constant,
at the expense of replacing the order n of (1.1) by n + 1. Thus we
deduce at once from Tijdeman's results

THEOREM B. // NR(w) denotes the number of roots of y(z) = w
in DQJ then

(1.5) NR(w) ^3n

and if RΔ ^ min {(n + 1)~2, (24)~2}, we

(1.6) NB(w) ^ w .

The bounds in (1.5) and (1.6) are independent of w and z0. We can
restate (1.6) by saying that y(z) is a t most w-valent in any disk of
radius R in the open plane.

We now quote the main result of Kim [5, pp. 721, 722], which
may be stated in the following form

THEOREM C. Suppose that y(z) is regular in Do, and has n zeros
there. Then there exists z1 in DQ such that

(1.7) Iy(zd \<-(R-\z1~zQ\)(R

nl

(1.8) ^

Hence if

(1.9) Σi kl nl

in Do then (1.1) is disconjugate in DQ.

Both Kim's and Tijdeman's results can also be applied to equations
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(1.1) with polynomial coefficients.
In connection with Theorem B, Turan [3, problem 2.28] considered

functions y(z) which satisfy (1.6) for fixed constants R and n and
every z0. He called such y(z) functions of bounded value distribution
(b.v.d.). Suppose that in the equation (1.1) the coefficients are integral
functions, and that every solution y(z) has b.v.d.. Then he asked if
the ax to an are necessarily constants. This was proved to be the
case by Wittich [13] even under the weaker hypothesis, that for
every solution y(z) there exists at least one w Φ 0 and a constant R,
such that NB(w) is bounded above for all z0. Turan [3, problem 2.28]
also asked whether a b.v.d. function necessarily has at most mean
type of order one in the plane.

A related question was raised by Lepson [6]. Let f(z) be an
entire function and for each z let N(z) be the least integer such
that

(1.10) sup , l/ ( J f )(*)l
Nl '

If N(z) is bounded above for varying z, then /(#) is said to be of
bounded index, and the least upper bound N of N(z) is called the
index of /(s). It was shown by Shah [7] that the solutions of equa-
tions (1.1) have bounded index if the an(z) are constants. More
generally if the an(z) are rational functions which remain bounded
at °o, then any solution of (1.1) which is an entire function has
bounded index [8]. Shah also showed that any function of bounded
index has order 1, type N + 1 at most [7]. This result is sharp as
shown by f(z) = exp {(N + ΐ)z}. It is evident that if f'(z) has bounded
index N, then f(z) has bounded index at most N + 1. The converse
is however false, as an example at the end of the paper will show.
Another example has just been given by Shah [9].

Lepson in conversation with me raised the question as to whether
the functions of bounded index and b.v.d. were related. This problem
was the basis of the present paper. We can settle the question in
one direction very simply by quoting the following form of a classical
result on p-valent functions. We denote as usual positive absolute
constants by A, constants depending on p, q etc. by A(p), A{p, q),
particular constants by Al9 A2, etc.

THEOREM D. Suppose that f(z) is p-valent in Do, i.e. that f(z) is
regular in Do and assumes no value more than p times there; then
for j > p

(1.11) Ifϊίψ* £ Aί{p)f, m a x
JI i/=l to p
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The result (with j2p~ι instead of j2p) is due to Biernacki [1]. The
best known numerical value of A^p) is due to Jenkins and Oikawa
[4], who proved a bound for the maximum modulus of p-valent
functions from which Theorem D follows with Ax{p) = (AJp)2p.
If R ^ 2 we shall deduce from (1.11) that f'{z) has index at most
Azp. If R < 2, simple geometrical considerations show that f(z) is
at most prvalent in | z — z01 < 2, for every z0, where pλ < A4p/R2.
Thus in this case f(z) has index at most A5p/R2. Thus we have the
following

THEOREM 1. If f(z) is p-valent in \z — zo\ < R, for every z0 and
a fixed R, then fr(z) has index at most1 Ap max (1, R~2). If R ^ AP,
then f'{z) has index at most p — l In particular if f(z) has b.v.d.
then ff(z) has bounded index.

2. Statement of further results* We shall in this paper prove
a local converse to Theorem D, i.e. we shall show that if f(z) satisfies
an inequality such as (1.11) in a disk, then f(z) is p-valent in a
suitable smaller disk. The result will also enable us to improve the
Theorems of Tijdeman and Kim in certain cases. It is convenient to
define

(2.1) fn(z) = max \f<»(z) .

Our first result is

THEOREM 2. If f(z) is regular in DQ and satisfies

(2.2) I/<•>(*) I ^fn(z)

there, then we have in DQ

(2.3) fn{z) ^/n(So)exp(|s-3o |)

COROLLARY 1. // f(z) is an integral function satisfying (2.2)
in the whole open plane, then

(2.4)

there, so that f(z) has at most order 1? type one.

COROLLARY 2. If f(z) is an integral function of bounded index
N, then

It will follow at once from (2.8), that this estimate can be replaced by
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(2.5) \f(z)\ £ e<»+™ max }fM®[[ £ fN+ι(0)e{N+ι)]zl .

The Corollary 2 sharpens the theorem of Shah [7] previously-
referred to. The function f(z) = e{N+ι)% which has index N, shows
that (2.5) cannot be further sharpened except possibly for the constant
A+i(0). On the other hand the inequality (2.3) is sharp, as f(z) = ez

shows. This is the reason why (2.2) is more convenient as a normalisa-
tion than (1.10) for the purpose of this paper. Our main result is an
analogue of Theorem C. This is

THEOREM 3. Suppose that f(z) is regular in \z\ < 2n and satisfies
(2.2) there. Then f(z) possesses at most n — 1 zeros in

\z\^ nml(eVW) < nlι2/12.2.

Let us compare this result with the conclusion to be drawn from
Theorem C.

THEOREM E. Suppose that f(z) is regular and satisfies (2.2) in
\z\ <̂  R, where R <£ 1/2. Then f(z) has at most n — 1 zeros there.

Theorem E is stronger than Theorem 3 for n g 37, and we only
have to assume that f(z) satisfies the hypotheses in | z | ^ R. On the
other hand for n ^ 38, Theorem 3 yieds a larger disk in which there
are at most n — 1 zeros, at the cost of assuming that f(z) satisfies
the hypotheses in a still larger disk.

The order of magnitude in Theorem 3 is the correct one for large
n. We set

f(z) =±-(z2 - 3(n - l)Yl!2)n , if n is even
nl

f(z) = ±-z(z2 - Zn)m){n-ι) , if n is odd .
nl

Then f(z) has n zeros in \z\ ^ V{Zri). On the other hand

f^(z) - 1 , r*~»(z) = z , Γ«~2)(z) = i-z2 - I ,
Δ Δ

so that we have for all z

1 - |/< >(s)| ^ max {\f^~ι){z)\, \Γn~2(z)\) ^fn{z) .

Thus we cannot replace w1/2/(12.2), by nmVΎ in Theorem 3, even if
(2.2) is satisfied in the whole plane.
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By applying Theorem 3 to f(z) — w, we obtain the desired converse
to Theorem D. This is

THEOREM 4. Suppose that f(z) is regular in DQ and satisfies there

(CR)P+l ^ max (CR) ,\fM(z)\
(p + 1)!

with C ̂  1/2. Then f(z) is p-valent in \z - zo\ ̂  CR/{12 2(p + 1)1/2}.

COROLLARY. An integral function f(z) has b.v.d. if and only if
f'(z) has bounded index. More particularly if p(R) is the upper bound
of the valencies of f(z) in \z — zo\ < R, for varying zQ, and N is the
index of f'{z) we have

τh>^ > I = N + 1 -
We can also prove

THEOREM 5. Suppose that f'{z) is a function of bounded index
N and let p(R) be defined as above. Then

(2.6) A7(N + 1) ̂  p(l) g A8(N + 1) .

Furthermore for R^l, we have

(2.7) p{R) <(N+ l)e(R + 2) .

COROLLARY. IfQ<Rι<R2<^ then we have

JX2 it/!

We now turn to applications to the disconjugacy problem of the
equation (1.1). We write

(2.9) av — sup α^z)!, a0 = sup aιju

Z 6 Z>Q Igvgίl

and let ί0 be the positive root of the equation

(2.10) Σ <*Ά = 1

Then we have evidently
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We suppose that y(z) is a solution of (1.1) and set f(z) = y(z0 + tz)
where t ^ ί0. Then

fw(z) = tvy»(z0 + tz) , v = 0 to n ,

so that /(#) satisfies for | z | ^ JB/ί the differential equation

In view of (2.9), (2.10) this leads to (2.2). Thus by applying Theorem
3 to f(z), with t = tx = min {ί0, J2/2̂ } we obtain

THEOREM 6. If y(z) is a solution of the equation (1.1) in Do, then
y(z) has at most n — 1 zeros in

\z - so| £ R, - min {̂ 1/2/

i.e. ί/iβ equation is disconjugate in \z — zQ\ < JB^

To compare Theorem C and Theorem 6, we take | ak \ constant in (1.1)
and Rt — 1. Then the condition for Theorem C is certainly satisfied if

f, 2k\ak\ < 1

while the condition for Theorem 6 is that

Thus Kim's condition is weaker and so his Theorem is stronger unless
n is very large, and the ak for small k relatively large compared
with the others, when Theorem 6 gives a better result.

Finally we return to the exponential polynomials (1.3). We shall
prove

THEOREM 7. If y(z) is the exponential polynomial (1.3) then y(z)
has at most n — 1 zeros in \z — zQ\ < J" xmax {0.025, 0.15w~1/2}.

The result with n > 36 will be deduced from Therem 6. and when
n S 36 from Theorem E. Both the results are somewhat sharper
than the conclusion of Tijdeman's Theorem A.

3* Proof of Theorem 2. Suppose that f(z) is regular in Do and
satisfies (2.2) there. We set for a fixed real θ

g(t) - max \fiu)(z0 + teiθ) | , 0 ^ t < R .
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The interval [0, R) can be divided into a finite number of subintervals
in which one of the derivatives \f{v)(z0 + teiθ)\ is maximal. Thus g(t)
is continuous and except for a finite number of points we have in
(0, R) for some v, 0 ^ v <^ n - I

in view of (2.2). Thus e~ιg{t) is nonincreasing in [0, R) and this
yields (2.3), when we set z — z0 + teiθ. We deduce (2.4), on setting

Zo = 0 .

Finally to deduce Corollary 2, we suppose that f(z) has index
bounded by N in the whole plane, so that in view of (1.10) we have

<= max(N + 1)! OέuίN V\

We set g(z) = f(tz), where t — (N + I)" 1, and deduce that

g{N+ί)(z)\ ^ max *—Σ^L±JΆ\gM(z)\ ^ max \gw(z)\ .

Thus g(z) satisfies (2.2), with n = N + 1, and we deduce from (2.4)
that

10(s)I ^ ff*+1(0)e'" = max 0<"(O)|e'" = max i" | /

Since /(«) = g[(N + 1)«], we deduce (2.5).

4* Proof of Theorem 3. To prove Theorem 3 we need, apart
from Theorem 2, two subsidiary results.

LEMMA 1. Let zu, v — 1 to n be complex numbers such that
. \zv\ = p0. If further

where bt = 0, ami ε — 1 or — 1 , then

I δ*| < ^(1I2)kpϊ, k > 1 .

The Lemma is false, without the hypothesis bt — 0. Thus if
0(s) = (« + 1)%, then

Po = 1, 6, = n(n - 1) . . . (n - k + l)/kl ~ g ,

as n —> c>o for fixed fc.
With the hypotheses of Lemma 1, we can set
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n / 1 \ °° Sf Z^
ψ(z) — Σ log ( = = Σ "-^— y

>=i VI — zjz> k=i k

where Sx — 0 and
I cf I _ v ?h < mnh < (nιl2n\k h > 9

v = l

Since φ(z) = exp {Tψ(z)}> we deduce that the coefficents of φ(z) cannot
exceed those of exp{ΣΓ (\Sk\/k)zk] which are smaller than those of

This prove Lemma 1.
We have next

LEMMA 2. Suppose that g(z) = Σ Γ Q X is regular in \z\ ^ p, and

that

(4.1) ΣICviy^ΣlflUV**'.

Further let zv, 1 ^ v •£ n be zeros of g(z) in | z \ g p, such that

(4.2) Σ «„ = 0 .
v = l

iϊβre multiple zeros may be counted according to their multiplicity.
Then

(4.3) ρ0 = max | s, | > p(5^)-1/2 .

Here also the condition (4.2) is essential. For without this we
may take

g(z) - (z + aY ,

which has n zeros at £ = — α, and certainly satisfies (4.1) if

ρ 2 n <,n2\a\2ρ2n~2 , i . e . p ^n\a\ .

Thus without (4.2) we can certainly not assert p0 > p/n instead of
(4.3).

To prove (4.3) we assume without loss of generality that p — 1,
since otherwise we may consider g(pz) instead of g(z). We now set

h{z) - Π ^ — - Σ hX .

It follows from Lemma 1 that
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π
=1 1 — ZVZ

Similarly if

then

- Σ h z k , w h e r e b, = 0 , | b k | < ( p 0 n ί f 2 ) k , k > l

Π (z ~ zy) = Σ ckz*
v = l k=Q

and now Lemma 1 shows that

cι — u9 \ck\ <^ ψon ) , fϋ ^ ά .

We set ft^1/2 = *, (1 - t2)"1 = r. Thus we have for k ^

Σ Cpbp-k
P=k

Σ t2p~k

1-t2

We now set

g(z) = G(z)h(z) ,

and assume that p0 < p, since otherwise there is nothing to prove.
Then G(z) is regular in \z\ ^ 1, and \G(z)\ = \g(z)\ for |^ | = 1. Thus
if

G(z) =

we have

re

say. Now for p < n, we have

Σ
fc=0

IV |2

This yields in turn

Σ

1 —

< ^ 3 Σ ^2w~2p < στψ < l σ ,
p=0 2

if f ^ 1/5, so that τ ^ 5/4. This contradicts (4.1). Thus t > 5~1/2,
and Lemma 2 is proved.
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4.1. We can now complete the proof of Theorem 3. We assume
that f(z) has n zeros, zt to zn, in \z\ ^ ρ0, and set

1 n

ZQ
 τ=Z X J Zy f Z^ ~==- Z y I ZQ ,

F(z) =f(zo+ z) .

Then F(z) has the n zeros z'v with | z'u | ^ 2ρ0, and Σ *£ = 0. Further
F(z) satisfies (2,2) in | z \ < 2n — p0. From this we proceed to obtain
a lower bound for pQ. We assume pQ < (l/2)w, since otherwise there is
nothing to prove, set

μ = Fn(0) = max \F

and write

CO

0

Then it follows from (2.3) that

Mn(R) = max |F(%)(2;) \ ^ μeR , 0 ^ R^

Further

Hence Cauchy's inequality yields for 0 < R < n

<4 4> ( ^ W ^ i s ^ a ^ »*••
We now set ι> = ?ι + ί, i? = inf (ί, w — 1) in (4.4) and take p = w/e in
Lemma 2. Then (4.4) may be written as

(4.5) \Fn+t\P^ n\ (n + tyΛR/ nl

say, where

Uo = 1 ,

(
(n + t)l\e

(Λ + ί)!

We proceed to prove that
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(4.6) Ut^t~ι , t ^ 1 .

Suppose first that 1 <Z t ^ n — 1. Then

as required.

7

If n > 2, t =

£7 ί

Finally if w

£7 -

<

<

(n +

Next for n -

T 2

" ( ί + l ) ( ί -

= n, we have

1 + ) C
< w — 1 /

n 1-2

^ - 1 2n(2n -

i* P.

t)\ t*

= 2, t:

c(
+ 2)C\

(2n)!

1 \ ^ *
- L) i

> 2, ί > n, then

n + t)! Mt - 1
n t Λ«/(W-D +

n!ί! ^ 1

- J β
. /

W—1—ί

> 1

2 V

1

n
(n-

1 2
t t

we have

V e)

n
n — 1 (w •

- 1 " t

,ltl Λ V r Λ /,
f £ ) ! e " P I

ί =

1

t +

1

+ 1)

. 1
: t

1 "

.2 .
(n +

1

ί

• n
2) .

7 1 -

• 2%

- 2\
- l J

(w + t)\ n + t t

Thus (4.6) holds in all cases.
We deduce from (4.5) and (4.6) that

*=o n+t (nl)2 t=o

(4.7) <; Ά

On the other hand

« — 1
'%Γ~' I 777 |2^v2v " ^

(4.8) = max (vl\Fu\)2-j-— ^ max (v!|i^J)2 inf -*—

In fact for ^ > 1, ^7^! first increases and then decreases, as v
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increases from v = 0, and for p ^ 1, pyjv\ is steadily decreasing in
this range. In either case pvjv\ attains its minimum in the range
0 ^ v <^ n — 1 either at v = 0 or v — n — 1. Since

( n - 1 ) ! \eJ ( n - 1 ) !

decreases with increasing w and is equal to 1 for n = 1, we deduce
that the minimum of ρv\v\ is attained at v — n — 1, and (4.8) follows.

Combining (4.7) and (4.8) we deduce that

Σ\Fu\Yu> Σ ( iW
0 v = n

Thus we can apply Lemma 2. Since F(z) has the n zeros ^' with
12' I ^ 2ft and Σ *£ = 0 we deduce from Lemma 2 that

2ft > p(5n)-112 = n1J2e~%-ll\ ft > nll2/(201}2e) .

This proves Theorem 3.

5* Exponential polynomials* We have already seen how to
deduce Theorem 6 from Theorem 3. We proceed now to deduce
Theorem 7. Let

Viz) = Σ Pu{z)e"»™

be an exponential polynomial (1.3), and set

1 n

o>o = — Σ <»V9 o)[ = ωv - ω0 ,

where each ωυ is counted with multiplicity ku, and kv — 1 is the degree
of py(s). Then /(«) = y(z)e~ω<>z satisfies the differential equation

P(D)f = 0 ,

where

P(D) = fί(D~ O = Dn + hD"-1 + K

say. Also if

Δ = max Iωu\ , then J ' = max \ω[\ <, 2/1

and since Σω[ = 0, we deduce from Lemma 1 that

I b k I ^ Δ ' k n ( l f 2 ) k , k ^ 2 ; b ι = 0.
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We choose

and consider g(z) =f(tQz). Then g(z) satisfies differential equation

(D* + Σ ίXW^W) = 0 ,

and

(5.1) Σ to I k\ ^ Σ {2t,AnuΎ < Σ α* = T - ^ — = x

2 2 2 1 — ^

It now follows from Theorem 6 that f(z) and so y(z) has at most
n — 1 zeros in

This proves one of the inequalities of Theorem 7.
To obtain the other we first note that Theorem E follows at once

from Theorem C. For if f(z) has n zeros in \z\ < R, where R ^ 1/2,
let zι be a point such that (1-7), (1.8) hold with f(z) instead of y(z).
Then

I/<-*>(*,) I < i ^ | / < • > ( * , ) I ̂  I / ' 'OOI , 1 ^ Λ ̂  w ,

and this contradicts (2.2). Thus Theorem E is proved. It follows
from (5.1) that g(z) satisfies (2.2) and so has at most n — 1 zeros in
z\ < 1/2, so that f(z) has at most n — 1 zeros in \z\ < (1/2)ί0. This

completes the proof of Theorem 7.

6* Index and local valency* It remains to prove Theorems
1, 4 and 5 and to this we now turn. We start by applying Theorem
D with

A,{p) = (A2/pΓ

To see how this result follows from the Theorem of Jenkins and
Oikawa [4] we assume that z0 = 0, R = 1. Then the above authors
proved that if f(z) = Σ Γ anz

n is p-valent in \z\ < 1, and 0 < r < 1,
we have

M(r,f(z) - a0) ^ μp A0(p)(l - r)-2* ,

where

μp = max | α j , A0(p) = Al .
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Now Cauchy's inequality yields for n> p

K i S A(p)/V-*(1 - r)~2%

and choosing r = 1 — p/(2n), we deduce that

lαj £* ii?j

This proves (l ll) with A,(p) = (8A0/p2)p, when i2 = 1, »0 = 0. We
deduce the general case of Theorem D, by considering f(z0 + Rz)
instead of f(z).

Suppose now that R ^ 2. Then (1.11) shows that for j > p

(6.1) l/ω(*o)l g m a x l^fr^l

We write JF(Z) = /'(«), and deduce that for R :> 2, n >

max

provided that

(6 2) ψ^W. * SS ψ=Ίΐ'
In view of (6.1) this condition is satisfied for n > 2p if

i.e. provided that n ^ Ap. Thus if the hypotheses of Theorem 1 hold
with a fixed R ^ 2, and n ^ Ap then (6.2) holds for all zQ and so
F{z) — f'(z) has index at most Ap. If R < 2, then disks of radius
2 can be covered by almost AR~~2 disks of radius R, so that f(z) is
Prvalent in disks of radius 2, where pt < ApR~\ Thus we obtain
the first statement of Theorem 1 also in this case.

Next we deduce similarly from (6.1) that F(z) has index less than
p, provided that (6.2) holds for n > p, i.e. provided that

This is equivalent to

(i - p) log R > 2p{(\ogj/p) + A} + log i ,

which is satisfied provided that log R > Ap. This proves the second
part of Theorem 1, and completes the proof of that Theorem.

6.1. We next prove Theorem 4. For this purpose we apply Theo-
rem 3 to F{z) = /(is) — w, where w is any complex number, f(z) is the
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function of Theorem 4, and t — CR/(p + 1). Our hypotheses imply that

(6.3) (™Y+ FP+W < max f V
V t / (p + 1)! ~ «»s» V ί / y!

for I te — 201 ^ JB, i.e. 12 — t~ιz0 | S ί^JS, and since C ;£ 1/2,
Γ'R ^ 2(2? + 1). Also (6.3) shows that

υ!

^ max IF'1"^) I ̂  max \Fw{z) \

since CR = (p + l)t. Thus F(z) satisfies the hypothesis of Theorem
3, with t~ιR instead of R, and n = p + 1, and we deduce that F(z)
has at most p zeros in \z — t"W ^ (p + l)1/2/12 2, so that the equa-
tion f(z) — w has at most p roots in

\z-zo\<t(p + l)ll2/12'2 = CR/{12-2(p + 1)1/2} ,

i.e. f(z) is p-valent in this disk. This proves Theorem 4.
We next prove the Corollary. Suppose first that f(z) is an integral

function, which has b.v.d., so that for some R, f(z) assumes no value
more than p times in any disk of radius R. Then it follows from
Theorem 1, that f'(z) has bounded index. Furthermore if R ^ Al>
then the index N of f'(z) is at most p — 1. Suppose now that with
R = Aξ, where N is the index of f(z), we have p(R) ^ N, so that
f(z) assumes no value more than N times in any disk of radius R.
Then Theorem 1 shows that f'{z) has index at most N — 1, which
gives a contradiction. This proves the second inequality of the Corol-
lary.

Next if f'{z) has bounded index N9 it follows that we have for
all z

\f(N+2)(*)\ maxmax
(N+ 1)1 " i^^+i(χ ;- 1)!

and hence a fortiori

(N + 2)!

Thus we may apply Theorem 4, with p = N + 1, C = 1/2, JK = 2, and
deduce that /(#) is (JV + l)-valent in every disk of radius

r =

Thus f(z) has b.v.d. and p(r) ^ N + 1. This completes the proof of
the Corollary of Theorem 4.
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6.2. It remains to prove Theorem 5. The first inequality in
(2.6) follows at once from Theorem 1. The other inequality in (2.6)
will follow at once from (2.7), which we now proceed to prove. The
method is similar to that employed by Tijdeman [10]. We write

Σ
0

f(z) =
0

and suppose, as we may do without loss of generality, that

(6.4) max \au\ = 1 .
lggN + l

Thus

Thus, applying (2.5) to / ' (z), we obtain for \z\ ^ R

(6.5) \f'(z)\ ^e{N+1)R .

We deduce that for I z I = R > 0

\f(z) - ao\ ^ \ReiN+ι)t

Jo
dt < e{N+ι)R .

We proceed to estimate the number n(ρ) of zeros of f(z) in | z | < p.
Suppose first that

Then ίoτ \z\<*p

\f(z)\ > \ao\ - \f(z) - θo| > eiN+1)? - e^+1)o = 0 ,

so that is this case n{p) = 0. Thus we may assume that

and we deduce that

It now follows from the normalisation (6.4) and Cauchy's inequality
that

Λf(l, /) ^ 1 , where M(r, f) - max | f(z) \ .
\z\=r

Thus there exists z0, such that \zo\ = 1, and |/(20) ^ l We apply
Jensen's inequality to

= f(z0 + z)
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in the circle \z\ ^ R, and deduce that the number nl9 of zeros of φ(z)
in \z\ ^ p + 1, satisfies

\og(R/(p+l)) - log{R/(p + l)}

since

M(R, φ) = max \φ(z)\ ^ 2e ( * + 1 ) ( i ϊ + 1 ) .
I « I = Λ

Choosing R = e(p + 1), we deduce that

n(p) £nί£(N + l)(e(p + 1) + 1) + log 2 < (N + l ) φ + 2) .

The same argument can be applied to f(z) — w, whose derivative is
the same as that of f(z) and we deduce that the equation f(z) — w
has at most (N + l)e(p + 2) roots in any disk of radius p ^ l
This proves (2.7). In particular setting R — 1 we deduce the right
hand inequality of (2.6) with A8 — 3e.

6.3. It remains to prove the Corollary. We first take R± = 1,
and assume that f'(z) has index N. Then it follows from (2.6) that

On the other hand in view of (2.7) we have for R2 > 1

P(R2) ^ ^

so that (2.8) holds if Rx = l The general case now follows, since
we may apply this result to f{Rxz).

The result of the Corollary shows in particular that for any b.v.d
function/(z), p(R) = O(R) as R—> °o, and also by Theorem 2, Corollary
2, f'(z) and so f(z) has at most exponential type. These two result
answer affirmatively a previous conjecture [3, problem 2.28]. In con-
clusion it is worth pointing out that since the index is rather easy
to deal with we can obtain various applications for functions of
bounded value distribution. One example of such an application is
(2.8). Also if f'(z) has index N,f(z) has index at most N + 1, as
we have already pointed out. Thus if f(z) has b.v.d. the same is
true of successive integrals of f(z). The converse is false in generaL
However we can prove

THEOREM 8. If f(z) is p-valent in \z — zQ\ < R, then f'{z) has
at most p — 1 zeros in \z — zQ\ < A(p)R.
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To see this we note that Theorem D, with j = p + 1,
A,(p) = (A2/p)2p, shows that for \z - zQ\ ^ (1/2)22

( ) i/<*>(*)
^ (p + 1)! (i4,(j> + ί)/p)2p max ^

If JB = #* = 2(2? + 1)! {A2(p + l)lpγ" < A*o, this yields

I /"+»(«) I ̂  max I /«">(«) |, |« - «, | ^ i - Λ .

It now follows from Theorem 3, that f'(z) has at most p — 1
zeros in |z — zo\ < p1/2/12 2. Thus we deduce the desired conclusion
with A{p) — Aflf where An is a small absolute constant. If R Φ Rp,
we obtain our conclusion by considering f(Rpz/R) instead of f(z).

6 4. We complete the paper by giving an example of a function
f(z) such that f(z) has bounded index but f'(z) does not.

Let

Then F{z)e~z is an integral function of order zero with zeros of
arbitrarily high order. Thus F(z) cannot have bounded index. Also

(6.6) F(z) = 0{e~C{z{} and so F'{z) > 0 , as \z\ > oo ,

for τr/2 + d <> arg z ^ 3ττ/2—δ, where C is a positive constant depending
on δ.

Next

(6.7) | | - H Σ ^ >h as 1̂ 1 >oo, for | a r g z | ^ τ τ - S .

We now set

f(z) = B+ \ZF(z)dz .
JO

It follows from (6.6) that by a suitable choice of B we can make sure
that

so that

^ 1 , for -§JL<ς|args<:-^L
4 4
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in this range in view of (6.6). Also for \&τgz\ ^ 3ττ/4, we have

\F'{z)\ £A\F(z)\

in view of (6.7). Thus we have in the whole plane

where A is a suitable constant, and so by Theorem 4

\f(z)dz

has b.v.d. in the plane and so by the Corollary of Theorem 4 f(z)
has bounded index, and in fact if ε is a sufficiently small positive
number f(εz) has index one. However the derivatives of f(εz) do not
have bounded index.

I am grateful to the referee for a number of minor corrections
and for having drawn my attention to Shah [9], where the author
gives an example different from mine of a function with bounded
index, whose derivatives do not have bounded index.
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