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AUTOMORPHISMS DEFINABLE BY FORMULAS

JOHN GRANT

The group of definable automorphisms of a structure %
is denoted by &?($). The following theorem is used to dis
cover the group of definable automorphisms of various struc-
tures: If % has finite type and 8C = 33 then &f(%) == £έ?φ\
It is also shown that every group may be represented as the
group of definable automorphisms of some structure. De-
finable automorphisms are then investigated in infinitary
languages. Finally the notion of normal submodel is intro-
duced in analogy to the notion of normal subgroup with
definable automorphisms playing the role of inner automor-
phisms.

In this paper we consider the automorphisms of a structure which
are definable by the formulas of a language. See [1] Chapters 3 and
4 and [3] Chapter 6 for an exposition of the application of first-order
languages to the study of mathematical objects. We denote struc-
tures as SI — {A, Rθyθ<ξ, where each Rθ is an ^-ary relation on A,
and algebras as s^f = {A, Fθ}θ<ζ, where each Fθ is an w#-ary function
on A (in both cases 0 ^ n < ω for all θ < ξ). If Rθ (resp. Fθ) is a
0-ary relation (resp. function), it is a distinguished constant and we
write it as aθ. The type of 2t is μ = <^>/?<ί. Lμ is the appropriate
first-order language for 21; we usually just write it as L. The
diagram language of 2t, L(2C), is the language L with a symbol
added for each element of 21. The diagram of 21, D(2I), is the set of
all atomic sentences of L(%) which hold in 2C together with the nega-
tions of all atomic sentences of L(2ί) which do not hold in 21. When
we write definable we mean definable in the diagram language (i.e.
definable by parameters).

We use φ, ψ, χ for formulas; x, yf z for variables; and /, g, h for
functions: functions are written from right to left. When we write a
formula φ as φ(x19 •• 9xn9a19 , αw), it is understood that xl9 , xn are
all the free variables of φ and au , am are all the parameters of 21 in
φ. A sentence has no free variables. The cardinal of 2t is A and the
cardinal of μ is | ; we denote the latter by ~μ. We write 2 (̂2t) for
the group of automorphisms of A; gf (21) = <G(2ί), , -1,1> where G(2t)
is the set of automorphisms of 2t, and ~L are the group operations
and 1 is the group identity. Similarly we write Jĝ (2C) for the group
of definable automorphisms of 21 and j%"(Sί) for the group of automor-
phisms definable in L (i.e. definable without parameters). I stands
for the trivial group of one element; SϊfΔ^ means that £ίf is a normal
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subgroup of 5f ;T(5f) is the center of <& and ^ V ( ^ ) is the
centralizer of Sίf in &.

1* Definable automorphisms* First we give some results of
Marsh about definable automorphisms.

DEFINITION 1. ([6]) Let / e G(2t) Then / e H{%) if for some
formula φ(x9 y, al9 , an) of L(%), α' = f(a) iff %N Φ(a, af, al9 , an).

We say that the automorphism / is defined by the formula
φ(x, y, al9 •• ,α w ) . A definable automorphism is defined by infinitely
many formulas.

The next lemma is proved by induction on the formulas of L(2t).

LEMMA 1. Let f e G(%) and let χ(al9 , an) be a sentence of L(%).

Then 31 \= χ(au . . . , an) iff SI h χ(f(aύ, , /(<O).

PROPOSITION 1. ([6]) £g?{%)A&(%).

Proof. I t f , g e H a r e d e f i n e d b y φ ( x , y 9 a 1 9 9 a n ) a n d ψ ( x 9 y , e l f ,
em) respectively, then f~ι is defined by φ(y, x, au , an) and gf is
defined by (3z)[φ(x, z, al9 αΛ) Λ ψ<2, y, ex, , O ] where z is the first
variable free for y in φ and free for a? in ψ. The identity automor-
phism is defined by y = x. Now let g e G and let / e H be defined
by φ(x, y, alf •••, an) It follows from Lemma 1 that gfg~ι is defined
by Φ(x, y, g(ad, , g(an)). Thus ^ r " 1 e H.

LEMMA 2. (̂a?, 2/, αL, , an) defines an automorphism of 2t iff
the following 1 + ξ formulas of L(%) hold in %:

(P) (Va?)(32/)[0(a, V, al9 , αn) Λ (V«)(^(a?, «, al9 , αΛ) ->» = 2/]

Λ (V2/)(3a>)[0(α, y,alf -.-, an) Λ (V«(^(«, 2/, α^ , αn)

-> 2 = a?] ,

(P<?) ^(«β, αff, aly , αw) i / ^ = 0 ,

(Pθ) (Vxί9 , xnθ, 2/1, , 2 k , ) M « i , 2/i, α1 ? , α j Λ •

Λ ^(a?^, »^, Oi, , an)] -> [Λ^a?!, , xnff)

<-> Rθ(yl9 , yn$)]} if nθ > 0 .

PROPOSITION 2. Suppose % < S3.
(a) (Marsh) Every f e H(%) can be extended to an /e£Γ(Sβ).
(b) // α formula of L(SC) defines g e H(^&) then g is the extension of
some feH(A), i.e., g = / .
(c) 7%e map m: / - > / emδeds Jg^(St) mίo

Proof, (a) Let / be defined by the formula which defines / .
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Since 2C -< 33 it follows from Lemma 2 that / is an extension of / .
(b) Let / be defined by the formula of L(%) which defines g.
(c) It follows from (a) and Proposition 1 that m is an embedding.

It follows that the map r: %—*J%f(%) is a functor from a category
of models (the maps being elementary embeddings) to a category of
groups (the maps being group embeddings).

The next two theorems follow from Example 10 and Theorems 1
and 2 of [2].

THEOREM 1. If]2<ω and % = 93 then JT(SI) = ^(33) .

THEOREM 2. // ~μ < ω and 2C is elementarily embeddable in 33
then £ίf<&) is elementarily embeddable in

It follows that if μ < ω the map r: 2t —> <%?($£) is a functor in
a category of models (the maps being elementary embeddings).

EXAMPLE 1. The complete theory of densely ordered sets without
first or last element is known to have models 31 such that 5^(2t) =
/ ([7]). Thus £έf(%) = I and so by Theorem 1 if S3 is any model
of this theory, then ĝ̂ (S3) = /. The same holds also for the three
other complete theories of densely ordered sets. This result was
proved earlier by Marsh in a different way.

EXAMPLE 2. Let 2t be the real-closed ordered field of real numbers.
Then gf (2Ϊ) = I and so <%"(%) = /. Since the theory of real-closed
ordered fields is complete ([9] page 105), it follows from Theorem 1
that if S3 is any real-closed ordered field, then Jg (̂S3) = I.

PROPOSITION 3. (Marsh) If SI is finite then ^ ( 3 t ) = S^(3t).

Proof. Let A = {α,, , αm} and let / e G(2t). Then / is defined
by the formula φ{x9 y, alf . , am) where φ is [x = a1 A y — /(αx)] V V
[x = am A y =f(am)].

2. Automorphisms definable in L. In this section we investi-
gate both ^ ( 2 t ) and ^T(2t) for various St.

DEFINITION 2. Let / e G(3t). Then fe K{%) if for some formula
Φ(x, y) of L, a' = f(a) iff St N Φ(a, a').

PROPOSITION 4. ^T(%) is a subgroup of ;r(gf(2t)).

Proof. This follows from the proof of Proposition 1.
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COROLLARY. j/£Γ(2t) is an abelian group.

The next lemma is proved using Lemma 2.

LEMMA 3. // §1 = SB then

EXAMPLE 3. One model for the complete theory of divisible tor-
sion free abelian groups is the additive group of rationals, & ([1]
page 180). We treat & as an algebra rather than as a structure.
&(&) ~ Λ? where ^/S is the multiplicative group of rationals; for
if / 6 G{&) then f(x) = rx for some r e R. Since y = rx can be ex-
pressed as a formula of the appropriate L, it follows that &(&) —
3ί?(&) = 3ίΓ(&). Let ^ be any divisible torsion free abelian group.
By Lemma 3, 3f{6^) ~ ^f and by Theorem 1,

EXAMPLE 4. Let %p be the algebraic closure of the prime field
of characteristic p. If / e G(2tp) then /($) = x3)fc for some integer k
([8] page 614). Thus S (̂2tp) = ^ where 9T is the cyclic infinite
group. Just as in Example 3, &(%p) = ^"(Stp) = ST(%P). Let 93,, be
any algebraically closed field of characteristic p. Since the theory of
algebraically closed fields of characteristic p is complete ([1] page 179),
it follows by Lemma 3 that _5r"(33p) ~ rtf and by Theorem 1 that

Next we consider theories categorical in power co. Note that the
models of such theories are assumed to have μ ^ ω. We use the
following result.

PROPOSITION 5. (Ryll-Nardzewski) ([11]) A theory T is categori-
cal in power ω iff for each n there are only finitely many formulas
with n free variables which are inequivalent T.

The next result follows from Proposition 5.

PROPOSITION 6. If % is a model of a theory categorical in power
co then 3έί^S) is finite.

PROPOSITION 7. If 31 is a model of a theory categorical in power
a) then J%?(%) is periodic.

Proof. Recall that a group is periodic if every element has finite
order. Now let / e J5Γ(St) be defined by the formula φλ(x, y, al9 , αw).
Then fm is defined by a formula φm(x, y,au •••, an). By Proposition
5 for some k, % t= &(#, y, zly , zn) <-• φk(x, y, zl9 , zn). This implies
that fk = f.
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Recall that a group is torsion free if every element, except the
identity, has infinite order.

LEMMA 4. If 31 is a totally ordered set, SI = {A, <>, then ĝ (SI)
is torsion free.

COROLLARY. If SI is a model of a theory of totally ordered sets
which is categorical in power ω then £$f($£) — I.

Each of the four complete theories of densely ordered sets of
Example 1 is categorical in power ω ([1] pages 176-177). Thus the
Corollary gives another proof of Marsh's result. This result may
also be proved in a more direct way by showing, using induction on
formulas, that if St is a model of such a theory and φ(x, y, aί9 , an)
defines an automorphism of SI, then SI t= φ(x, y, au , an) +-* y = x.
The elimination of quantifiers ([4] pages 51-52) simplifies the proof.

EXAMPLE 5. Consider the complete theory T of discretely ordered
sets without first or last element ([4] page 53). Let SI be a model
of T. We can prove by induction on formulas that if φ(x9 y, au , an)
defines an automorphism of SI, then SI t= Φ{x, y, al9 , αΛ) «-> y — smx
for some integer m. Thus <̂ T(SI) = JT~(SI) ~ 9f.

3* Representation theorems* In [3] pages 68-69 it is proved
that for every group & there is an algebra j y such that & ~ S^(jy).
We prove representation theorems for έ%f and 3ίΓ. We denote by
6^P the symmetric group on the elements of & and by **F(0*) the
group of inner automorphisms of P.

LEMMA 5. ^{^) is a subgroup of

THEOREM 3. For every group 0* there is an algebra jzf such
that &

Proof. When & is finite the construction in [3] page 68 gives
a finite algebra. By Proposition 3 we can take this finite algebra as
our j ^ Therefore it suffices to give a construction when & is infinite.
Actually our construction works for all & except if P = 2 or 6.

Embed & in S^P in the usual way ([5] page 90), and denote the
regular subgroup of S>% so obtained by ^ * . Well order ^ * , P* =
<Po, - - - , P c • • • > « * .

From [5] pages 92-95 and [12] page 314 it follows that ^(S^P) =
SfP. By Lemma 5, Sf GS£) - 3if{&& = J^iS^ί). We let

— (PP, , ~\ j>o, *> Pc •• }c<δ> i e. S^f is obtained from SfP by
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adding the elements of ^ * as distinguished constants.
Note that / e G(St?) iff / e G(£fp) and / leaves all pe, c < δ, fixed.

Since gf ( ^ ) - ^ (,£?), / e G(J^) iff /(a?) = / r 1 ^ for some ^ e S P and
Λ^pΛ - P, for all p, e P*. So g^(j^) = 3Γ<?P(&>*). But jT^ p (^*) =

page 91). Observe that if f e H(Sζ) then / is definable in
Also since g^(j^) is a subgroup of &(Sζ), we obtain ^ =

THEOREM 4. For ever?/ abelίan group ^ there is an algebra
such that & ~

Proof. Construct an algebra s^f such that & ~ Sf
" = <A, F o , •• , i Γ

ί , •• > ί < 7. Well order the elements of
<Λ, •••,/., •••>.<,. We let j ^ - <A, F o , . . . , F O --.,/o, •••,

Λ, Xo?,σ<τ This can be done since each fσ is a unary operation on
A. It follows that %?(Jϊf) = %r(^(J^'))= gf ( j*") = ̂  S i n c e

Note that by the corollary to Proposition 4, Theorem 4 is the
best representation theorem possible for 3tί

4. Automorphisms definable in infinitary languages* In this
section we consider the infinitary languages Laβ ([1] Chapter 14). We
denote by L^ the language in which arbitrarily long connectives
and quantifiers are allowed. We define Jg^(§I) as Jĝ (SI) with L
replaced by Laβ in the definition. SΓaβ{%) is defined similarly. Then
statements analogous to ones in §§1 and 2 may be proved. In par-
ticular,
( 1 ) ^aβX)Δ&<&)\
( 2) If μ < a and 21 =aa 33, then
( 3 ) ^rm a x (ϊ+,ω ) ω(St) = g?(3ί);
( 4 ) 3ίΓaif&) is a subgroup of

EXAMPLE 6. For every symmetric group 6^λ where λ is any
cardinal Φ 2 or 6, ^(Sΐ) = %?(Sί) = Sί and ^{S^) = 7([5] pages
92-95 and [12] page 314). Thus 3?(&{&£)) = I. This last statement
is also true for λ = 2, 6. By (4) ^tΓ^J^x) — I for every cardinal λ.

It follows from (3) that Sif^iSs?) = gf (J^). The next theorem
is the converse of (4); it is a special case of a theorem of Rogers
(Theorem 7 of [10]).

THEOREM 5. 3ίT»J&)

Proof. By (4) it suffices to prove that 5Γ(5^(2ί)) is a subgroup
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of 3?LJ&). So suppose that /eZ(gf(3t)). We find a formula φ(x, y)
of Z ^ which defines / . Well order the elements of 2C, A = <α0, ,
Gtf •>«!• We write D(X) for Z)(2t) with each α, changed to xc. Let
0(α>, y) be (Zt<ΊXt){(Vz)(Vt<ΊZ = x) A D(X) A (Vc<2» = x< Λ y =/(&,))}.

Now we show that 0($, #) defines /. Suppose that α' = /(α).
Then for some ^ <τ < A, a = α̂  and α' — ασ. Thus ασ = f(ap). Inter-
preting the xc as α, we obtain 2t t= 9(0^, αtf). Conversely suppose that
2t 1= 0(α, α') This means that there is a well ordering of SI, say A =
<A, , e,, )ί<3 such that for some p, σ < A, a — ep and a' — eσ.
Therefore in the original well ordering of SI, aσ = f(ap). Consider the
map si ac —• eί9 c < H; s e G(Sl). Also s/(α^) = eσ and /^(α^) =f(ep). Since
/s = s/, we obtain eσ = /(e^).

COROLLARY, (a) If A< ω and Jϊ < ω then J^(St) =
(b) // Z ^ ω_or Jδ ^ ω ίΛew c5 α̂χ(2+f?+)max(2+.«)(St)

In case A = α> and ^ ^ ω, ^ς i α l(SI) = -§T(Sf(Sl)). This can be
proved using a theorem of D. Scott as explained in the footnote on
pages 197-198 of [10].

5* Analogies between group theory and model theory* In this
section we assume that Sί -< 33 -< K, α< e A, bt e B, c< e C, and μ < ω.
Our analogs for group, subgroup, and inner automorphism are struc-
ture, elementary submodel, and definable automorphism respectively.

DEFINITION- 3. 31ΔS3 if for every /efl"(SB), f\Ae G(2t).

DEFINITION 4. If there is an / e H(%) such that f{aλ) ~ α2, then
aγ and α2 are conjugate elements (in SI). The set of elements of SI
conjugate to α e i forms a conjugacy class of St.

DEFINITION 5. The cardinal of the set of conjugacy classes of 21

is denoted by Λ:(SI).

Consider the theory T of Example 5. Then given a cardinal δ,
T has a model Sί, such that ιc{%) = δ. Let % be (α>* + ω)δ. The
result follows since each copy of the set of integers, ω* + ω, forms
a conjugacy class.

PROPOSITION 8. If 3IΔ£ then 3IΔ33.

Proof. Let / e HQ8). Extend ftofe H{&) as in Proposition 2(a).
Since / | A = f\A, the result follows.
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PROPOSITION 9 If 2IΔ33 then £%?(!$) can be embedded as a normal
subgroup in

Proof. We choose the m of Proposition 2(c) for the embedding.
Now let feH(%) be defined by Φ(x,y,alf -- ,αΛ) and let geH(S8).
Since gfg~ι is defined by Φix^y.gia^, •• ,βr(α»)), by Proposition 2(b)

^ = h where h e H(%).

LEMMA 6. Two elements of 21 are conjugate in 51 iff they are
conjugate in 33.

COROLLARY. K(%) <; Λ;(33).

THEOREM 6. 2IΔ95 iff every conjugacy class of 2t is a conjugacy
class of 33.

Proof. Suppose that 21ΔS3. Let ί be a conjugacy class of 2t.
By Lemma 6 K S L where L is a conjugacy class of S3 and L [] A —
K. Therefore L — K. Conversely, if every conjugacy class of 2t is
a conjugacy class of S3, then by definition SίΔSS.

We may define a structure St to be abelian if H{%) —I. If 23 is
abelian then 2CΔS3 and SI is abelian. By Examples 1 and 2, all densely
ordered sets and real-closed ordered fields are abelian.
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