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ON THE BEHAVIOR OF PINCHERLE BASIS FUNCTIONS

MAYNARD ARSOVE

A basis {an} in the space of analytic functions on a disc
{z: I z I < R} is called a Pincherle basis if, for each n(=0,1, )»
the Taylor expansion of an(z) has zn as its first nonvanishing
term. The object of the present work is to examine such
sequences to determine how behavior of the individual func-
tions an is related to the property that {an} is a basis. Of parti-
cular interest are the zeros of the functions fn(z) = an(z)lzn
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and the case when each fn is a linear function vanishing at a
corresponding point zn is studied in detail. There exist bases
in which infinitely many of the zn coincide with some point
in the disc, or in which the zn cluster at the origin. Never-
theless, the basis property can be correlated with various
growth-rate conditions on {zn}. For example, if the sequence
{| zozι Zn-ι \l/n} converges to some number A, then the condi-
tion A ^ R is necessary and sufficient for {an} to be a basis.
This and similar results are derived by using the automorphism
theorem and properties of entire functions of exponential type.
Correlations of this sort fail to materialize, however, for
general (nonlinear) fn, and certain phenomena encountered in
this case are illustrated by examples involving nowhere vanish-
ing fn.

Although a great deal is now known about bases in topological
linear spaces (see e.g. J. Marti [9]), the setting of analytic function
spaces remains one of the most fruitful. In such spaces, primary
interest attaches to the polynomial bases and the Pincherle bases.
The latter are closely linked with the fundamental basis

(1.1) δn(z) = f fa = 0,1, •••)>

which leads to considerable simplification, but Pincherle bases still turn
out to be vastly more complicated than {δn}. This will be imply
evident in our discussion of the correlation between the individual
functions an and the basis property. Certain aspects of the problem,
discussed in [1] and [2], will be drawn on as needed. The automorphism
theorem (about which more will be said presently) remains our principal
tool and permits us to avoid use of the elaborate theory of basic
series, developed for polynomials by J. M. Whittaker [11] and extended
by W. F. Newns [10].

Let us recall a few of the relevant concepts. With only minor
changes, the notation and terminology of [3] will be used throughout.
Thus, we take the underlying space as the Frechet space ^ R of all
functions analytic on a fixed open disc NB(0) of radius R (0 < R ^ + °°)
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about the origin, the topology being that of uniform convergence on
compact sets. As in (1.1), the sequences that enter here will be
presumed to be indexed by % = 0, 1, •••. A sequence {an} of functions
in JF'n is said to be a basis in J?r

R provided every function / in the
space can be represented as

(1.2) / = Σ cnan ,

where {cn} is a sequence of complex numbers uniquely determined by
/ and the convergence is uniform on compact sets. Moreover, the
basis is proper if and only if the series figuring in (1.2) converges
for exactly those sequences {cn} which are coefficient sequences for
Taylor expansions of functions in ^ R .

Proper bases are important because of their connection with auto-
morphisms on the space. By an automorphism on J^B we mean a
linear homeomorphic mapping of ^ R onto itself. The connection with
proper bases is embodied in the automorphism theorem derived in [3]
(see Theorem 2, p. 241): if A is an automorphism on ^ R , then {Adn}
is a proper basis in ^ R and, conversely, if {an} is a proper basis in

, then there exists an automorphism A on J^~R such that an =

When the functions an are of the special form

(1.3) an(z) = znψn(z) (n - 0,1, . . . ) ,

where each ψn is a function in ^ R with ψn(0) = 1, the sequence {an}
will be called a Pincherle sequence. The Pincherle basis problem then
consists of determining conditions under which a given Pincherle
sequence forms a basis in the space. Sufficient conditions for {an} to
be a proper Pincherle basis in the space ^2> of entire functions have
been discussed in [1]. In particular, {an} will be such a basis if either

ψΛz) = e^z) fa = 0,1, . . .)

for some entire function ψ vanishing at the origin or ψn —> 1 uniformly
on compact sets. In each case the zeros (if any) of ψn diverge to oo
as n —> oo, and it thus appears that the limiting behavior of these
zeros may be significant in the Pincherle basis problem.

With this as motivation, we proceed to examine the connection
between the zeros of the functions ψn and the values of R for which
{an} is a basis in ^ R . The special case in which each ψn is linear
is given particular emphasis, since this furnishes some interesting
positive results. For example, suppose that each ψn vanishes at some
corresponding point zu. Then the condition
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(1.4)

turns out to be necessary for {an} to be be a basis in ̂ B . This condi-
tion is not, in general, a sufficient one, but a derivation based on the
automorphism theorem shows that it becomes sufficient whenever the
sequence {|^i ••• ^»-il1/n} is known to be convergent. Alternative
sufficient conditions are

(1.5) liminf | z j ^ B
n—*co

(proof based on the theorem of Boas cited in [2]) and

(1.6) 0 < lim l*oZi-"^-il1/w < + oo

for some positive number p (proof based on properties of entire func-
tions of exponential type).

In the general case (when the functions ψn are not required to
be linear) the most decisive results are in the form of counterexamples.
Indeed, we show that there exist sequences {an} of the type (1.3)
which are not bases in ̂ R9 despite the fact that each ψn nowhere
vanishes (these functions can even be chosen to be uniformly bounded
on compact sets). Thus it is apparent that the limiting behavior of the
zeros is not a key to the general solution of the Pincherle basis pro-
blem. We show also that, for nowhere vanishing ψn9 it is possible for
{an} to be a basis in j^R for some values of R and not for others.

Further information is given relative to the general basis problem,
including an extension of the theorem of Boas to sequences of the
form

(1.7) βn(z) = an(z)ψn(z) ,

where {an} is a proper Pincherle basis in ̂ R and {ψn} is a sequence
of functions in ̂ "R satisfying ψn(0) = 1 (n — 0,1, •)• In particular,
this yields simple extensions of the condition (1.5) when the functions
ψn are linear.

2* Common zeros of the basis functions* Throughout the dis-
cussion, use will be made of the norms | | / | | r defined in terms of the
power series expansion

/(*) = Σ anz
n

of a function / in j^~R as

. |r» ( 0 < r < jβ) .
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In particular, we draw on the results of §3 of [3], it being noted
without further comment that (2.2) of [3] allows us to replace Mr(an)
in these results by | | α j | r .

Some elementary properties of expansions in Pincherle bases will
now be collected for convenient reference.

LEMMA 2 1. Let {an} be a Pincherle sequence and f a function
having the expansion

CO

/ = Σ cnan .

Then

(2.1)

and a necessary and sufficient condition for f to have a zero of order
m at the origin is that cm be the first nonvanishing coefficient in the
expansion.

Proof. Condition (2.1) is immediate from Lemma 2 of [3], since
obviously | | α Λ | | r ^ rn (n = 0,1, •••), and the final assertion is readily
verified from the assumed Pincherle character of {an}.

Lemma 2.1 provides the following information on common zeros
of the functions ψn.

LEMMA 2.2. If {an} is a basis in some subspace of ̂ R containing
all δn, then the functions ψn cannot ultimately have a common zero on

Proof. Suppose that for some point z0 in NB(0) and some positive
integer m we have ψn(z0) = 0 for all n ^ m. An application of Lemma
2.1 with f(z) = zm then yields

zT = cmam(z0) + cm+1am+1(z0) + = 0 ,

forcing zQ — 0, and this contradiction to the basic condition ψn(0) — 1
(n = 0,1, •••) completes the proof.

On the other hand, the theory developed in §4 of [1] can be applied
to obtain a Pincherle basis {an} in which infinitely many of the
functions ψn vanish at the same point.

EXAMPLE 2.3. The sequence {an} defined by

[Zn(l — z) for n even

\ _ z l f o r

(n + ΐ)(n + 2) J
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is a proper Pincherle basis in ^Z .

Proof. We start with the everywhere convergent power series

i.e.

= Σ
with

The entire function φ here has order 1, since, clearly,

eR/2 ^ msLx\φ(z)\ ^ eR .
lz\=E

We note also that φ is of exponential type, the type τ being given
according to formula (2.2.12) of [5] as

τ = lim|tt ! ί n | 1 ' = 1 .

n—κχ>

Hence, by Theorem 7 of [1], the functions

an(z) = zn[l - (tn+jtn)z] (n - 0,1, . . .) ,
which are those appearing in the statement of the example, comprise
a proper basis in ^Z.

3* Some aspects of the linear case* As Example 2.3 indicates,
the Pincherle sequences {an} for which all ψn are linear exhibit impor-
tant features of the behavior of Pincherle bases. We shall therefore
examine such sequences in more detail. Specifically, it will be assumed
that each ψn is a nonconstant linear function, so that

(3.1) an{z) = t*(l - A ) (n - 0,1, . . .) ,

where zH is the zero of ψn.
A simple criterion is at hand for determining when the subspace

spanned by {an} contains the fundamental basis functions δn.

LEMMA 3.1. Let szf be the subspace of^R spanned by tine sequence
{ocn} of (3.1). Then the following three conditions are mutually equi-
valent:

( 1 ) sf contains at least one of the functions δn(n = 0, 1, •••)»
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( 2 ) Szf contains all of the functions δn(n = 0 , 1 , •••);
( 3 ) the zeros zn of the functions an satisfy (1.4).

Proof. To show that (1) implies (3), let us assume that δm belongs
to j ^ for some m. Then, by Lemma 2.1, we have

(3.2) δm = Σ cnan ,

i.e.

Dividing by zm and letting z —• 0 yields cm = 1 and thereby

0 - - - + c m + ( )

This, in turn, yields cm+1 = l/zm. Proceeding inductively, we find that

(3.3) cn = (n > m) ,

and condition (1.4) then follows from (2.1). Thus, (1) implies (3).
Since trivially (2) implies (1), the demonstration will be completed

by showing that (3) implies (2). From (3.3) it is evident that the
partial sums sk in (3.2) are given by

sk(z) = s» - *"*" (k = 1, 2, . . . ) .

The assumed condition (1.4) gives rise to the inequality

for fixed p (0 < p < R) and large n, so that

lim sup I sk(z) - zm | ^ lim sup | zoz, . . zm^ \ (r/ρ)m+k = 0

uniformly in | z \ ̂  r < p. Inasmuch as this holds for each choice of
m, it is clear that (3) implies (2).

Note that formula (3.3) for the coefficient cn can be generalized
as follows (again, by a simple inductive argument). Let / be a function
analytic on some neighborhood of the origin. If the Taylor's series
for / is

f(z)=±a*r,
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and if / admits an expansion in terms of the functions an of (3.1) as

then

(3.4) c0 = a0 and cn = an + -^^ (n >̂ 1) .

An obvious consequence of Lemma 3.1 is that, when {an} is a
basis in . ^ , then the zeros of the functions an must satisfy (1.4)
On the other hand, a sequence {an} of the form (3.1) may fail to be
a basis in ^ R even though its zeros satisfy (1.4). That is, the dense
subspace jy, which contains all δn, may fail to be closed in J^B. This
possibility is illustrated by

EXAMPLE 3.2. The sequence {an} defined by

(zn(l — 2nz) for n even

() ] / z \
W l - - ^ - ) for n odd

[ V 2n+1)

is not a basis in any ^^(0 < R < + oo). However, for R ^ 1,
subspace J ^ o/ ^ ^ spanned by {an} contains all δn.

Proof. That Szf contains all δn is immediate from Lemma 3.1,
since it is plain that

(2 for n even (> 2)
1*0*1 • • • S - i | 1 / n = , . ^ ^

(1 for π odd

Suppose now that {an} spans ^ R for some i2 (0 < R < + oo), and
consider the function / in ^ ^ defined by

According to (3.4) the coefficients cn of the expansion of / in the
basis {an} satisfy

Λ — 1 _f_ c^-ι -> 1 (M -> Λ\

Rn zn^ I

There follows

c > Cn~1 > .=
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for odd n ^ 3, so that

l i m s u p \cn\
lίn ^ — .

This contradiction to Lemma 2.1 proves that {an} cannot be a basis
in ^ R .

The remainder of our discussion of the linear case hinges on the
following application of the automorphism theorem.

THEOREM 3.3. Let {zn} be any sequence of complex numbers sat-
isfying

(3.5) lim inf | zQzt - . zn_, \ιln ^ R ,
n—»oo

and let φ be the function in ^ R defined by

(3.6) φ{z) = 1 + Σ

Further, let

ajz) = zn(l - pj (n = 0,1, . . .) ,

and let {βn} be defined in terms of the successive remainders in (3.6) as

ί£o(s) - φ(z) ,
(3.7) co k

βn{z) = (^1 s»-i) Σ (n ^ 1) .
V Jc=n ZQZt Zk_ι

Then {an} is a proper basis in ^ R if and only if {βn} is a proper
basis in

Proof. We see at once that

(3.8) K = βn- —βn+i (n = 0,1, . . •) .

3

Hence, if T is an automorphism on ^ R such that βn — Tδn(n = 0,1,
• •), then an = T~~ιδn(n = 0,1, •)• This proves that {an} is a proper
basis in &~R whenever {βn} is. For the converse we assume that {an}
is a proper basis in ^ R and take T~~ι as an automorphism on ^ R such
that a% = T-'δ^n = 0,1, •)• There results

(3.9) Tδn = δn + -Tδn+1 (n - 0,1, . . •) ,

and a simple recursive argument leads to
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(3.10) Tδ0 = δ0 + Σ - + 1 n+1 (n ^ 1) .

As noted in pp. 240-241 of [3], the continuity of T ensures that to
any given r (0 < r < R) there corresponds a ^(0 < p < R) such that
for some constant K

Passing to the limit on n in (3.10), we thus obtain

τδ0 = δ0 + Σ ^ A .

By repeated application of (3.9), in the form Tdn+ι — zn(Tδn — δn), we
infer that βn = Tδn(n = 0, 1, •••), and the automorphism theorem
ensures that {βn} is a proper basis in j ^ " R . This completes the proof.

In the light of Theorem 3.3, we turn our attention now to the
sequences {βn}.

LEMMA 3.4. Let {βn} be defined as in (3.7). //

(3.11) limsup(| |/5j | ,) 1 / %< R
n-+oo

for all r < R, then {βn} is a proper Pίneherle basis in J^~R and the
coefficients in the expansion

/ = Σ <>nβn

are given in terms of the Taylor coefficients an of f as

c0 — aQ and cn — an — ^t=± (n ^ 1) .

Proof. Linear independence of {βn} is obvious from Lemma 2.1,
and there remains only to show that {βn} spans ^ B to conclude that
{βn} is a basis in ^ R . By Lemma 1 of [3] we know that the hypo-
thesis (3.11) ensures that Σ cnβn converges uniformly on compact sets
whenever {cn} is a sequence of complex numbers satisfying

Moreover, (3.8) shows that any function / in j^~R can be expressed as

f(z) = Σ α.«" = Σ

Since Σ l°W2j, and therefore ^\{ajzn)βn+ι\, converge uniformly on
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compact subsets of NR(0), we can regroup terms in the preceding
expansion to obtain

the convergence again being uniform on compact subsets of NS(Q).
This proves that {βn} spans &~R and establishes the asserted interrela-
tionship between the coefficients cn and an. Finally, we note that
condition (3.11) forces the Pincherle basis {βn} to be proper, in view
of Theorem 1 of [3].

Our applications of Lemma 3.4 make use of the following direct
estimate for | |/9j | r:

(3.12) Iί/9X^ |Zo*i •••*«-!I Σ

when 0 < r < R and n ^ 1.
Let us suppose that the limit

(3.13) λ -

exists finitely, with λ ^ R. Then, given r < R and choosing p so
that r < p < λ, we have for large n

pn p — r

There results

and, in the limit as p—>X, this yields

i r ) 1 / w ^ r (0 < r < R) .

Hence, by Lemma 3.4, {βn} is a proper Pincherle basis in
In conjunction with Lemma 3 1, the above considerations furnish

a definitive solution of the basis problem for sequences (3.1) such that
(3.13) exists finitely. We state the conclusions as

THEOREM 3.5. If {{z^ ••• zn_ι\
ιln) has a finite limit, then the

condition

(3.14) lim I zoz, zn^ \lln ^ R

is necessary and sufficient for the sequence
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(3.15) an(z) = z*(l -—) (n = 0,1, . . .)

to form a basis in J^~R, and the resulting basis is proper.

In particular, whenever the sequence {\zn\} itself converges, the
criterion (3.14) simplifies to

(3.16) Hm|zJ ^ R.

We note here that the condition

(3.17) lim inf | z j ^ R

is sufficient for the sequence {an} of (3.15) to be a proper basis in
JfR Indeed, this appears as a trivial special case of the following
theorem of Boas: every Pincherle sequence

φn(z) = z*[l + Xn(z)] (n = 0,1, •)

for which

limsup||λj| r< 1 (0 < r < R)

is a proper basis in ̂ R (see Theorem 4.1 of Boas [6], also [2] and
pp. 377-378 of [4]). Although replacement of the limit in (3-16) by the
corresponding limit inferior in (3.17) thus gives rise to a sufficient
condition for {an} to be a basis, no such analogue holds in (3.14).
Existence of the limit in (3.14) is essential to Theorem 3.5, as is
apparent from Example 3.2.

4* Further results in the linear case* In spite of its generality,
the criterion formulated in Theorem 3.5 has one important omission.
It is not applicable to the space of entire functions, since R must be
finite. As a means of dealing with this case (and incidentally obtaining
further information for the case of finite R), we introduce an auxiliary
function Φ closely related to the function φ of (3.6).

For {zn} any sequence of complex numbers satisfying (3.5), let Φ
be the function in ̂ R defined by

(4.1) Φ(z) = l + Σ Ί r (1*1 < R).

Then the usual formula for the remainder in a Taylor's expansion
leads to the inequality
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n\

where βn is any of the functions defined in (3.7) and rn is some
corresponding number between 0 and r. The fact that Φ{n)(t) is
nondecreasing for 0 < t < R allows us to conclude that

for 0 < r < R.
Using the estimate (4 2) in Lemma 3.4, we arrive at

THEOREM 4.1. Let {zn} be a sequence of complex numbers satisfying

liminf \z,zx ••• zn_x\
lln ^ R ,

and let Φ be defined as in (4.1). Then the condition

14)] -1 {r<R)

is sufficient for the sequence

an(z) = z*(l - ±)

to form a proper basis in

As an application, suppose that {zn} is a sequence of complex
numbers such that, for some positive number p, the limit

exists finitely and is different from zero. The same then holds for
the limit

p being taken as l/j>. This implies that Φ is an entire function of
order p and finite type T, with

lim (n/ey~p \ Φ{n)(z) \pln = τp

for each point z of the complex plane (see Boas [5], p. 11). The
conditions of Theorem 4.1 are thus satisfied for all R, and we have
proved

THEOREM 4.2. If {zn} is a sequence of complex numbers such that
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the limit

(4.4) \im iMillll^ϊH

exists as a nonzero real number for some positive number p, then

defines a proper basis in ^ B for every R (0 < R ^ + oo).

A somewhat more general result holds in the space of entire
functions. In fact, when R — + oo, it is clear from the derivation
of Theorem 4.1 that condition (4.3) there can be replaced by the
weaker condition that its left-hand member be finite. This, in turn,
permits a relaxation of the limit hypothesis (4.4) to yield

THEOREM 4.3. If {zn} is a sequence of complex numbers such that

liminf I * * •••*.-! l v ' >Q

and

|So«ilimsup i*o«i "«»-i < + „
l n

/or some positive number p, then

an{z) = zn(l - —) (w = 0,1, •)

defines a proper basis in ^ C .

We remark that Theorem 4.3 serves to generalize Theorem 7 of
[1]. Moreover, the assertions in Example 2.3 follow at once from
either Theorem 4.2 or Theorem 4.3, so that it is clear that these
theorems have some direct applicability. Our next example, however,
is based on a slightly different approach, contained in the concluding
paragraph of §4 of [1].

EXAMPLE 4.4. There exists a basis of the form (3.1) in ^ C for
which the zeros zn cluster at the origin* In fact, the sequence

(4.5)
( 2n+1 \

1 z for n even
n + 1 /

s fl 1 z) for n odd
(n + 1)2W /
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defines a proper basis in JK>

This example shows that the sufficient condition (3 17) is not a
necessary one. It also serves to illustrate the fact that a Pincherle
basis in ^ R need not be bounded on any neighborhood of the origin.

5* The general case* Although one might hope to relate the
general case of Pincherle bases in some natural way to the linear
case, we shall see that serious difficulties arise. Indeed, some rather
curious phenomena occur when the functions ψn of (1.3) are assumed
to have no zeros at all, and these make it plain that the distribution
of the zeros of the functions ψn does not furnish a key to the general
solution of the Pincherle basis problem. We thus turn our attention
to some of the situations at hand for nowhere vanishing ψn(n — 0,
1, •••).

EXAMPLE 5.1. The Pincherle sequence

(5.1) an{z) = znenz (n = 0, 1, . . . )

is not a basis in any ^ R with R > 1. In fact, for R>1, the subspace
of J^x spanned by {an} contains none of the functions δn (n Ξ> 1).

Proof. Writing (5.1) as an(z) = (zez)n, we see that every function
/ in s^f has the form

(5.2) f(z) = F{zez) ,

where F is some function determined by / . Since the coefficient
condition (2.1) guarantees that F is in ^ R , we can differentiate (5.2)
to obtain

(5.3) f'{z) = (z + l)e?F'(ze ) .

It follows that Szf consists exclusively of functions whose derivatives
vanish at z — — 1, and hence that none of the functions dn(n ^ 1)
belongs to j y .

In the above example, the sequence of functions ψn(z) — enz is
unbounded on every neighborhood of the origin. The following example
avoids this feature.

EXAMPLE 5.2. The Pincherle sequence

znez for n even
(5.4) an{z) =

[zne for n odd

defines a basis in ^ R if and only if R fg τr/4.
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Proof. Fixing R > 0, we examine the subspace <s*f of ^ R spanned
by {an}. To begin with, it is evident that Szf consists of exactly
those functions / which can be expressed as

(5.5) f(z) = e*p{z) + e-'q(z) (\z\ < R) ,

where p is an even function in ^ R and q is an odd function in
This results in

/ ( - z) = e-p{z) - e*q{z) (\z\ < R) ,

so that the functions / comprising Szf are precisely those functions
in J?"R satisfying the relationships

\ezf(z) + β - / ( - *) = Φ + e~2z)p{z)

for | * | < R.
The coefficient e2z + e~~2z appearing in the right-hand members of

(5.6) vanishes at z = ττi/4 but at no z of smaller modulus. Thus, if
R <J τr/4, we can solve for p and q in terms of an arbitrarily given
/ in ^~B. The resulting functions p and q are even and odd func-
tions, respectively, for which (5.5) holds, and it is immediate that
^f — J?R in this case.

On the other hand, if R > π/4, we can choose z = πΐ/4 in (5.6),
so that the right-hand members both reduce to zero. The only even
or odd functions / in j y are then seen to be those having zeros at
πi/4. Since Ssf therefore contains none of the functions dn, it is
plain that {an} does not span ^r

B in this case.
It is of interest to note here the following theorem of Kraplin

[8]. Let f be a function analytic on iV̂ O) with Taylor expansion

ψ(z) = 1 + Σ bkz
k ,

let M = sup \bk\(k ^ 1), and let {an} be any bounded sequence of
complex numbers. Then

an{z) = znf{anz) (n = 0,1, -..)

defines a proper basis in ^ R for R — l/[g(l + M)], where q = sup \an\.
As applied to Example 5.2, however, this yields only the weaker
result that the sequence {an} there is a basis in Jr

R for R — 1/2.
This clearly shows that the results of the linear case do not carry

over directly to the general case. Nevertheless, these results can be
put to use by drawing on procedures for constructing new bases from
known ones. The Paley-Wiener theorem developed in [4] yield such
procedures, and we call attention here to other methods.
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A scheme for combining two proper bases to form a new one is
an easy outgrowth of the automorphism theorem.

LEMMA 5.3. Suppose that {an} is a basis in J?"B and that the
functions an have Taylor expansions of the form

(5.7) an(z) = Σ Ankz
h fa = 0, 1, •)

fc=o

If {βn} is a proper basis in J^>, then the expansions

(5.8) 7, = Σ ^ A fa = 0, 1, ...)
ft = 0

define {yn} as a basis in J^R. Moreover, {yn} is proper if {an} is.

Proof. Convergence of the expansions in (5.8) is an evident con-
sequence of the assumption that the basis {βn} is proper. This
hypothesis also yields an automorphism T on ^~R such that βn —
Tδn(n = 0,1, •••)• The lemma then follows by applying T to (5.7)
and setting yn — Tan(n = 0,1, •).

In particular, Lemma 5.3 can be utilized to synthesize proper
Pincherle bases, starting from the linear case. That is, if the sequences

(n = 0, 1,
\ an /

and

βn{z) = z*(l - A ) fa - 0, 1,

define proper bases in ^ ^ , then so does the sequence

L \ ttΛ ow / anun+ι

Proceeding inductively, we obtain a general method for the synthesis
of proper Pincherle bases of the form (1.3) in which the ψn are poly-
nomials of arbitrarily prescribed common degree.

Another method for generating new Pincherle bases from known
ones hinges on theorems of Paley-Wiener type, similar to the theorem
of Boas cited in §3. Theorem 9 of [4] and the corresponding theorem
of Evgrafov [7, p. 117, Theorem 2] fall into this category. Here is
a further variation on this theme.

THEOREM 5.4. Let
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«»(*)=***»(*) ( t t = 0 , l , . . . )

define a Pincherle basis in Jβ^, and let

βn{z) = ocn(z)[l + \n(z)] (n = 0,1, •) ,

where each Xn is a function in ^ R satisfying λw(0) = 0. If

(5.9) limsup||ψvΛΛ||r < 1

for all r < R, then {βn} is a Pincherle basis in ^ B and there exists
an automorphism A on J^R such that βn — Aan{n — 0,1, •)•

Proof. Reasoning similar to that of [2] will be used, but certain
modifications are essential. We now put

Tf(z) = Σ cnan(z)Xn(z) ,

where

/(«) = Σ cnan(z) .

Convergence of the series for Tf is guaranteed by (5.9), and we have,
in fact,

It is evident from Lemma 2.1 that if / has a zero of order m or
greater at the origin, then

This result can be applied directly to Tmf9 since the condition λn(0) =
0 assures us that Tmf has a zero of order greater than or equal to
m at 0.

Fixing r, we choose a corresponding value of d < 1 such that

l imsup | | f % λj | r < δ .

It is then easy to see that there exist constants m0 and K (depending
on r) such that

for m > m0 and all / in ̂ ~R. This ensures convergence of the operator
series
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u = Σ (- TY .

The resulting linear operator U is obviously continuous and has
the property that U — (I + T)~\ where / is the identity operator.
It follows that the operator A = I + T(= U~ι) is an automorphism
on ^ R carrying an into βn(n = 0, 1, •), and this forces {βn} to be a
basis in

6* Concluding remarks. Certain Pincherle sequences {an} have
the following property: for some number Ro jΞ> 0, {an} is a basis in
J^K if R < Ro, but is not a basis in ^ R if R > JB0. Example 5.2
illustrates this situation with Ro — π/4, and further illustrations are
immediate from Theorems 3.5 and 5.4. Such Ro, when it exists, is
an analogue of the radius of convergence of a power series, and it
will be referred to as the basis radius determined by {an}. (Note
also Newns [10], pp. 450-451.)

Not every Pincherle sequence admits a basis radius. We show,
in fact, that a Pincherle sequence can be a proper basis in ^Z> but
fail to be a basis in κ^

r

R for all finite values of R.

EXAMPLE 6.1. The sequence {an} defined by

ao(z) = 1 — z,

?L^L.—z\ for n(> 0) even

(n+ l)n+1 J
«

ZA 1 Ίί z for n odd
L 2n+ί(n + 1)% + 1 J

is a proper basis in ^Z but is not a basis in ^ R for R finite.

Proof. Here {an} is a sequence of the form (3.1) in which the
numbers zn(n — 0, 1, •) are chosen so as to make

liminf I ^ •••*-*I"" =1

and

Thus, according to Theorem 4.3, {an} is a proper basis in ^^. To
prove that {an} cannot be a basis in ^ R if R is finite, let us assume
the contrary. Then the function / in ^ R defined by
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admits an expansion in the basis {an} of the form / = Σ C A As in
Example 3.2 there results cn ^ 1/Rn(n = 1, 2, •)> so that for odd w ^ 3

(* J^> — ^ > i i

This forces

contradicting (2.1), and our proof is complete.
It would be of interest to find a general characterization of those

Pincherle sequences which admit a basis radius, but this remains an
open question.
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