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(iΓE)-DOMAINS

SURJEET SINGH

A commutative ring R is said to have the (iΓ)-property
if for each of its proper ideals A, there exists an ideal A7,
such that AAr is a nonzero principal ideal of R. A domain
D with unity 1 Φ 0 is said to be a C07)-domain, if each of
its ideals A, considered as a ring, has the (iΓ)-property. The
concept of a (iΠ<7)-domain had been studied earlier by the
author and R. Kumar. In this paper injective modules and
flat modules are studied and characterizations of (KE)-
domains in terms of these modules are established. Finally
the problem of embedding of a CΩ7)-domain in Z(p), the p-
adic completion {p a prime number) of the ring Z of integers,
is studied.

In [11], the concept of a (K.E)-domain was introduced and a
structure theorem for the same was established. The study of (KE)-
domains was continued in [12], in which, their characterizations in
terms of Dedekind domains, Priifer domains and generalized Krull
domains were proved. The present paper is also concerned with the
study of (JO?)-domains and it contains some further characterizations.
Let D be a domain with unity 1 Φ 0. For any proper ideal i of ΰ ,
let A* denote the subring of D generated by AU{1). In § 1, we
study injective modules and prove that, if a proper ideal A of a do-
main D is such that A* is Noetherian and every injective D-module
is injective as an A*-module, then D — A*(Theorem 2). This theorem
yields a characterization of (iΓ£r)-domains given in Theorem 3. In
§3, we study flat modules and prove that a domain D is a (KE)-
domain if and only if it is a flat A*-module for each of its proper
ideals A (Theorem 6). Theorem 2 in [12] is deduced as a corollary
to Theorem 6. The other important result in § 2 is Theorem 5
Example 1 shows that if a domain D is a fiat A*-module for some
proper ideal A, it need not equal A*. Let Z be the ring of integers
and p any prime number; it was shown in [11, Example 4] that Z[p),
the p-adic completion of the quotient ring Z{p) is a (KE)-domain. In
§ 3, we prove that Z{p) is a maximal (ifjE')-domain, in the sense that,
if D is any (KE)-domain, different from its quotient field, such that
some prime number p is not invertible in it, then D is embeddable
in Zm (Theorem 8). Other results of interest are Proposition 1,
Lemma 13, and Theorem 9. The notations and terminology are es-
sentially the same as in [10,11], except that, all rings considered
here are with unity 1^0, all modules are unital, and by a proper
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prime ideal of a ring R is meant a prime ideal different from both
(0) and R.

1* Injective modules• A ring R (not necessarily with unity) is
said to have the (ϋf)-property if for each of its proper ideals A, there
exists an ideal A! of R, such that AAr is a nonzero principal ideal
of R [11]. A domain D is said to be a (iΓE^-domain if each of its
ideals A, considered as a ring, has the (K)-property [11, Definition 3].
For any domain D (not necessarily with unity) having F as its quo-
tient field, let D* denote the subring of F generated by D (J {1},
where 1 is the unity of F. The following lemmas, which we state
without proof, were proved in [11, Lemma 1 and Theorem 13].

LEMMA 1. A domain D (not necessarily with unity) has the
(K)-property if and only if D* is a Dedekind domain.

LEMMA 2. A proper ideal A of a domain D (with unity) has the
(K)-property if and only if D — A* and D is a Dedekind domain.

The following lemma is an immediate consequence of the above
lemmas.

LEMMA 3. A domain D is a (KE)-domain if and only if it is
a Dedekίnd domain and for each of its proper ideals A, A* = D.

For the definitions and fundamental properties of injective modules
the reader may refer to Tsai-Chi-Te [13]. A ring R is said to be
self-injective ring, if RB is an injective module. We now establish
the following.

PROPOSITION 1. A domain D is a (KE)-domain if and only if
D — A* for each of its proper ideals A.

Proof. "Only if" follows from Lemma 3.

Suppose that for every ideal A of D, we have D = A*. Since
D/A = A* IA = Z/(n) for some n > 0 and Z/(n) is Noetherian, we get
that D is Noetherian. Consider any proper prime ideal P of D.
Then D/P = P*/P is either isomorphic to Z or to Z/(p), for some
prime number p. In the former case, for every k(φ 0) e Z, kit P;
consequently kl £ P2 and D/P2 = (P2)*/P2 ~ Z. This gives that P 2 is
a prime ideal of D: this is not possible in a Noetherian domain.
Hence D/P = Z/(p), for some prime number p and hence for every
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proper ideal A of D, D/A = Z/(n) for some n > 2. Thus every proper
homomorphic image of D is self-injective, since every proper homo-
morphic image of Z is self-injective. Hence by Levy [6], D is a
Dedekind domain. Hence by Lemma 3, D is a (iLE')-domain.

LEMMA 4. Let D be a domain and A be a proper ideal of D.
Then A* is Noetherian if and only if D is Noetherian and a finite
A*-τnodule.

Proof. Let A* be Noetherian. Suppose to the contrary that D
is not a finite A*-module. Then there exists a denumerable subset
S = fa: i = 1, 2, •••} of D such that the A*-submodule of D gener-
ated by S cannot be generated by a finite subset of S. Choose a
(Φ 0) e A. As A* is Noetherian and S a c A*, there exists a positive
integer n such that the ideal of A* generated by the elements b^a
(1 < i < n) is the same as that generated by Sa. This yields that
for each i > n + 1, b{a = Σi=i α ί iM for some (%G A*, and hence
δ; = Σi=i α iA Consequently the finitely many elements δ;(l < i < w)
generate the A*-submodule of D generated by S; this gives a con-
tradiction. Hence ΰ is a finite A*-module. It is now immediate that
D is Noetherian, since A* is Noetherian. The converse follows by
Eakin [5, Theorem 2]. Finally, the second part is an immediate
consequence of [14, Chap. V, p. 255].

If S is a subring of a ring R such that it contains the unity
element of R, then every ϋJ-module can be regarded as an S-module
in a natural way. In the following lemmas, D will be a domain having
a proper ideal A, such that A* is Noetherian and every injective D-
module is injective as an A*-module. For any D-module M E(M)
and E'(M) will denote its D-injective hull and A*-injective hull
respectively.

LEMMA 5. Every indecomposable injective D-module is an inde-
composable injective A*-module.

Proof. Let M be an indecomposable injective D-module. By the
hypothesis M is also an injective A*-module. Let M = Λfi 0 M2 for
some A*-submodules MS — 1, 2). As Mx is an injective A*-module,
it is a divisible A*-module. Consider b{Φ 0) e D. Choose a(φ 0) 6 A.
As abe A and ab Φ 0, Mx = ilίlαδ. This implies that Mx = MJJ and
Jlii. is a D-submodule of M. Similarly M2 is a D-submodule of M.
Hence Mx = (0) or M2 = (0). This proves the lemma.

LEMMA 6. Let M and N be any two divisible D-modules. Then:
( i ) Any A*-homomorphism of M into N is a D-hornomorphism,
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(ii) M and N are isomorphic as D-modules if and only if they
are isomorphic as A*-modules.

(iii) EomD{M, M) = HoiMAf, M).

Proof. Let σ: M—> N be any A*-homomorphism. Let xe M and
b{φ O)eD. Choose a{φ 0 ) e i Then abeA*. As M is a divisible
D-module there exists yε, M such that x = ya. Then xb = yab and
σ(xb) = σ(yab) = σ(y)ab = σ(x)b. Hence σ is a .D-homomorphism (ii)
and (iii) are immediate consequences of (i).

We need the following two results due to Matlis [7], which we
state without proof.

PROPOSITION 2. Let R be a commutative Noetherian ring. Then
there exists a one-to-one correspondence between the prime ideals P{Φ R)
of R and the indecomposable injective R-modules, given by P^->E(R/P),
where E(M) denotes the injective hull of any R-module M. If Q is
an irreducible P-primary ideal, then E(R/P) = E(R/Q).

THEOREM 1. With the same notation as in Proposition 2, let
E = E(R/P) be an indecomposable injective R-module and

H = ΈίomB(E, E) .

Then H is isomorphic to RP, the PRP-adic completion of RP. More
precisely, E is a faithfull RP-module and each R-endomorphism of
E can be realized by multiplication by an element of RP.

We now prove the following.

LEMMA 7. P ^ P f l i * is a one-to-one correspondence between
proper prime ideals P of D and proper prime ideals of A*.

Proof. By Lemma 4, D is Noetherian. Thus by Proposition 2,
P+-+ E(R/P) is a one-to-one correspondence between the prime ideals
P of D and the indecomposable injective D-modules. By Lemma 5
E(D/P) = E'{A*IA* n P), the A*-injective hull of A*/Λ* n P. From
Proposition 2 and Lemma 6 we get that P - + A * n P is a one-to-one
mapping of the set of all prime ideals P of D into the set of all prime
ideals of A*. By Lemma 4, D is integral over A*. Therefore given
a prime ideal P ' of A*, there exists a prime ideal P of D such that
PΠ A* = P' [14, p. 223, Theorem 3]. This completes the proof.

LEMMA 8. Let P be a proper prime ideal of D. There exists a
one-to-one inclusion preserving correspondence between the P-primary
ideals of D and the Pf] A*-prίmary ideals of A*. Further for any
irreducible P-primary ideal Q of D, the corresponding primary ideal
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of A* is A* Π Q.

Proof. Consider E = E(D/P) = E'(A*/A* Π P). By Lemma 6,
HomJCE', £*) = HomZ)(JE

r, # ) . It follows from Theorem 1 that there exists
an isomorphism σ of DP onto A?,, where F = P f l 4 * , such that
for any deDP and α?GΪ7, a d = xσ(d). By Cohen [3, Theorem 2], for
any local ring (R, M), Ίϊ R is the completion of R, then M = MR is
the unique maximal ideal of R and Q <-> Qj? is a one-to-one corre-
spondence between the ikf-primary ideals Q of R and the M-primary
ideals of R. Thus Q <-> ζ>Z)P is a one-to-one correspondence between
the P-primary ideals Q of D and PDP-primary ideals of DP. For any
P-primary ideal Q of Z?, σ(QDQ) Π A* is a P'-primary ideal of A*,
and Q *-• σ(QDP) Π A* is a one-to-one correspondence between the P-
primary ideals Q of D, and P'-primary ideals of A*. Let Q be an
irreducible P-primary ideal of D. By Matlis [7, Lemma 32], there
exists x e E for which ann^a?) = Q Then ann£p(#) = QDP and
annj^(α ) = σ(QDP), so that ann̂ *(α;) = σ(QDP) Π A*. At the same time
ann^(cc) = annx>(α;) Π A* = Q ί l i * . This shows that

Q n A* = σ(0^P) n A* .

Hence the lemma follows.

THEOREM 2. If A is any proper ideal of a domain D such that
A* is Noetherian and every injective D-module is an injective A*-
module then D = A*.

Proof. Let A = P be a prime ideal. Then either P*/P ~ ZJ(p),
for some prime number p or P*/P=Z. Now E(D/P) = E(P*/P)
implies that Z)P = PP*. From this we obtain that the quotient field
of D/P is isomorphic to the quotient field of P^/P. If P*/P^ Z/(p),
then D/P= Z/(p) = P*/P and ΰ - P*. If P*/P=Z, then the
quotient field of D/P is isomorphic to the field R of rational numbers.
Since every overring of Z, contained in R, is of the type ZS9 we get
that D/P = Zs for some multiplicative subset S of Z. It follows
from Lemma 4, that D/P is integral over P^/P. However Z is
integrally closed in R. Consequently D/P = P^/P ~ Z. Since Z has
no proper subring containing 1, we get that D = P* = A*.

Suppose that A is not a prime ideal. Then A = ΠLi Q; for some
irreducible ideals Q̂  of D such that Π^v; Qj Q- Qi for every i. Now

(l) A - A n A* - ύ(β<n A*) .
< = 1

Suppose that A is a prime ideal of A*. Then (1) yields that
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A = Qi Π A* for some i and Q̂  Π A* c Qy ΓΊ A* for every j . In view of
Lemmas 6(i), 7 and 8, t — 1, A = Q1 f) A* and d is a prime ideal of D,
since A is a prime ideal of A*. Thus A = Qλ is a prime ideal of D.
This is a contradiction. Hence A is not a prime ideal of A*. Con-
sequently A*/A = -Zy(w), for some composite integer n > 2. Since in
Z/(n) every prime ideal different from Z/(ri) is a maximal ideal of
Z/(n), the prime radical of Q{ Π A* in A* is a maximal ideal of A
Then by Lemma 7, the prime radical of Qi in D is a maximal ideal
of D. Further, since in Z/(n) any family of primary ideals, which
have common radical, is totally ordered and by Lemmas 6(i), 7 and 8,
Qi Π A* ςt Qj Π A* for i Φ j , we get that the prime radical of these
Qi are all distinct and maximal. Thus A = ΠLi Qi is an irredundant
decomposition of A into primary ideals. Let n — p^pg2 plu be the
factorization of n into distinct prime powers. It is immediate that
t = u, and we can arrange the Qis in such a way that (Qi Γ) A*)/A =
(Piή/iri). Now by Zariski and Samuel [14, p. 178. Theorem 32],
D/A ^ 0 Σ U -D/Q*. Further

D/Qi = DMJQiDMi ~ DMJQiDMi = At/QJA^ - A*/Q, ,

where Ml = Mi Π A* and QJ = Q̂  Π A*: as A*IQi = Z/(pp), it follows
that D/A = 0 Σ U ^/(PfO = Z/(n). Thus the additive group of D/A
is cyclic and is generated by its unity. Hence A* = D. This proves
the theorem.

REMARK. In the above theorem, it can be easily seen from the
proof that it is enough to assume that every indecomposable injective
D-module is A*-injective. However in that case a simple application
of a theorem due to Matlis [7] yields that every injective D-module
is an injective A*-module. Proposition 1 and the above theorem im-
mediately yield the following characterization of a (i£Z£)-domain.

THEOREM 3. A domain D is a (KE)-domain if and only if for
each of its proper ideals A, A* is a Noetherian ring and every in-
jective D-module is an injective A*-module.

2. Flat modules. For definitions and some well known results
on flat modules the reader may see Bourbaki [2]. Let D be a domain
having K as its quotient field. By an overring of D, we mean any
domain D' such that DczD'aK. In [8], Richman studied those
overdomains of a domain D which are flat as D-modules. The
following theorem which we state without proof was proved by
Richman.

THEOREM 4. Let Dr be an over domain of a domain D. Then
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Df is a flat D-module if and only if D'M = DiMΠD) for all maximal
ideals M of D'.

Let us recall from [11] that a ring R is said to have dimension
n, if it contains a chain Po < Px < P2 < < Pn (φ R) of prime
ideals, but it contains no such chain of greater length.

LEMMA 9. Let P be a proper prime ideal of a domain D such
that for every nonzero primary ideal Q of D contained in P {not
necessarily a P-primary ideal), D is a flat Q*-module. Then:

( i ) Height P < 2.
(ii) If P is not a minimal proper prime ideal, then P is a

maximal ideal.
(iii) There exists a P-primary ideal Q Φ P.

Proof. Suppose that P is not a minimal prime ideal. Then there
exists a proper prime ideal Pf < P. Let M be a maximal ideal of
D containing P. Since by the hypothesis, D is a flat P'*-module,
Theorem 4 yields that DM = (P*)*P,nM). Since (P')*/P' s Z/(ri) for
some n and dim Z/(n) < 1, we have dim (P')*IPr < 1: thus

dim D/P' < 1 .

It follows that there exists no prime ideal of D properly between P'
and M. Consequently M — P. By considering P ' instead of P, we
also get that Pr is a minimal prime. Hence height P < 2. This
proves (i) and (ii).

Let P be a minimal prime ideal of D. The contraction in D of
any proper ideal of DP> not equal to PDP is a P-primary ideal of D
different from P. Now let P be not a minimal prime ideal. Then
there exists a proper prime ideal P' < P. By (i) DP/P'DP is a one
dimensional domain. Choose any proper ideal T/P'DP of DP/PDP,
not equal to its maximal ideal, then the contraction of T in D is a
P-primary ideal of D, not equal to P This proves (iii)

LEMMA 10. Let P be a proper prime ideal of D, satisfying the
hypothesis of Lemma 9. Then P* = D, P*/P = Z/(p), for some prime
number p, and P is a maximal ideal of D.

Proof. By Lemma 9, there exists a P-primary ideal Q Φ P. Let
M be a maximal ideal of D containing P. Theorem 4 yields that,

( 2 ) DM = P(P*f]M) — Q(Q*Γ)M)

Now P*/P ~ Z or P^/P — Z/(p), for some prime number p. Let
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P*/P = Z. Then for every n(φϋ)eZf nl$P: consequently nl $ Q.
This yields that Q*/Q = Z and that Q is a prime ideal of Q*. Then
from (2) it follows that Q is a prime ideal of D. This is a contra-
diction. Hence P*/P = Z/(p) and that P is a maximal ideal of P*.
Consequently (2) yields that Mf)P* = P and DM = P£. So that
P = M and D/P s P^/P s Z/(p). Thus P*/P is a subring of D/P
such that both of them have p elements. Hence P* = D and the
lemma follows.

COROLLARY 1. If P is a proper prime ideal of a domain D,
satisfying the hypothesis of Lemma 9, then height P = 1.

Proof. If Pf is any proper prime ideal of D contained in P,
then P' also satisfies the hypothesis of Lemma 9. By Lemma 10, P'
is a maximal ideal of D. Hence P' = P and height P = 1.

THEOREM 5. Lei P be a proper prime ideal of domain D such
that for every nonzero primary ideal Q of D contained in P, D is a
flat Q*-module. Then every nonzero primary ideal Q of D contained
in P is P-primary, D/Q s Z/(pa) for some power pa of a prime
number p and Q* = D.

Proof. By Corollary 1, height P = 1. So that V~Q = P. In case
P = Q, the result follows from Lemma 10. Let Q Φ P. Since D is
a flat Q*-module, by Theorem 4,

(3) DP=Q (Q*C\P)

This equation along with Lemma 10, yields that there exists a prime
number p such that Z/(p) s D/P = Q*/Q* n P. However #*/<2 s Z/(n),
for some n, and © is a (φ* n P)-primary ideal of Q*. Therefore
n = p% for some a > 2. Then from (3) D/Q = Q*/Q s Z/(ί>α): as a
consequence we get that D = Q*. This proves the theorem.

Henceforth the domain D will always be assumed to be different
from its quotient field. The following corollary is an immediate con-
sequence of the above theorem.

COROLLARY 2. If D is a flat A*-module for each of its proper
ideals A, then dim D = 1.

LEMMA 11. Let D be a domain such that D is a flat A*-module
for each of its proper ideals A. If Pι and P2 are two distinct proper
prime ideals of D, such that D/P, ~ Z/ip,) and D/P2 = Z/(p2), then

Pi ^ 3>2



(ϋΓ^-DOMAINS 569

Proof. Suppose that Pi — p2 = P Then pi e P1 Π P2 = PiP2

Hence (P.P^/P.P, ~ Z/(p) and N = PXP2 is a maximal ideal of
Consequently Pλ Γ) (PiP2)* = # = P2 Π (PiP2)* % Theorem 4,

l * - DP2 .

This yields that Pι — P2. Hence the lemma follows.

THEOREM 6. A domain D is a (KE)-domain if and only if it
is a flat A*-module for each of its proper ideals A.

Proof. Let D be a (jfiΓĴ )-domain. By Proposition 1, given any
proper ideal A of, D = A*. Then obviously D is a flat A*-module
for each of its proper ideals A.

Conversely let D be a flat A*-module for each of its proper
ideals A. Consider any proper prime ideal P of D. By Theorem 5,
P is a maximal ideal and there exists a prime number p such that
for any nonzero primary ideal Q of D contained in P, D/Q = Z/(pa)
for some a > 1. Consequently DP/QDP ~ Z/(pa), a PI.R with d c.c
So that DP is a discrete valuation ring of rank one. As an immediate
consequence we get that every nonzero primary ideal of D contained
in P is a power of P and D/Pa s £/(pα) for every a. Thus pi 6 P\P\
Now for any given proper prime ideal P ' Φ P, Z?/P' = Z\{pr), for some
prime number p', which, because of Lemma 11, is not equal to p.
So that pi g P\ Then using the fact that for any ideal A of D,
A = Π ADΓ> where Γ runs over all the maximal ideals of D, we get
that P = (pΐ), a principal ideal of D. By Cohen [4, Theorem 2], Z)
is Noetherian. Let A be a proper ideal of D and A = ΠLi Q; be an
irredundant decomposition of A into primary ideals. For each i, since
D/Qί = Zl{piι), for some prime power p^ and the prime number p{ are
all distinct, we get that, D/A = Θ Σ U D/Q* = ΘΣU-Z/ίP?*) = £/("),
where % = p^pZ2 * pf* Since the ring Z/(n) is generated by its
unity element, it follows that D = A*. Hence by Proposition 1, D is
a (ifj^-domain.

We now obtain Theorem 2 of [12] as a corollary to the above
theorem.

COROLLARY 3. A domain D is a (KE)-domain if and only if
for each proper ideal A of D, one of the following holds:

( i ) A* is a Dedekind domain.
(ii) A* is a Priifer domain.
(iii) A* is a generalized Krull domain.
(iv) A* is an almost Krull domain.
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Proof. If D is a (ίΓjEr)-domain, then by Lemma 3, D satisfies the
given conditions.

Let D satisfy the given conditions. Let A be a proper ideal of
D. If A* satisfies any of the conditions: (i), (iii), and (iv) then for
each of its minimal prime ideals P', A*, is a rank one valuation ring
and A* is an intersection of these rings. Now AP' is a nonzero
ideal of D contained in P\ For S = A*\P, A% c IV Since

s n APf = 0 ,

JD is not a field. However A*, is a maximal subring of its quotient
field. Consequently Ds — A%, and D(zA%,. Hence D — A*. In this
case D is trivially an A*-flat module. If A* is a Priifer domain,
then again by Richman [8], D is a flat A*-module. Hence, by
Theorem 6, D is a (jKΊ?)-domain.

The following theorem is also an immediate consequence of
Theorem 6. It also follows from Lemma 13 given below, and which
is analogous to Theorem 2.

THEOREM 7. A domain D is a (KE)-domain if and only if it
is a projective A*-module for each of its proper ideals A.

LEMMA 13. If for a proper ideal A of a domain D, D is a
projective A*-module, then D — A*.

Proof. As D is a projective A*-module, by the dual basis
theorem for projective modules, there exists a family {σa}aeΛ of ele-
ments of ΈLomΛ*(Dy A*) and a corresponding family {da}aQΛ of elements
of D such that for each d e D, σa(d) = 0, for all but a finite number
of values of α, and d = Σ Λ ^ i

Let σ e HomA*(D, A*). Consider δ, ceD. Choose a (Φθ)eA.
Then σ(bc)a = σ(bca) = σ(b)ca9 since ca e A*: consequently σ(bc) =
σ(6)c. Thus α is a D-homomorphism Hence for any

d 6 D, d = Σ <7«(dK = Σ Md<4) e A* .
a oc

This proves that D = A*.
The above lemma does not hold for flat modules, as is evident

from the following example.

EXAMPLE 1. Consider the formal power series ring D =
over the field R of rational numbers. Its maximal ideal is M = (X).
Now Λf* = Z + Mφ D and D = Mi, where S is the set of all non-
zero integers. Hence D is a flat ikf *-module, but D Φ M.
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3* The ring ZiP). In [11, Example 4], it was shown that for
any prime number p,Z{p), the p-adie completion of Z{P)9 is a (KE)-
domain. In this section we prove that Z{p) is a maximal (if.E')-domain,
in the sense that if in a (ifi?)-domain D, which is not a field, some
prime number p is not invertible, then D is embeddable in ZlP).
Some other results on (JffjE')-domains are also established. The fol-
lowing structure theorem on (KE^-domains was proved in [11,
Theorem 14].

THEOREM 8. Any domain D, which is not a field, is a {KE)~
domain if and only if it satisfies the following:

( i ) There exists a multiplicative subset S of the ring of integers
Z, such that Zs is embeddable in D.

(ii) The correspondence A+-> An Zs is one-to-one between the
ideals A of D and those of Zs.

(iii) For every proper prime ideal P of D, D/P ~ Zs/P Π Zs.

If a (iLE')-domain D satisfies conditions (i) to (iii) of Theorem 8
we say that D is a (ifi?)-domain associated with Zs: in that case it
is immediate that a prime number p is invertible in D if and only
if it is invertible in Zs.

DEFINITION 1. A (JΠϊ^-domain D associated with Zs is said to
be a maximal (iΓ£r)-domain associated with Zs, if there exists no
(in£)-domain Df associated with Zs such that it contains D properly.

THEOREM 9. Let D be a (KE)-domain, which is not a field and
in which some prime number p is not invertible, then D is embed-
dable in Z{p).

Proof. Let D be associated with Zs. Since Zs is a PID of
characteristic zero, Theorem 8 yields that D is a PID of character-
istic zero. Further as pZs is a maximal ideal of Zs, Theorem 8 also
yields that P ~ pD is a maximal ideal of D such that D/P ~ Z/(p).
By Theorem 5, for each n > 1, D/Pn — Z/(pn) and hence every element
of D is of the form kl + pna; ke Z, ae D. Consequently there exists
a natural homomorphism σn; D—>Z/(pn) such that

σjjcl + pna) = k + (p ) .

For m < n, we have the natural homomorphism π™: Zj(pn) —> Z/(pm).
Then {Zj{pn),πZ} form a protective system and lim Z/(pn) = Z{p) [9,

Chap. 1, p. 55]. For each n, let πn: ZiP)~-> Z/(pn) be the canonical
mapping. It can be easily seen that σm = π™σn whenever m < n.
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Thus there exists a homomorphism σ of D into Z(p) such that σn —
πnσ for every n. Since Γ\nkeτσn — (0), σ is a monomorphism. Hence
the theorem follows.

THEOREM 10. Let {Da, π
β

a}a>βeΛ be an injeetive system of (KE)~
domains associated with the same Zs (Φ the field of rational numbers).
Then the injeetive limit D = lim Da is a (KE)-domain associated with

Zs. {It is assumed that each of πβ

a is a nonzero mapping.)

Proof. For each aeΛ, there exists a homomorphism πa: Da—*D
satisfying the following:

( i ) πa = πβπ
β

a for a, β e Λ such that a < β.
(ii) D=\Jπa{Da)
(iii) If for some α, there exists xa e Da such that πa(xa) — 0,

then there exists β > a such that πβ

a(xa) = 0.
Using the above properties, it follows that D is an integral do-

main. As πβ

a Φ 0, π£(l) = 1. We get that πβ

a is an identity map on
Zs. Consequently each πa is also identity map on Zs. Consider any
xa(φ 0) e Da. As seen in the proof of Corollary 3 in [11], xa = naua

for some naeZ and a unit ua in Da: thus πa(xa) = naπa(ua). Clearly
πa(ua) is a unit in D. It follows that every element of D is of the
type nu; ne Z and u a unit in D. Consider any proper ideal A of
D. Now for every a, Aa = π~λ (A) is a proper ideal of D and A —
U πa(Aa). Thus A* = U πa(Aϊ) = U **(#«) = Λ Hence by Proposi-
tion 1, D is a (if£f)-domain. Since every prime number invertible in
ϋΓs is invertible in every Da, we get it is also invertible in D. Con-
versely if any prime number p is invertible in D, then the above pro-
perties of D imply that p is invertible in some Da and hence p is
invertible in Zs. This shows that D is associated with Zs.

We end this paper with a few remarks.

1. Some of the lemmas, for example Lemmas 4 to 8, and 12 can
be proved by replacing A* by any Noetherian subring of D, contain-
ing a nonzero ideal of D and keeping the other hypotheses unchanged.
It is not clear whether in that case, we obtain B = D, as in Theorem
2.

2. Theorems 9 and 10 can be proved in more general settings.
To explain the point, let T be a fixed Noetherian domain, which is
not a field. Let us call a domain D containing T lattice equivalent
to T if it has the following properties:

( i ) A <— A Π Γ, is a one-to-one correspondence between the
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ideals A of D and those of T.
(ii) For any proper ideal A of D, D = A + T.
Take any proper prime ideal P of T. Then as in Theorem 8, it

can be shown that D is embeddable in tP, the PTP-adic completion
of TP. In Theorem 9, we had T — Zs. In Theorem 10, if we replace
each Da by a domain lattice equivalent to a fixed Noetherian domain
T and let each πβ

a be identity on T, then their injective limit is also
lattice equivalent to T. The only reason for not proving Theorems 9
and 10 in this more general setting is that the paper is essentially
concerned with (if£r)-domains.

3 By Theorem 9, given a Zs (not equal to the field of rational
numbers), all (JO^-domains associated with Zs can be regarded as
subrings of a fixed Z{p). It can be easily seen that the family of all
(K2?)-domains associated with the same Zs is inductive. Hence by
Zorn's lemma it has maximal members. It remains open whether
any two maximal (KE)-domains associated with a Zs are isomorphic
or not.
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