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RADIAL QUASIHARMONIC FUNCTIONS

LEO SARIO AND CECILIA WANG

A function s on a Riemannian manifold is called quasi-
harmonic if it satisfies Δs = 1, where Δ is the Laplace-Beltrami
operator dδ + δd. Existence of quasiharmonic functions with
various boundedness properties has thus far been investigated
by means of useful implicit tests. We now ask: Can such
functions be formed by direct construction, in a manner ac-
cessible to computation if need be?

l We shall present our approach to the problem in the setup

of a Riemannian JV-ball

(1)

endowed with the generalized Poincare metric

(2) ds = X(r)\dx\, λ(r) = (1 - r2)a, aeR ,

where r=\x\,x= (x1, , xN). In [16] we proved that there exist bounded
quasiharmonic functions on Ba if and only if ae (—1,1/(N — 2)). We
shall now show that this in turn is necessary and sufficient for the
boundedness of an explicitly constructed function s(r), given in No. 3
below. Thus the boundedness of this single function characterizes the
existence of bounded quasiharmonic functions on Ba.

We shall call, for brevity, a function radial if it depends on r
only. A simple consequence of our result is that there exist bounded
radial quasiharmonic functions if and only if there exist bounded
quasiharmonic functions.

We expect that our approach is extendable to other classes of
quasiharmonic and biharmonic functions as well, and to other Rieman-
nian manifolds which are invariant under rotation. In particular,
there exist negative radial quasiharmonic functions on every Ba.

2. The proof of our main result will be divided into Lemmas
1-6. We start by formulating the equation:

LEMMA 1. A function s(r) satisfies

( 3 ) 4β = 1

on Ba if and only if

( 4 ) s"
1 — r2
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Proof. The metric tensor (giS) is diagonal, with elements

where φu , φN_2 are functions of the coordinate angles Θ\ , θN~ι.
We set φ = (φ, φN-2f

ι\ and have V~~g = XNrN~γφ, grr = λ"2, and

V a or

\ r λ
hence the lemma.

For convenience in later calculation, we rewrite (4) in the form:

r\l - r > " + r[(N - 1)(1 - r2)
j - 2(iV - 2)αr2]s' + r2(l - r2)2α+1 = 0 .

3. We are ready to give the function s(r) referred to in the
introduction. Here and later X^ with n < m will mean 0.

LEMMA 2. Equation (3) is satisfied by the function

(5) β(r) = - Σ δ ^ + ,
•ΐ=0

where

and for i > 0,

(7) &4 = - ί - Π Py + Σffi Π P* + ff* .
2iV i=i i=i fc=i+i

(JV - 2)(2α + 1)]

(2i + 2)(2i + N)

( 9 ) Qi~ (2i + 2)(2i + N)

Proof. Substitution of (5) into (4') gives

- Σ (1 - * 2)(2ί + 2)(2i + l)hr%w - Σ (iV
*=0 i=0

+ Σ [(iV - 1) + 2(JV - 2)α](2i + 2)6{r
2i+4 + r

0
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On changing by unity the summation index in the coefficients of r2ί+4

we obtain

Σ (2i + 2)(2i + N)b#*i+t = Σ 2i[2i + (N - 2)(2α + l)]b^yi+2

»=0 i=ί

rn+2 = 0 #

We equate the coefficient of r2 to 0 and have (6). The coefficient
of r2+2i for i > 0 gives in notation (8), (9)

(10) bt = pΛ-i + ff* »

which by induction yields (7).

4* We recall that we are only interested in ae(—1,1/(N — 2)),
and we shall at this point introduce the condition a<l/(N—2). To
estimate 6< given by (7), we start with Up3. Let i0 be any integer
such that

(11) i0 ^ 1 - α(iV - 2) - ^ .

Further conditions on i0 will be imposed in the course of our reasoning.

LEMMA 3. For a < l/(iV - 2) and i > i0,

Proof. In ^ , consider first the factor

δ = 2i + (N- 2)(2a + 1) = * _ 2[1 - « ( # - 2)]
* 2i + N 2i + N

For α < 1/(N - 2) and i > i0, we have 0 < ^ < 1 and

Therefore

log Π δά < - 2[1 - a(N - 2)] P

and

TT δ, <r ( — —
y=<ί+i V 2i + N + 2
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In view of

Pi = —

the lemma follows.

5* To proceed with the estimation of b{ we now utilize also the
condition a > — 1 and impose on % the additional requirement

(13) % ̂  2(α + 1) .

In the sequel c will stand for a positive constant, not always the
same

LEMMA 4. For a e (-1,1/(N — 2)) and i > ίo>

Proof. For i > i0

and therefore

log ή (l _ 2fcL±ϋ) < -2(« + 1)Σ 4 < -2(α + 1)Γ+ ^ .

This gives

^ j . 2 α - 2 < /to + lV(a+1)

 ?

hence (14).

6» We now come to the main step in estimating &,-. It will be
necessary to consider separately the cases ae (-1/N, ί/(N — 2)), a —
-1/2, and α e ( - l , 0 ) - {-1/2}.

LEMMA 5. For a e (-1/N, 1/(N — 2)), and i> iQ ,

2-α(iV-2) / 1 \ (3/2) — (l/2)α(ΛΓ-2)

c, d, e are positive constants.
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Proof. By (7)

(16) &i = M J + i P , + . Σ QJ Jl

and by (12)

519

k=j+l

1—α(JV-2)

< c(IT
In view of (12) and (14) we have

(18) Π
k=j+l (2i + 2)(2j + N) V j + 1

j + 11 2j + N + 2 V-i + l / 2j

For ae(-l/N,l/(N- 2)),

1 - α(iV - 2) < 2(1 + a) .

We therefore may and do require of % further that for j > %

(2j + N + 2)1-""
2 1 _

We obtain

Σ ϊί Π
=<0+l k=j+l 2^^-2V2^ + iV^-2/

where

l-α(iV

. 2%

~ 2 )

+

i-1

V

N-

1
ί2j + N

•2

N ^ )iQ 2x + N 2 2i0 + ΛΓ

Accordingly, we set on % the additional condition that for ί > i0

\i + N + 2 ^ i(I) log-

Then

(19)
t - l *

Σ ϊiΣ QJ Π
fci

(3/2) —(l/2)α(iV—2)

)

A bound for the last term in (16) is immediate by (14):

( i \2(αr+2)

T7

We combine (16), (17), (19), and (20), and obtain (15).
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7* We are ready to state:

LEMMA 6. For ae(—l,l/(N— 2)), the function s(r) of Lemma
2 is bounded quasiharmonic.

In fact, for ae (-1/N, 1/(N - 2)), all three exponents in (15)
are > 1, and therefore

(21) \s(r)\ = Σ hr2

< = 0

The case a = —1/2 is simple, as all q{ = 0, and by (8)

\W = \K\ Π P / < | ϊ
2i + 2)(2t + N)

whence Σo° I δ41 < «>,
It remains to consider the case α e ( — 1 , 0) — { — 1/2}. We obtain

at once

2>* <

3>* <

+ N - 2)
fc + 2)(2fc
j + 2)(2j
i + 2)(2i + N)

and by (14)

for i > i0. Therefore

Qs Π

i + 2)(2i V j + 1 /

(2ί + 2)(2i + N) Jίo (x

where the integral has the value

— L - ^ — - {i° + 1)~2"~1]

since α 9̂  —1/2. As a consequence

(22)

Similarly

(23)

t-1

Σ Π
k=i+ι

3+2αr

)-)

K Π
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and

( 1 \2a+i

T)
Since all exponents in (22)-(24) are > 1, it follows again by (16) and
(21) that the function s(r) is bounded.

8* We have established our result:

THEOREM. There exist bounded quasiharmonic functions on the
Riemannian ball Ba if and only if the function s(r) of Lemma 2 is
bounded.

In fact, we know that there exist bounded quasiharmonic func-
tions on Ba if and only if a e (-1,1/(N - 2)) (Sario-Wang [16]). This
together with Lemma 6 gives the theorem.

A simple consequence is perhaps worth stating. Let R be the
family of radial functions, characterized by the dependence on r only.
Denote by OQBR and OQB the classes of Riemannian manifolds which
do not carry bounded radial quasiharmonic functions, or bounded
quasiharmonic functions, respectively, and set B— {(J Ba\aeR}.

COROLLARY 1. ΰ n OQBR = Bn OQB.

That is, there exist bounded radial quasiharmonic functions on
Ba if and only if there exist bounded quasiharmonic functions.

COROLLARY 2. Bf] OQNR Φ 0 .

For a e (-1,1/(N - 2)), we have s - sup*a \s\e QNR. For all a,
it is readily seen that the function

JoJoVα / (1 - σz){N-2)a

is radial, negative, and quasiharmonic.
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