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INTEGRABILITY THEOREMS FOR POWER SERIES
EXPANSIONS OF TWO VARIABLES

YOSHIMITHU HASEGAWA

Let f(x9 y) = Σ ; , « = 0 ^ , Λ B in the triangle x + y ^ 1,
x, V^O, or in the quarter-disk x2 + y2 < 1, x9 y ^ 0. This
paper show some relations between L-integrability of f(x,y)9

with certain multipliers, and the coefficients am,n.

I* DEFINITION. A real-valued function f(x, y) is said to be
harmonic in a domain D in R2 if it is 2-times continuously differ-
entiable in D and satisfies Laplace's equation

J / = |L£ + |Lί = 0 for any (x, y)eD.
dx2 dy2

Throughout the paper, the letter C, with or without a suffix,
denotes a positive constant, not necessarily the same at each ap-
pearance.

Hey wood [3] proved a result as follows:
Suppose that /(a?) = Σ?=o α»»w for 0 ^ x < 1, that 7 < 1, and

that there are positive numbers ε, C such that an ^ —Cn~ίr+ε) for
all sufficiently large n. Then (1 - α;)~r/(α?) 6 L(0,1) if and only if
Σ~=i wr~1<^ converges absolutely.

We shall show two analogues of his result for power series ex-
pansions of two variables.

Kiselman [4] proved the following theorem.

THEOREM A. If f(x, y) is harmonic in the disk x2 + y2 < r2

0

(r0 > 0), but not in any open disk of larger radius centred on the
origin, then the power series expansion

(1) /(»,»)= Σ aMxmy*
m,n=0

converges absolutely in the square K: \ x | + | y \ < r09 uniformly on
every compact subset of K. It diverges at all points exterior to K
for which x Φ 0, and y Φ 0.

Further, the following theorem is known (see [2, p. 189 and 200]
and [4]).

THEOREM B. Suppose that f(x, y) is harmonic in the disk

x2 + y2 < r2

0,
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and that f(x, y) has the power series expansion (1) in the square K,
where K is defined as in Theorem A. Let PN(x, y) be defined by

PAv,v)= Σ am>nx
myn (iNΓ=0,l,2, . . . ) .

Then the polynomial expansion

, V) = Σ PN(X, V)
N0
Σ
N=0

of f{x, y) converges uniformly and absolutely in x2 + y2 ^ r 2 for any
0 < r < r0, where PN(x, y) are harmonic.

We give the following four theorems.

THEOREM 1. Suppose that a double power series (1) converges
absolutely in the triangle

( 2 ) T: x + y < 1, «, # ^ 0 ,

ί/̂ αί 7 < 1, αmZ ίfeαί ίfeerβ are positive numbers ε, C such that

( 3 ) aM ^ - C ( w + n + l)»+ - ^ +1'2(m + l)- ( m + 1 / 2 ) (^ + l j -

/or aiϊ sufficiently large m + n. Then (1 — x — y)~rf(x, y) is Lebesgue-
integrable on T if and only if

( 4) Σ (m + ι̂ + l)—-*+ '-β '2(m + l)m + 1 / 2(tι + l)n+ίl2am,n
m,n=0

converges absolutely.

THEOREM 2. Suppose that f(x, y) is harmonic in the quarter-disk

( 5) Q: x2 + y2 < 1 , x9 y ^ 0 ,

f(x, y) has the power series expansion (1) in the triangle
T, where T is defined by (2), Then, under the assumption (3), the
function (1 — x — y)~rf{x, y), 7 < 1, is Lebesgue-integrable on T if
and only if the series (4) converges absolutely.

Theorem 2 is an obvious consequence of Theorem A (r0 = 1) and
Theorem 1, and so we omit the proof.

THEOREM 3. Suppose that a double power series (1) converges
absolutely in the quarter-disk Q, where Q is defined by (5), that
7 < 1, and that there are positive numbers ε, C such that



INTEGRABILITY THEOREMS FOR POWER SERIES EXPANSIONS 421

(~C(m + n

x (n + l)-{n+1)'2 (even m, n)

— C(m + n + i)ί™+w>/2~r-e(m + l)-*/ 2

x (w + l)~ ( w + 1 )/ 2 (odd m and even w)
( 6 ) - ^ J

— u{m-\-n-\- i)"

x (n + l)-^ 2 (even m and odd w)

x (n + l)-*/2 (odd m, n)

for all sufficiently large m + n. Then the function

{1 - (x2 + /)1/2}~r/(α;, 2/)

is Lebesgue-integrable on Q if and only if the series

oo

\ / x j \Ύil/ ι" ίv "~τ~ XI {lΊv ~~γ~ JL) ( 7 v ~i x ) O/γfi ifi

converges absolutely.

REMARK 1. In Theorem 3, it is easily seen that (6) may be re-

placed by a stronger condition

7W.,?l ::—- v-̂  \llb |^ /& | " -*• / Kill' ~\ -LI \ #v Π~̂  -*-/

for all sufficiently large m + n.

THEOREM 4. Suppose that f(x, y) is harmonic in the quarter-disk
Q, where Q is defined by (5), and that f(x, y) has the power series
expansion (1) in the triangle T, where T is defined by (2). Then,
under the assumption (6), the function {1 — (x2 + y2)ίl2}~rf(%, y), 7 < 1,
is Lebesgue-integrable on Q if and only if the series (7) converges
absolutely.

Theorem 4 is a consequence of Theorem B (r0 = 1) and Theorem 3.
In § 2, we shall prove Theorem 1 and give an example for Theorem 2.
Further, in § 3, we shall prove Theorems 3 and 4.

2. Proof of Theorem 1. First, suppose that (1 - x — y)~rf(x, y)
is Lebesgue-integrable on T. Without loss of generality, we suppose
that 7 + ε is a noninteger value < 1. For, we get

am>n ^ —C(m + n + l)m+n~^~~£/+1i2(m + 1)

for 0 < s' < e. We have, for any (x, y) e T,
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' ^ o Γ(iV + 1) Γ(l - 7 - e)

_ 1 Λ Γ(iV + 1 - 7 - 5 )

- 7 - ε) i^'

x m g = Λ ^

1 v
Γ(l - 7 - s) »^o Γ(m + l)Γ(n + 1)

1
7 —

Σ δm,^-7/% ,

say, where Γ{u) is the Gamma function. By Stirling's formula (see
e.g. [1, p. 24])

Γ{u) = χ/~2π u*-we-"+>>ιu» for any u > 0 ,

where η is a number independent of u between 0 and 1, we obtain

(9) C1tt"-1/V-W ^ Γ(^) _; C2u
u~ίl2e-U for any ̂  ^ u0

if ^o is a fixed positive number. Hence we get easily

(10) C3Xm>n ^ bm,n ̂  C,Xm>n for all m, Λ _ς 0 ,

where

(notice uQ ̂  min (1 — 7 — ε, 1)). Let

g(x, y) = C5Γ(1 - 7 - ε)(l - α? - T/)^ 6- 1 , C5 ^ C/C,.

Then, it is clear that (1 — x — y)~rg(x, y) is Lebesgue-integrable on
T. Thus, by assumption,

(1 - x - y)-'{/(a, y) + flr(α?, y)} = (1 - α? - » ) ^

x Σ (α»,» + Cδbm,n)xmyn

m,n=0

is Lebesgue-integrable on Γ By (3) and (10), we heve

aM + Cδbm,n ^ am>n + CXm,n ^ 0

for all sufficiently large m + n. Hence we get

[( (1 - x - y)-r j f; (α.,, + C 5 6 M ) ^
, ^ v J J 2 7 lm,n=0

.. + C&bnj\\ ( ί - x - y)-rχ™y*dxdy ,= Σ
0
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where the right-side series converges absolutely. Using the change
of variable x = (1 — y)u, we have, for all m, n ^ 0,

[\ (1 - x - y)~rxmyndxdy

= [dyi1 \ l - x - y)-?xmyndx
Jo Jo

= Γ (1 - y)m+1~ryndy Γ (1 - u)-γumdu
Jo Jo

_ Γ(n + l)Γ(m + 2 - 7) . Γ(m + 1)Γ(1 - 7)
Γ(m + n + 3 - 7) " Γ(m + 2 - 7 )

- 7)
Γ(m + n + 3 - 7)

Hence, from (9), we get

Cδ(m + n + l)-™-"+r-5(2(m + l)m+l/2^ + JJn+1/2

(12) ^ I ί (1 - x - y)~rχmyndxdy

^ C7(m + n + l)~m~n+ΐ~5!2(m + ΐ)m+1{2(n + 1)% + 1 / 2

for all m,n^0. Thus, by (11) and (12),

(13) m Σ o (m + n + 1)—-+'-5/«(m + l)-^/ 2(^ + l)*+1**(aMtn + C5bm>n)

converges absolutely. Further, from (10)

Σ (m + n + l)-m-*+r-*ι*(m + ί)m+l!2(n + ΐ)n+ll2bm,n

(14)

By (3) and (10), we get

αm,Λ I ̂  m̂,w + 2Cλm>w ^ αw,w + 2Cδbm>n (C5 ^ C/C3)

for all sufficiently large m + n. Hence, from (13) and (14), the series
(4) converges absolutely.

Conversely we suppose that the series (4) converges absolutely,
and will deduce that (1 — x — y)~rf(x, y) is Lebesgue-integrable on T.
For this part of the argument we do not assume (3). We have in
fact
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(1 - x - y)~r I f(x, y) \ dxdy

^\\ ( l - x - y)~r { ± I am,n I xmyΛ dxdy
JJT Km,n=0 )

= Σ I «.„ I (( (1 - x - y)~rxmyndxdy
m,n=0 JJT

^C7 Σ (m + n + 1 ) — " + ' - | " I ( T O + i)-+i/ ( Λ + i)»+i/« | αm,m | < oc
m,%=0

by (12). Thus Theorem 1 is proved.

EXAMPLE FOR THEOREM 2. Let

f{x, y) = 31(1 - z)-2 = (1 ~ a;)' - y* {z = χ + i y i = yrziy,
{(1 - a;)2 + y2}2

Then f(x, y) is harmonic in the disk x2 + y2 < 1. Since

fix, y) = Vl±iN+ l)z» =±(N+1)

in the disk x2 + y2 < 1, we get

2n + 2)

Σ (
+Zn=N

J{X> y ) , S o ( 1 } Γim + 1 ) Γ ( 2 Λ + 1) * ^

in the square | a? | + | y \ < 1, by Theorem A. When αWlΛ denote the
(m, ?ι)th coefficients of this power series expansion, we have, from (9),

^ I α m > 2 w I ̂  C2(m

and αW}2%+1 = 0. First we put 7 < — 1. Then the sequence {am>n}
satisfies (3) for ε = — (7 + l)/2. Now we have

j ^ (1 - x - y)~r I f{x, y) \ dxdy

= ι (i - xy^dx Γ
J o V Jo (1 + tt2)2

by the change of variable y = (1 — »)%. Further we get

Σ im + n

g C2 Σ (m + » + I)7"1 <
m,n=0

Next we set 7 = — 1. Then {am>n} does not satisfy (3), but we notice
ε = 0. It is clear that
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\\ (1 - x - y) 1 f(x, y) 1 dxdy = Γ ( 1 ~ U m l U)du<«o

But we get

425

^C, Σ (TO + 2% + I)-2 > £ Σ (TO + » + I)"2 = oo .

Thus this example (7 = —1) show that we cannot set ε — 0 in (3)
without destroying the validity of Theorem 2.

3* In order to prove Theorem 3, we need the following lemma.

LEMMA. Suppose that μ < 1, and that A(x, y) is defined by

A(x, y) — (1 + x + y + xy)(l — x2 — yY"1

in the quarter-disk Q, where Q is defined by (5). Then A{x, y) has
the power series expansion

(15) A(x, y) - y8mt% ^ dm,n ^ C2dm,n (Cl9 C2 > 0)

in Q, where

(m + n +

(m + ^ +

(m + n +

(m + π +

x (w + l)~{n+ι)i2

x (n + 1)"

x (n + l)-% / 2

(even m,

(eve^ m and odd n)

(odd m, n) .

Proof. We have, for any (&, y)eQ,

= y

= Σ

+ n + 1 -
Γ(TO + 1) Γ(n
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say. Then we get

(16) A(x, y) = Σ Vm,n{x2my2n + x2m+1y2n + x2my2n+ι + α ^ + y * * 1 ) .

m,n=0

We put

Pm/2,nl2 (βVβΏ 7Π9 Tl)

P(m-D/2,Λ/2 (odd m a n d even n)

Pm/2,(u-D/2 (even m and odd w)

I P(m-i)i2,(n-Di2 (odd m, w) .

Now, from (16) and (9), we get easily (15). Thus the Lemma is
proved.

Proof of Theorem 3. First, suppose that {1 - (x2 + y2)lβ}~rf{x, y)
is Lebesgue-integrable on Q. Without loss of generality, we may
suppose that 7 + ε is a noninteger < 1. Let

(17) h(x, y) = (1 + x + y + xy)(l — x2 - ^ 2 ) r + e ~ 1

in Q. Then, by the Lemma (μ = 7 4- s), we have

(18) h(x, y) = J : = o km>nx
myn , C,ΘM ^ Λm>% rg C , ^ , ,

in Q, where jfcm,n and ^m>% are defined respectively like dm,w and δW)W

in the Lemma with μ — 7 + ε. Clearly, the function

{1 — (x2 + y2yl2}~rh(x, y)

is Lebesgue-integrable on Q. Hence, by assumption, the function

{1 - (x2 + yψTr {f(χ, y) + C3h(x, v)}
CO

= {1 — (a;2 + 2/2)1/2}~r Σ (am,n + C3km,n)xmyn

is Lebesgue-integrable on Q, where C3 Ξ> C\Cγ. Further, by (6) and
(18), we have

(19) am,n + Cskm,n ^ am,n + Cθm,n ^ 0

for all sufficiently large m + n. Thus we get

(ί {1 - (a;2 + yψTr{ Σ («... + ^ , > " l / * l ^ l /

= Σ ( o . f . + C3λ;m)K) {1 - (a;2 + yψYrxmV*
m,n=0 JJQ
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where the right-side series converges absolutely. By the change of
variables

x — r cos v , y = r sin v (0 ̂  r < 1, 0 ^ v ^ π/2) ,

we get

{1 - (α;2 + y2yΎ?xmyndxdy

= Γ (1 - r)-rrm+n+1dr Γ^sin™ v cos%v (fo
Jo Jo

__ Γ(m + n + 2)Γ(1 - 7) m 1_ # Γ((m + l)/2)Γ((tι
Γ(m + n + 3 - 7) 2 Γ((m + w)/2 + 1)

Thus, from (9), we get

C4(m + % + l)-<~+»+*>/*+r(m + i)»/2(w + i)»/a

(21) ^ if {1 - (χ2 + <yfγrχmyndxdy

^ C5(m + w + l)-«"

for all m, n^ 0. Hence, by (20),

(22) Σ (m + Λ + l)-^+-+ 3^ 2+r(m + l)*/«(n+ l)
m,n=0

converges absolutely. Further, by (18), we have

Σ (TO + n + l)-'-+»+3)/2+' (m + l)m/2(w + l) "2fcro>M

^ C2 Σ {(w + n + l)-" £ (« + l)- I / 2(» + 1)~1/2

m,n=0

+ (m + n + l)-"2~ε(n + 1)~1/2 + (m + n + l)-8/2~e(m + 1)~1/2

+ (m + n+ l)-2-£} < oo.

By (6) and (18), we get

I aM I £ amtn + 2CΘM ^ αW)W + 2Czkn,n (C3 ̂  C / Q

for all sufficiently large m + n. Hence, from (22) and (23), the series
(7) converges absolutely.

Conversely we suppose that series (7) converges absolutely, and
will deduce that {1 — (x2 + y2)1I2}~rf(%, y) is Lebesgue-integrable on
Q. For this part of the argument we do not assume (6). We have
in fact
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\\ {1 - (x2 + yψY? \ ± I o... I xmy4 dxdy
JJQ l»,w=0 )

= Σ k... I [( {1 -
m,n=0 JJQ

+

by (21). Thus Theorem 3 is proved.

REMARK 2. From (17), it is easily seen that

CM*, v) ^ {i - (^ + y2)112}7^1 ^ c2h (x, y)

in Q.

Proof of Theorem 4. By Theorem B (r0 = 1), we get

oo

j \*̂ > y) — x J s i cLmtn™ y
jy=O m+n=N

in Q. We define h(x, y) by (17). Then it is sufficient for us to notice
that

f(x, y) + C3h(x, y) = Σ Σ <*>m,n%myn + C3 Σ K,n%myn

= Σ Σ («•.» + C 3 fc w , % )^^
JV=O m+n-N

oo

m,w=0

in ζ), in view of (18) and (19), where the last right-side series con-
verges absolutely. Thus Theorem 4 is a consequence of Theorem 3.

The author wishes to thank the referee for several helpful sug-
gestions.
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