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INTEGRABILITY THEOREMS FOR POWER SERIES
EXPANSIONS OF TWO VARIABLES

YOSHIMITHU HASEGAWA

Let f(z, ¥) = X3 .- @m.»@™y" in the triangle z +y =1,
%, Yy =0, or in the quarter-disk 22+ 2 <1, z, ¥y = 0. This
paper show some relations between L-integrability of f(z,v),
with certain multipliers, and the coefficients an,x.

1. DEFINITION. A real-valued function f(x,y) is said to be
harmonic in a domain D in R?® if it is 2-times continuously differ-
entiable in D and satisfies Laplace’s equation

Afsﬁ%—ﬂ: for any (z,y)e D .
ox? oy?

Throughout the paper, the letter C, with or without a suffix,
denotes a positive constant, not necessarily the same at each ap-
pearance.

Heywood [3] proved a result as follows:

Suppose that f(x) = >v,a,2" for 0 <2 <1, that v <1, and
that there are positive numbers ¢, C such that a, = —Cn~"*9 for
all sufficiently large ». Then (1 — 2)77f(x)e L(0,1) if and only if

=_ n''a, converges absolutely.

We shall show two analogues of his result for power series ex-
pansions of two variables.

Kiselman [4] proved the following theorem.

THEOREM A. If f(x,y) ts harmonic in the disk &+ y* < 7}
(ro > 0), but mot im any open disk of larger radius centred on the
origin, then the power series expansion

(1) F@9) = 3 0"y

converges absolutely in the square K: |x| + |y| < 70 uniformly on
every compact subset of K. It diverges at all points exterior to K
Jor which » +# 0, and y # 0.

Further, the following theorem is known (see [2, p. 189 and 200]
and [4]).
THEOREM B. Suppose that f(x,y) is harmonic in the disk
o+ Y <715,
419
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and that f(x,y) has the power series expansion (1) in the square K,
where K 1is defined as in Theorem A. Let Py(x,y) be defined by

PN(m, y) = Z 2™ Y" (N = 0: 1) 2) i ') .

m+n=N

Then the polymomial expansion

F@,9) = 3 Py, v)

of f(x,y) converges uniformly and absolutely in o° + y* < r* for any
0 < r < 1y, where Py(x, y) are harmonic.

We give the following four theorems.

THEOREM 1. Suppose that a double power series (1) converges
absolutely in the triangle
(2) T: s +y<l1, z, y=0,
that v < 1, and that there are positive numbers ¢, C such that
(8) @pu=—C(m+ n+ 1)mt1s2(m 4 1)~ »HE(p 4 1)~ =02

for all sufficiently large m + n. Then (1 — x — y)77f(x, y) is Lebesgue-
integradle on T if and only if

(4) i (m + n + 1)_m—n+7’"5/2(m + 1)m+1/2(n 4 1)n+1/2am’n

m 0

converges absolutely.

THEOREM 2. Suppose that f(x, y) is harmonic in the quarter-disk
(5) Qr+y<l, = yz=0,

and that f(x,y) has the power series expansion (1) in the triangle
T, where T is defined by (2). Then, under the assumption (3), the
function 1 — x — y)7f(z,y), v <1, ts Lebesgue-integrable on T if
and only if the series (4) comverges absolutely.

Theorem 2 is an obvious consequence of Theorem A (r, = 1) and
Theorem 1, and so we omit the proof.

THEOREM 3. Suppose that a double power series (1) converges
absolutely im the quarter-disk @, where @ 1is defined by (5), that
v < 1, and that there are positive numbers ¢, C such that
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—C(m + n + 1)mtntnle=r—s(py 4 1)-—(m+1)/2

X (m + L)~m+ore (even m, n)
—C(m + nm + 1) E=r=s(p 4 1)~

X (n + 1)~ (odd m and even m)

(6) Quau= —C(m + n + 1)m+miz=r—e(y 4 1)~ tm+ni
X (n+ 17 (even m and odd n)
—C(m + n + L)men—biE=r—<(y  1)~™?
X (n + 1)™™* (odd m, n)

for all sufficiently large m + n. Then the function
{1— @+ )77 f(z, )

is Lebesgue-integrable on Q if and only if the series

o

(7) S (m o+ o )T 4 1) (0 + 1),
m 0

y =

converges absolutely.

REMARK 1. In Theorem 38, it is easily seen that (6) may be re-
placed by a stronger condition

U = —C(m + m + D27~ 4 1y~ 4 1)~
(m’n = 0’ 1’2’ ...)

for all sufficiently large m + n.

THEOREM 4. Suppose that f(x, y) is harmonic in the quarter-disk
Q, where Q is defined by (5), and that f(x,y) has the power series
expansion (1) in the triangle T, where T is defined by (2). Then,
under the assumption (6), the function {1 — (x* + ¥ 7f(x, v), v<1,
is Lebesgue-integrable on Q if and only if the series (7T) comverges
absolutely.

Theorem 4 is a consequence of Theorem B (r, = 1) and Theorem 3.
In § 2, we shall prove Theorem 1 and give an example for Theorem 2.
Further, in § 3, we shall prove Theorems 3 and 4.

2. Proof of Theorem 1. First, suppose that (1 — 2 — ¥) 7 f (2, ¥)
is Lebesgue-integrable on T. Without loss of generality, we suppose
that v + ¢ is a noninteger value < 1. For, we get

a’m,n Z ___C(m + n + 1)m+n—r—e’+l/2(m + 1)—(m+1[2)(n + 1)—(1L+1/2)

for 0 < ¢’ <e. We have, for any (x, y)e T,
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L—o—g)y+tt=3 I''N+1—v—¢

ETN+DIa—v-9" 9

_ 1 SITN+1—v—%¢
Il —v—e¢) i (N +1)
m-+n
(8) x Z( " )”
mynz0
_ 1 & I'(m+n—v—e+1) am
ra—~—gymn=orl'(m+ 1)I'(n+1)
1 o

—_—— - bmnxm n,
F(l-—”/—G)m,‘g—‘;o ’ v

say, where I'(u) is the Gamma function. By Stirling’s formula (see
e.g. [1, p. 24])

I'(w) =V 21 w2 vnlize for any u >0,
where 7 is a number independent of % between 0 and 1, we obtain
(9) Cu e < Mu) < Cou ™ for any % = u,
if u, is a fixed positive number. Hence we get easily
(10) Chmyn = by < C for all m,n=0,
where

Nmn = (M 4 W A LYymEvr=esil2y 4 1)=(nt1i2) (4 J)=(ntjz)
(notice u, = min (1 — v — ¢, 1)). Let
9@, ) =CI'l -7 -l —w -y, C=z=C/C.

Then, it is clear that (1 —  — %) 7g(%, ¥) is Lebesgue-integrable on
T. Thus, by assumption,

A—z—y{fly) +o@n}=0-z—y™
X i‘io (@, + Cibm,n)x™y"
is Lebesgue-integrable on 7. By (3) and (10), we heve
am,n + C5bm,n 2 am,n + C)\:m,n g 0

for all sufficiently large m + n. Hence we get
1,0 =o=97{ 3 @u+ Chunomy}dady

= %o (@, + Csbm,n)SST (1 - — y)—'rmmyndxdy ,

m

(€8Y)
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where the right-side series converges absolutely. Using the change
of variable # = (1 — y)u, we have, for all m, n =0,

SST(l — x — y) Ty dxdy

= S:dy S:_y A -2 — y)Taemy"de
= S: 1 — yymrryrdy S: 1 — w)yurdu
_Ln+HI'm+2—v I'(m+1HI'Ad —7)
I'm+n+3—7) rm+2-—")
= I —7)- I'm-+1)I'(n+1) .
I'm+n+38—7)

Hence, from (9), we get

Co(m + m + 1)~ (g,  1)ym+i2(y 4 1)ntie
12) < SS A — z — y) ey dady
T
= Ci(m + n + 1)=m= =+ ) (n + 1)

for all m, n = 0. Thus, by (11) and (12),
(13) iﬁm+n+nwwwwm+¢wwm+nww%m+@m@

converges absolutely. Further, from (10)

Sy (m 4 m 4 D) 4 ) 1),
(14) myn=0

fiA

C, i(m+n+1)“2“s<oo.

By (3) and (10), we get

[Cnn| S Appn + 2000 = Ay + 205Dy, (Cs = C/Cy)
for all sufficiently large m + n. Hence, from (13) and (14), the series
(4) converges absolutely.

Conversely we suppose that the series (4) converges absolutely,
and will deduce that (1 — 2 — %) f(%, y) is Lebesgue-integrable on T.
For this part of the argument we do not assume (3). We have in
fact
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“T(l —z— 97| f(2,v) | dedy
NT(l_x“y)—r{ Z |G, | ™ Z/}dxdy

o

Sl |] @ = o — yyamydady

IA

S C 5 (mo m T 4 DR 4 1) g, | < o
by (12). Thus Theorem 1 is proved.

EXAMPLE FOR THEOREM 2. Let

. -2 _ (]_._.;1;)2—-?/2 _ g —\"
Sz, y) = R1 —2) Mo T T z=2+iy,i=1—-1).

Then f(,y) is harmonic in the disk 2* + %* < 1. Since

w . o m + 2n .
Fa)=REN+ D = SN+ S (-1 )xy .
N=0 N=0 m+2n=N n
in the disk * + 4* < 1, we get
& . I'(m+ 2n + 2) . 2m
= -1
o= s Y e !

in the square |z| + |y| <1, by Theorem A. When a,,, denote the
(m, n)th coefficients of this power series expansion, we have, from (9),

Ci(m + 2n + 1)m 43l (gpm 4 1)~ (m 12 (2 4 1)~ Entt2
=< [ Gpn | S Cilm + 20+ DPH530m 4 1) 09 (2 + 1)~

and @,.,., = 0. First we put v < —1. Then the sequence {a,,.}
satisfies () for e = —(v + 1)/2. Now we have

-

S.\T(l —x =97 f(»,v) |dedy

-fo o S

by the change of variable y = (1 — x)u. Further we get

S (m 4 n o D 4 ) (o )P0 g, |

m, 0

= szio(m A+ )T < oo

Next we set ¥ = —1. Then {a,,,} does not satisfy (3), but we notice
¢ =0. It is clear that
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|, @—2-0if@vldeay = | E=CE W gy < oo

Joo (1 + ud?
But we get
B e (R Ve (B VA L
= C, M%O(m + 2n + 1) >%M%O(m +m+1)F= .
Thus this example (v = —1) show that we cannot set ¢ =0 in (3)

without destroying the validity of Theorem 2.
3. In order to prove Theorem 3, we need the following lemma.

LEMMA. Suppose that p < 1, and that Az, y) is defined by
A, y) =1+ 2 +y + ay) — & — )

n the quarter-disk @, where Q 1is defined by (5). Then A(x,y) has
the power series expamsion

(15) A(x) y) = i dm:%xmyn ’ Clam,n é dm,'n g Czam,n (Cl, Cz > O)

wn @, where

(m + n + L)mentor=—u(py 4 1)~ (mv/z
X (m + 1)=»tbi2 (even m, n)
(m + n + 1)mtmiE=s(m + 1)~
X (n+ 1)~"E (odd m and even m)

O = (m + o+ 1)(m+w)12~/t(m + 1)~tmtur
X (n + 1)~ (evem m and odd m)

(m + n + L)min—Ulu(y 4 1)~m2
X (n + 1)~ (odd m, m) .

Proof. We have, for any (z, y) € Q,

o2 2#—1:m F(N'{'l—#)
Q=0 =" = N T Dra-

— < F(N+1—#) (m—'-%)xzmyz'n
F=oI'(N+ 1)I'(1 — p) mba=r \ m

m,nz0
_ S _ 1 Imintlop ..
mas 'L —p) I'(m+1I'(n+1)

oo

@ + ¥)"

il

yZn

= Do 8" Y™

m,n=0
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say. Then we get

(16) A(x, y) — i‘; pmm(mZmyZn + x2m+ly2n + mey2n+1 + x2m+ly2n+1) .

m 0

We put
DPmiz,nf2 (even m, 'n)
Dim— /2.2 (odd m and even u)
dm n =
Pmizyn—v)2 (even m and odd )
Pim—1)f2,(n—1)/2 (odd m, n) .

Now, from (16) and (9), we get easily (15). Thus the Lemma is
proved.

Proof of Theorem 3. First, suppose that {1 — (2* + ¥)"}7f(x, v)
is Lebesgue-integrable on Q. Without loss of generality, we may
suppose that v + ¢ is a noninteger << 1. Let

17 @, y) =1+ +y+ oy —a® — y)y*+

in Q. Then, by the Lemma (¢ = v + ¢), we have
(18) h@, 1) = 3 kput™,  Cilun = kpn < Cfs
myn=0

in @, where %, . and 6, are defined respectively like d,,, and 0,,,
in the Lemma with ¢ = v + &. Clearly, the function

{1 — @ + )"} 7h(, v)
=Q+aec+y+ay){l+ @+ y2)112}7+s-—1 {1 — @+ vy

is Lebesgue-integrable on @. Hence, by assumption, the function

{1 — @+ )" {f(2, y) + Ch(x, )}
== @+ 197 3 (@ + Ciknn)a™y"
is Lebesgue-integrable on Q, where C, = C/C,. Further, by (6) and
(18), we have

(19) am,n + C3km,n _2_. am,n + Cﬁm,n g O

for all sufficiently large m + n. Thus we get

o) [I,0— @+ 097 { 5 @un+ Cwomy | dody
=2

m

(@yn + Cilo,n) SSQ {1 — (@* + ¥ 72y dady ,

0
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where the right-side series converges absolutely. By the change of
variables

=1 CoS vV, y=rsinv (05r<1,0=0v7/2),

we get
[I, 0 = @+ wryamydody

1 x[2 .
= S 1 — r)y"Tpmtrtidy S sin™ v cos"v dv
0 0

_Im+n+2)rA—7 1 I(m+D/2)((n+1)/2) .
'm+n+3-—"1) 2 I'((m + n)/2 + 1)

Thus, from (9), we get

Cim + m + 1)~ 9247 (4 1) 4 1)
21) = || 40— @+ werdsdy
g C5(m + n + 1)—(m+%+3)[2+7(m + l)m/Z(n + 1)%]2

for all m, » = 0. Hence, by (20),

(22) Sy (m 4 o+ D7 4 1)t 1)@y, . + Cikinn)
m,n=0

converges absolutely. Further, by (18), we have

3 (m o+ m o DT 1) 1,
myn=0

(23) =G mio{(m + n + 1)7m + 1)V (n + 1)__1/2

+(m+n+ D)4+ D7 4+ 0+ )7 (m 4 1)1
4+ (m + n+ 1)} < oo

By (6) and (18), we get
[ Gn | S Qe + 2C0,,0 < Aoy + 20k ,m (C, = C/C)

for all sufficiently large m + n. Hence, from (22) and (23), the series
(7) converges absolutely.

Conversely we suppose that series (7) converges absolutely, and
will deduce that {1 — (#* + ¥°)"*} 7 f(x, y) is Lebesgue-integrable on
Q. For this part of the argument we do not assume (6). We have
in fact
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SSQ{I — @+ )| f(x, y) | dedy
= SSQ {1 — @+ ) {m%o |G| x‘my'n,} dady

— i ]amm [ SSQ{I — (wz + y2)112}~rwmyndxdy

m,n=0

< Co 51 (m 4 m 4 D70 4 ) 4 1) G, < oo

m,n=0
by (21). Thus Theorem 8 is proved.
REMARK 2. From (17), it is easily seen that
Ch(z,y) = {1 — (@ + )" = Gh(z, v)
in Q.

Proof of Theorem 4. By Theorem B (r, = 1), we get

F@,y) =2 > 0 2"Y"
N=0 m+n=N

in Q. We define h(x, y) by (17). Then it is sufficient for us to notice
that

oo

S 2 O a™y" 4+ G Zokm,nx"‘y"

Il

f@, v + CGh(z, y)

N=0 m+n=R myn=
= 3, (On,n + Coli, )™ y"
N=0 m+n=N

= 3 (@nn + Ciltno)a™y"
in @, in view of (18) and (19), where the last right-side series con-
verges absolutely. Thus Theorem 4 is a consequence of Theorem 3.

The author wishes to thank the referee for several helpful sug-
gestions.
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