SIMPLE EXTENSIONS OF MEASURES AND THE PRESERVATION OF REGULARITY OF CONDITIONAL PROBABILITIES

Louis H. Blake

Throughout this paper, the following notation will be adopted. $(\Omega, \mathfrak{A}, P)$ will be a probability space with \mathfrak{B} a sub σ -field of \mathfrak{A} . H will denote a subset of Ω not in \mathfrak{A} and \mathfrak{A}' will be the σ -field generated by \mathfrak{A} and H. P_e will be a simple extension of P to \mathfrak{A}' if P_e is a probability measure on \mathfrak{A}' with $P_e \mid_{\mathfrak{A}} = P$.

The ability to extend the regularity of the conditional probability $P^{\mathfrak{B}}$ to regularity of $P^{\mathfrak{B}}_{\mathfrak{e}}$ has been explored earlier for canonical extensions of measures. The main results of this paper are:

- (a) If $P_c^{\mathfrak{B}}$ is regular for some canonical extension P_c of P to \mathfrak{A}' , then $P_e^{\mathfrak{B}}$ is regular for any simple extension P_e of P to \mathfrak{A}' .
- (b) For some choice of $(\Omega, \mathfrak{A}, P)$, \mathfrak{B} and H, $P^{\mathfrak{B}}$ is regular but for no P_e is $P_e^{\mathfrak{B}}$ regular. This will essentially extend the Dicudonné example,

Our notation regarding (regular) conditional probabilities will be consistent with [1].

For extendability see [4]. The example for (b) occurs in [2].

PROPOSITION 1. Any simple extension P_e can be expressed as the sum of a canonical extension of P plus a finite signed measure on \mathfrak{A} . (Since the construction is carried out in a unique manner, this decomposition of P_e will be called the canonical decomposition of P_e .)

Proof. As in [1], let K be a set which extends P canonically to \mathfrak{A}' . For any $A' \in \mathfrak{A}'$ with $A' = A_1H + A_2H^c$ for some A_1 and A_2 in \mathfrak{A} write

$$P_e(A') = P(A'K^c) + P_e(A_1HK) + P_e(A_2H^cK)$$
.

It may be supposed that $P(K) \neq 0$. Thus, let $\alpha_{\varrho} \equiv P_{\epsilon}(HK)/P(K)$ and define a set function ε on $\mathfrak A$ such that for every $A \in \mathfrak A$

$$\varepsilon(A) = P_e(AHK) - \alpha_{\Omega}P(AK)$$
.

It is immediate that ε is a finite signed measure. It also follows that for any $A \in \mathfrak{A}$

$$P_{\varepsilon}(AH^{\varepsilon}K) = \beta_{\varrho}P(AK) - \varepsilon(A)$$

where $\beta_{Q} \equiv 1 - \alpha_{Q}$ inasmuch as it can be written that

$$P(A)=P_{\scriptscriptstyle e}(A)=P_{\scriptscriptstyle e}(AH+AH^{\scriptscriptstyle c})= \ P(AK^{\scriptscriptstyle c})+lpha_{\scriptscriptstyle B}P(AK)+arepsilon(A)+P_{\scriptscriptstyle e}(AH^{\scriptscriptstyle c}K)$$
 .

Thus, for $A' \in \mathfrak{A}'$

$$P_e(A') = \underline{P(A'K^c)} + \underline{lpha_g P(A_1K)} + arepsilon(A_1) \ + \ eta_g P(A_2K) - arepsilon(A_2)$$
 .

(Let the sum of the underlined measures be called the *canonical part* of P_{ϵ} .)

It is clear that the extension, P_e , of Proposition 1 is canonical if and only if the signed measure ε is identically zero.

Lemma 2. The signed measure ε is absolutely continuous with respect to P.

Proof. Let $B \in \mathfrak{A}$ be a positive set for ε according to its Jordan decomposition and let $A \in \mathfrak{A}$ with P(A) = 0. Then,

$$(2.1) P_{\epsilon}(ABHK) \leq P(ABK) \leq P(A) = 0$$

and so $\varepsilon(AB)=0$. If $C(=B^\circ)$ is a negative set for ε then it follows that $\varepsilon(AC)=0$ where one merely inserts C for B in (2.1). Hence $\varepsilon\ll P$.

LEMMA 3. If $\Omega_0 \in \mathfrak{A}$ with $P(\Omega_0) = 1$ then $\varepsilon(\Omega_0) = 0$.

Proof. Immediate.

The following lemma is needed before the main result can be presented.

LEMMA 4. Let $(\Omega, \mathfrak{A}, P)$ be a probability space with $\mathfrak{B} \subset \mathfrak{A}$. Let P_0 be another measure on \mathfrak{A} with $P = P_0$ on \mathfrak{B} and $P \ll P_0$. Suppose P_0^* is regular. Then, P^* is regular.

Proof. Let $p_0(\cdot,\cdot|\mathfrak{B})$ be a version of $P_0^{\mathfrak{B}}$ such that $p_0(\omega,\cdot|\mathfrak{B})$ is a measure $(P_0|_{\mathfrak{B}}$ a.e.). Also, let $X=dP/dP_0$ where for all $A\in\mathfrak{A}$

$$P(A) = \int_A X dP_0$$
.

Hence, define

(4.1)
$$h(\omega, A) = \int_A X(\omega') p_0(\omega, d\omega' \mid \mathfrak{B}).$$

From (4.1) it is immediate that $h(\cdot, A)$ is \mathfrak{B} -measurable for every $A \in \mathfrak{A}$ and for fixed $\omega \in \Omega$, $h(\omega, \cdot)$ is a measure on \mathfrak{A} . It remains to show that for any $B \in \mathfrak{B}$

$$\int_{B} h(\omega, A) P(d\omega) = P(AB) .$$

To show this, begin by establishing that

$$X \in L_1(\Omega, \mathfrak{A}, p_0(\omega, \cdot | \mathfrak{B})) P_0|_{\mathfrak{B}}$$
 a.e.

This follows at once by observing that

$$\int_{\mathcal{Q}} X(\omega') p(\omega, d\omega' \mid \mathfrak{B}) = (E^{\mathfrak{B}} X)(\omega)$$

and

$$\int_{arrho} (E^{\,\scriptscriptstyle{\mathfrak{Y}}} X)(\omega) P_{\scriptscriptstyle{0}}(d\omega) = \int_{arrho} X(\omega) P_{\scriptscriptstyle{0}}(d\omega) = 1$$
 .

Next, write

$$X = \lim_{n o \infty} X_n$$
 where $X_n = \sum_{k=1}^{m_n} \zeta_{k,n}(\mathscr{U}A_{k,n})$ where

 $\zeta_{k,n}$ is a real constant, $(\Psi A_{k,n})$ is the characteristic function of $A_{k,n} \in \mathfrak{A}$ and $\{X_n\}_{n\geq 1}$ is an increasing sequence.

Finally, since $X \in L_1(\Omega, \mathfrak{A}, p_0(\omega, \cdot | \mathfrak{B}))$ $P_0|_{\mathfrak{B}}$ a.e., the monotone convergence theorem can be used on the following chain of equalities to give the desired result:

$$\begin{split} \int_{\mathbb{B}} h(\omega',A) P(d\omega') &= \int_{\mathbb{B}} \left\{ \int_{A} X(\omega) p_{0}(\omega',d\omega \mid \mathfrak{B}) \right\} P(d\omega') \\ &= \int_{\mathbb{B}} \left\{ \lim_{n \to \infty} \sum_{k=1}^{m_{n}} \zeta_{k,n} p_{0}(\omega',A_{k,n}A \mid \mathfrak{B}) \right\} P(d\omega') \\ &= \lim_{n \to \infty} \left\{ \int_{\mathbb{B}} \sum_{k=1}^{m_{n}} \zeta_{k,n} p_{0}(\omega',AA_{k,n} \mid \mathfrak{B}) \right\} P(d\omega') \\ &= \lim_{n \to \infty} \left\{ \int_{\mathbb{B}} \sum_{k=1}^{m_{n}} \zeta_{k,n} p_{0}(\omega',AA_{k,n} \mid \mathfrak{B}) \right\} P_{0}(d\omega') \\ &= \lim_{n \to \infty} \left\{ \sum_{k=1}^{m_{n}} \zeta_{k,n} P_{0}(AA_{k,n}B) \right\} \\ &= \lim_{n \to \infty} \left\{ \int_{AB} \sum_{k=1}^{m_{n}} \zeta_{k,n} (\Psi A_{k,n})(\omega) P_{0}(d\omega) \right\} \\ &= \int_{AB} X(\omega) P_{0}(d\omega) = P(AB) \; . \end{split}$$

Lemma 4 gives immediately

THEOREM 5. Let $(\Omega, \mathfrak{A}, P)$, $\mathfrak{B} \subset \mathfrak{A}$, and \mathfrak{A}' be given. Let P_e be any simple extension of P to \mathfrak{A}' . Let P^* be regular. A sufficient condition that P_e^* be regular is that P_e^* be regular where P_e is the canonical part of P_e . (Let K be the set which extends P canonically to \mathfrak{A}' as in [1].)

Proof. It is immediate that $P_c|_{\mathfrak{A}}=P=P_e|_{\mathfrak{A}}$. Thus the proof will be complete by Lemma 4 if it can be shown that $P_e\ll P_c$. To do so, suppose $A'\in\mathfrak{A}'$ with $A'=A_1H+A_2H^c$ and $A_i\in\mathfrak{A}$, i=1, 2. If $P_c(A')=0$, it follows that $P(A_1K)=P(A_2K)=0$. Thus

$$\varepsilon(A_1K) = \varepsilon(A_2K) = 0$$

by Lemma 2. But, by Proposition 1 it follows that $\varepsilon(A) = \varepsilon(AK)$ for all $A \in \mathfrak{A}$; hence $\varepsilon(A_1) = \varepsilon(A_2) = 0$ and thus $P_{\varepsilon}(A') = 0$.

COROLLARY 6. With the notation of Theorem 5, assume $P_c^{\mathfrak{g}}$ is regular with $0 < \alpha_{\mathfrak{g}} < 1$. Let $P_{\mathfrak{g}}$ be any other canonical extension of P to \mathfrak{A}' , then $P_{\mathfrak{g}}^{\mathfrak{g}}$ is regular.

Proof. $P_{c'} \ll P_c$ and the proof is complete by Lemma 4.

The representation of an arbitrary simple extension as constructed in Proposition 1 helps establish the following interesting

PROPOSITION 7. Let $(\Omega, \mathfrak{A}, P)$ be given with \mathfrak{A} countably generated and $\{\omega\} \in \mathfrak{A}$ for all $\omega \in \Omega$. Suppose $H \notin \mathfrak{A}$ with $P_*(H) = 0$ and $P^*(H) = 1$. Then there exists no simple extension P_* of P to $\mathfrak{A}' \equiv \sigma(\mathfrak{A}, H)$ such that $P_*^{\mathfrak{A}}$ is regular.

Proof. With H so chosen, it follows that the set K associated with the canonical part of P_{ϵ} has P-measure one.

By Proposition 1 write

$$P_{\varepsilon}(A') = \alpha_{\varrho} P(A_1 K) + \varepsilon(A_1) + \beta_{\varrho} P(A_2 K) - \varepsilon(A_2)$$

for any $A' \in \mathfrak{A}'$ with $A' \in A_1H + A_2H^c$ and $A_i \in \mathfrak{A}$, i = 1, 2. It may be assumed that $0 < \alpha_2 < 1$; otherwise, P_e would be canonical (see [1]) and the result would follow directly as in [3], p. 210.

Suppose there exists a version of $P_e^{\mathfrak{A}}$, $p_e(\cdot,\cdot|\mathfrak{A})$, such that $p_e(\omega,\cdot|\mathfrak{A})$ is a measure on \mathfrak{A}' . Define

$$B \equiv \{\omega \mid p_e(\omega, H \mid \mathfrak{A}) = 0\}$$
.

It follows that P(B) < 1, otherwise write

$$egin{aligned} 0 &= \int_{B} p_{\epsilon}(\omega, H \, | \, \mathfrak{A}) P_{\epsilon}(d\omega) = P_{\epsilon}(BH) = lpha_{\scriptscriptstyle \mathcal{Q}} P(BK) + arepsilon(B) \ &= lpha_{\scriptscriptstyle \mathcal{Q}} P(B) + arepsilon(B) = lpha_{\scriptscriptstyle \mathcal{Q}} \; , \end{aligned}$$

where P(B) = 1 and $\varepsilon(B) = 0$ by Lemma 3, and get $\alpha_0 = 0$, a contradiction.

Define a set E where E is the set of points ω for which it is not true that $p_{\varepsilon}(\omega, D \mid \mathfrak{A}) = (\psi D)(\omega)$ identically for all $D \in \mathfrak{A}$ (where ψD is the characteristic function of D). Since \mathfrak{A} is countably generated, P(E) = 0 (see [3, p. 210]).

It then follows that $(E \cup B)^{\circ} \subset H$. Suppose otherwise; that is, $\omega \in (E \cup B)^{\circ}$ and $\omega \in H^{\circ}$ and get

$$egin{aligned} p_{e}(\omega, \{\omega\} \cup H \,|\, \mathfrak{A}) &= p_{e}(\omega, \{\omega\} \,|\, \mathfrak{A}) + p_{e}(\omega, H \,|\, \mathfrak{A}) \ &= (\psi\{\omega\})(\omega) + p_{e}(\omega, H \,|\, \mathfrak{A}) > 1 \;, \end{aligned}$$

a contradiction.

But $P((E \cup B)^c) > 0$ and $(E \cup B)^c \subset H$. This contradicts construction of H and so P^{α}_s cannot be regular for any simple extension of P to \mathfrak{A}' .

REFERENCES

- 1. L. H. Blake, Canonical extensions of measures and the extension of regularity of conditional probabilities, Pacific J. Math., 41 (1972), 25-31.
- 2. J. Dieudonné, Sur le théorème de Lebesgue Nikodym, III, Ann. Univ. Grenoble Sect. Sci. Math. Phys., (N.S.), 25 (1948), 25-53.
- 3. P. R. Halmos, *Measure Theory*, Third Edition, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1963.
- 4. E. Marczewski and J. Łoś, Extensions of measure, Fund. Math., 36, 267-276.

Received February 22, 1972.

WORCESTER POLYTECHNIC INSTITUTE