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SIMPLE EXTENSIONS OF MEASURES AND THE
PRESERVATION OF REGULARITY OF
CONDITIONAL PROBABILITIES

Louis H. BLAKE

Throughout this paper, the following notation will be
adopted. (2, %A, P) will be a probability space with B a sub
o-field of A. H will denote a subset of 2 not in U and U’
will be the o-field generated by % and H. P. will be a
simple extension of P to ' if P. is a probability measure on
W with P, | 4= P.

The ability to extend the regularity of the conditional
probability P® to regularity of P® has been explored earlier
for canonical extensions of measures. The main results of
this paper are:

(a) 1f P? is regular for some canonical extension P, of
P to A, then PP is regular for any simple extension P. of
P to .

(b) For some choice of (2, %A, P), B and H, P?® is regu-
lar but for no P. is P? regular. This will essentially extend
the Dicudonné example,

Our notation regarding (regular) conditional probabilities will be

consistent with [1].
For extendability see [4]. The example for (b) occurs in [2].

PROPOSITION 1. Any simple extension P, can be expressed as the
sum of a canowical extension of P plus a finite signed measure on
A. (Since the construction is carried out in a unique manner, this
decomposition of P, will be called the canonical decomposition of P,.)

Proof. As in [1], let K be a set which extends P canonically to
W. For any A’e with A’ = A H + A,H° for some A, and A4, in A
write

P,(4') = P(A’KY) + P(AHK) + P(AHK) .

It may be supposed that P(K) == 0. Thus, let a, = P,(HK)/P(K)
and define a set function ¢ on N such that for every Ae?

e(A) = P(AHK) — a,P(AK) .

It is immediate that ¢ is a finite signed measure. It also follows
that for any Ae

P(AH'K) = 8,P(AK) — &(4)
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where B, =1 — @, inasmuch as it can be written that

P(A) = P,(A) = P(AH + AH®) =
P(AK®) + a,P(AK) + ¢(A) + P,(AH’K) .

Thus, for A’e

P,(4) = P(A'K") + a,P(A K) + &(4)
+ BoP(AK) — e(4) .

(Let the sum of the underlined measures be called the canonical part
of P,.)

It is clear that the extension, P,, of Proposition 1 is canonical if
and only if the signed measure ¢ is identically zero.

LEMMA 2. The signed measure & ts absolutely continuous with
respect to P.

Proof. Let Be be a positive set for ¢ according to its Jordan
decomposition and let A€ with P(A) = 0. Then,

@.1) P(ABHK) < P(ABK) = P(4) = 0

and so ¢(AB) = 0. If C(=B’) is a negative set for ¢ then it follows
that ¢(AC) = 0 where one merely inserts C for B in (2.1). Hence
e L P

LEMMA 3. If Q,e9 with P(Q) = 1 then (2) = O.

Proof. Immediate.

The following lemma is needed before the main result can be
presented.

LEMMA 4. Let (2,, P) be a probability space with B A. Let
P, be another measure on W with P= P, on B and P P,. Suppose
P? is regular. Then, P® is regular.

Proof. Let p( -, |B) be a version of PP such that pyw, - |B)
is a measure (P,|, a.e.). Also, let X = dP/dP, where for all Ae U

P(4) = g Xdp,.
A
Hence, define

(1) W, 4) = | X(@)po, do’ ¥ .
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From (4.1) it is immediate that A (., A) is B-measurable for every
Ac ¥ and for fixed we 2, h(w, - ) is a measure on 2. It remains to
show that for any Be®

SBh(a), A)P(dw) = P(AB) .

To show this, begin by establishing that

Xe L2, %, po, - |B) Py ace.
This follows at once by observing that

|, X@)p@, do’ |9) = (B°X)(@)
and

SQ (E*X)(w) Py(dw) = SgX(w)Po(dw) —1.
Next, write

X=1lmX, where X,= Z Cn(TA,,) where

n—>00

Cin is a real constant, (¥A4,,,) is the characteristic function of 4, ,€ %
and {X,},., is an increasing sequence.

Finally, since Xe L,(2, %, p(®, + |B)) P, |5 a.e., the monotone con-
vergence theorem can be used on the following chain of equalities to
give the desired result:

mp

g ', A)P(dw’) —g S X (@) po(@”, dwl%)} Pdw’)
S lim

Conol@’, Ay A |53)} P(dw)

My

S G nl@, A4y, |B)} P(dw)
(since P = P, on B)

[, 3 Cps@’, A4, B)} Pode)
3 GnPo(A4L.B)}

=tim{| 3604, P@0)

- SAB X (w)Py(dw) = P(AB) .

Lemma 4 gives immediately
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THEOREM 5. Let (2, %, P), BC A, and A’ be given. Let P, be
any simple extension of P to . Let P® be regular. A sufficient
condition that PP be regular is that P? be regular where P, is the
canonical part of P,. (Let K be the set which extends P canonically
to A as in [1].)

Proof. It is immediate that P,|, = P= P,|y. Thus the proof
will be complete by Lemma 4 if it can be shown that P, < P.. To
do so, suppose A’e W’ with A’ = A H+ AH° and A;eU, 1=1, 2.
If P,(A’) = 0, it follows that P(4,K) = P(4,K) = 0. Thus

S(AK) = e(4,K) = 0

by Lemma 2. But, by Proposition 1 it follows that ¢(4) = ¢(AK)
for all A eQ; hence ¢(4)) = ¢(4,) = 0 and thus P,(4") = 0.

COROLLARY 6. With the motation of Theorem 5, assume P} is
regular with 0 < a, < 1. Let P, be any other canonical extension
of P to W, then P2 is regular.

Proof. P, < P, and the proof is complete by Lemma 4.

The representation of an arbitrary simple extension as constructed
in Proposition 1 helps establish the following interesting

ProrosITION 7. Let (2, U, P) be given with A countably generated
and {w}eA for all wel. Suppose H¢A with P, (H) =0 and
P*(H) = 1. Then there exists mo simple extension P, of P to ' =
oA, H) such that PY is regular.

Proof. With H so chosen, it follows that the set K associated
with the canonical part of P, has P-measure one.
By Proposition 1 write

P(A) = a;P (AK) + e(4) + B.P(AK) — e(4,)

for any A’eW with A’ce AH+ AH° and A;e¥, 1 =1,2. It may
be assumed that 0 < @, < 1; otherwise, P, would be canonical (see
[1]) and the result would follow directly as in [3], p. 210.

Suppose there exists a version of PZ, p.(-,-|2), such that
p.(w, - |A) is a measure on W. Define

B = {0|p.(w, H|) = 0} .
It follows that P(B) < 1, otherwise write
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0= SBp,,(a), H|%)P,(dw) = P(BH) = a,P(BK) + ¢(B)
= a,P(B) + &(B) = «, ,

where P(B) =1 and ¢(B) = 0 by Lemma 3, and get a, = 0, a con-
tradiction.

Define a set F where E is the set of points @ for which it is
not true that p.(w, D|N) = (vD)(w) identically for all De?l (where
D is the characteristic function of D). Since 2 is countably generated,
P(E) = 0 (see [3, p. 210]).

It then follows that (£ U B)°c H. Suppose otherwise; that is,
we(EF U B) and we H° and get

p(@, {©} U H[N) = p(o, {®} ) + p(0, H|N)
= (11!‘{(0})((0) + pe(a)’ H[QI) > 1 ’

a contradiction.

But P((EF UB)) >0 and (E UB)*c H. This contradicts con-
struction of H and so P! cannot be regular for any simple extension
of P to o'
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