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NONZERO SOLUTIONS TO BOUNDARY VALUE
PROBLEMS FOR NONLINEAR SYSTEMS

ATHANASSIOS G. KARTSATOS

We are mainly concerned here with solutions of

(*) xf = A(t, x)x + F(t, x) ,

which satisfy the following conditions

(1.1) xeB, x(t)^0.

Here A(t, u) is a real n X n matrix defined and continuous
on J X Rn, where J is a subinterval of R = (—oo, oo). The
real ^-vector F(t, u) is also defined and continuous on J X
Rn. In (1.1) B is a Banach space of continuous functions on /.

Two theorems are given concerning1 the solution to the above
problem in the case of a finite interval J. The first theorem (Th.
3.1) deals with the homogeneous system

(1.2) x* = A(t, x)x ,

and the second (Th. 4.1) is concerned with the system (*) with a
small perturbation F(t, u). The third result of this paper (Th. 5.1)
extends to rather heavily nonlinear systems a result of Medvedev
[12] dealing with the existence of nontrivial, nonnegative solutions
of (*) on [0, oo). Medvedev considered the case of a perturbed linear
system. The method employed here is a comparison technique. In
other words, for each function feM (a certain compact, convex set
of functions in B) we assume the existence of solutions in M of the
linear system

(l.u) xf = A(t, u(t))x + F(t, u{t)) ,

and then we apply a fixed point theorem for multi-valued mappings,
due to Eilenberg and Montgomery [4], in order to ensure the exist-
ence of solutions in M of the equation (*). As far as the author
knows, the first application of the above fixed point theorem was
given by Schmitt [14], who considered the case B = {x e C([0, ω]);
x(0) = x(ω)}, and a linear second order scalar equation with deviating
arguments.

For results related to the contents of this paper, the reader is
referred to Lasota, Opial [11], Opial [13], Avramescu [1], [2], Cor-
duneanu [3] and Kartsatos [7], [8j.

2* Preliminaries* Let J be a subinterval of R = (— oo, oo).
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By C[J, Rn\ we denote the space of all bounded, continuous, unvalued
functions on J, associated with the norm

11/11, = sup ||/(0 | | .
t e j

By B we shall always denote a closed subspace of the Banach
space C[J, Rn\. By || || we denote the norm ί |# | | = Σ i = i | # i | , x =
(xlf x2, , xn) 6 Rn. We also put || A || = sup,- ΣJ=i | aι3 | for a real
n x n matrix A = [ α o ], i, i = 1, 2, , n. K will denote the cone
of nonnegative vectors in Rn.

The following lemma is an elementary result in algebraic topology,
but it is crucial for the proofs of the theorems of this paper. For
a proof of it the reader is referred to Hu [6, p. 96].

LEMMA 2.1. Compact convex subsets of a Banach space are
acyclic absolute neighborhood retracts,

3- The problem ((1.2), (1.1)). In what follows J = [α, b] c R.

THEOREM 3.1. Assume that the real n x n matrix A(t, u) is
defined and continuous on J x Sμ, where Sμ = {x e Rn; \\ x |j <̂  μ) and
μ > 1 is a constant. Let \\ A{t, u) || g p(t), (ί, u)eJx Sμ, where
p e C[J, R] and

expiϊ p(t)dt\ ^ μ .
I J a )

Assume that for every ueC[J, R] with u(a)eK and \\u\\j <̂  μ,

the linear system

(3.u) x' - A(t, u{t))x

has at least one solution x(t), t e [α, b] satisfying (1.1) and x(a) e K.
Then the problem ((1.2), (1.1)) has at least one nontrivial solution.

Proof. Let S° = {u e C[J, R]; u(a) eK and || u \\j ^ μ}, and let
u e S°. Since for this function u(t) the system (3.u) has at least one
nontrivial solution xueB with xu(a)eK, it follows that ||a?tt(α)|| =
λ > 0. Consequently, the function y(t) = (1/λ) xu(t) belongs to the space
B and is a solution of (3.u) with \\y(a)\\ = (1/λ) || x(a) || = 1. Thus,
we have

(3.1) ]/(ί) - τ/(α) + Γ A(8, u(s))y(s)ds ,
Jα

which, applying GronwalΓs inequality, yields
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(3.2) || y(t) || ^ || y(a) || exp { j W ) ^ | ^ μ .

This inequality shows that for each u e S° there exists at least
one nontrivial solution of (3.u) which belongs to B Π S° and has initial
value y(a) with | |^/(α)|| = 1. Now let q — sup ί e J p(£) and

(3.3) S = {ue B n S°; \\u' | | , ^ μq, \\u(a) || = 1} .

Then S is a convex set consisting of equicontinuous and uniformly
bounded functions. This implies that Q = S (where the closure is
taken w.r.t. the sup-norm) is a compact and convex subset of C[J, R].
Consider now the operator U, which maps the function ueQ into
the set U(u) consisting of all solutions y(t) of (3.u) with yeBf]S°
and | | i/(α)| | = 1. Then it is easy to see that U{u) is a compact,
convex subset of Q. In order to apply the Eilenberg-Montgomery
Theorem [4] since, by Lemma 2.1, Q, U(u) are acyclic absolute neigh-
borhood retracts, it remains to show that U is continuous in the
following sense: || xn — x \\j —> 0, || un — u \\j —> 0 and xn e U(un) imply
xe U(u). At first we have

(3.4) xn(t) = xu(a) + Γ A(s, un(s))xn(s)ds .
Ja

Let

(3.5) y(t) = x(a) + Γ A(s, u(s))x(s)ds .
Ja

Then

\\%n - y\\j S \\χM) - χ(a)\\

(3.6) n
+ I || Ait, un(t))xn(t) - A(t, u(t))x(t) \\dt .

Since the integrand in (3.6) converges uniformly to zero, it follows
that

(3.7) lim || xn-y\\j = 0,
W-»oo

i.e., y(t) = x(t), teJ. Letting x(t) = y(t) in (3.5), we see that x(t)
satisfies (3.u). It also follows easily that xe B, ||a?(α)|| = 1, | |aj| |/ S
μ and \\x'\\j^μq.

Consequently, x e U(u). Thus, the operator U has a fixed point
x e Q, which is a nontrivial solution to the problem ((1.2), (1.1)).

EXAMPLE 3.1. Let B consist of all functions u e C[[a, &], Rn] such
that
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(3.8) Mu(a) - Nu(b) = 0 ,

where M= [miό], N— [ntj] are real, constant n x n matrices. Now
consider the system (3.u) with A(t, u) satisfying the assumptions of
Th. 3.1. Let Xu{t) be the fundamental matrix of solutions of (3.u)
with Xu(a) = I (the identity n x n matrix). Assume that the system

(3.9) [M- NXu(b)]c = 0

has at least one nontrivial solution cue K for every ue Sμ. Then the
solution xu of (3.u) with xu(a) = cu Φ 0 satisfies

(3.10) Mxu(a) - Nxu(b) = [M - NXu(b)]cu = 0 .

Consequently, according to Th. 3.1, there exists at least one solu-
tion to the problem ((1.2), (1.1)).

4* Perturbed systems on [α, &]• We wish to point out that
there appear to be some severe limitations to the method employed
in Th. 3.1 if we consider a perturbed nonlinear system of the form
(*). These limitations are due to the fact that constant multiples of
solutions of (l.u) are not, in general, solutions of the same system.
However, it is possible to know a priori the existence of solutions of
(l.u), which belong to B and are uniformly bounded with respect to
u e M (a suitable subset of B). Under such an assumption we provide
the following:

THEOREM 4.1. Assume that for every function ue B there exists
at least one solution xu(t) of the system (l.u), which belongs to B
and satisfies \\ xu(a) \\ <L μ (a positive constant). Let also || A(t, u) \\ S
p(t) for every (t,u)eJxRn, where peC[J,R], Furthermore, as-
sume that

(4.1) lim inf (1/n) Γ sup || F(t, u) \\dt = 0 .
n-*oo Jα ||u||^ίt

Then there exists at least one solution of (*), which belongs to B.

Proof. Fix ue B and suppose that xue B is a solution of (l.u)
with | |#w(α)| | ^ μ. Then it follows from Gronwall's inequality that

| F(s, u(s)) | |ώ]exp { J J | A(s, u(s))\\ds}

(4.2) ^[μ+ \[\\ F(s,u(s)) Ps]exp
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To show that there is some positive integer n0 such that | | u | | <̂
n0 implies \\xu\\ ̂ n0 for any solution xueB of (l.u) with | |# t t(α)| | ^
μ, assume on the contrary that there are sequences {un}, {xn}, with
xn a solution of

(4.O x' = A(t, un(t))x + F(t, un(t)) , || x(a) \\ £ μ ,

such t h a t \\un\\j^n, \\ xn \\j :> n. Then we have

l^\\xn \\j/n ^ λΓ-£ + 1 \b | | i^(S, ^ ( β ) ) | | ώ l
LW % Jα J

(4-3) Γ l f 6 η

^ λ ϋ + A sup | |F(β,«) | |ώ ,
L% % Ja \\u\\gn J

which implies a contradiction, because the inferior limit of the right-
hand side of (4.3) is zero. Actually there is an infinity of such no's.
N o w let S = {u G B; \\ u \\j ^ n0, \\ u' \\j ^ d}, w h e r e

(4.4) d = n0 sup p(t) + sup || F(t, u)\\ .
tej tej

l l « l l £ » o

The set S is equicontinuous, uniformly bounded and convex. The
closure Q = S is a compact and convex subset of C[J, JB*]. It is easy
to see now that the operator U, which maps every function u e Q
into the set Uu of all solutions of (l.u) which belongs to B and
satisfy || xu \\j ^ μ, satisfies Uu c Q. Moreover, Uu is a compact, con-
vex subset of Q. The continuity of U follows as in Th. 3.1 as well
as the rest of the proof.

It is evident that the above method cannot be applied in case
F(t, 0) ΞΞ 0, because the fixed point of the operator U above could be
the zero solution of (*). As an application, we give the following
example, in which the existence of solutions to the associated linear
system has been shown by Schmitt [14].

EXAMPLE 4.1. Consider the scalar equation

(4.5) x" + p(t, x, x')x' + q(t, x, xr)x = r(ί, x, x') ,

where p, q, r are continuous, periodic in t of period T > 0, and
I p ( t , u , v ) \ £ px(t)9 I q ( t , u t v ) \ £ qtf), \ r ( ί , u , v ) \ £ rx(t) f o r a l l ( ί , u , v ) e
[0, T] x B x R. Assume that for each continuously differentiable
Γ-periodic function u(t) with a <*u <ί β (a, β fixed positive constants
with a < β), we have

β(t, u{t), u\t))β ^ r(t, u(t), u\t)) ^ q(t, u(t), u'(t))a

for all ί € [0, T]. Then the equation
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(4.6) x" + p(t, u{t), u'{t))x' + q(t9 u(t), u\t))x = r(ί, w(ί), tt'(ί))

has at least one T-periodic solution x(t) such that a <; #(£) :g /3,
ί e (—00, 00). Now let

(4.7) λ - sup I vSί) I , μ = /S sup I q^t) | + sup | n(£) | .
t e [ 0 , Γ ] ί e [ 0 , Π ί e [ 0 , Γ ]

Then

(4.8) I x'\t) I ^ λ| α'(ί) I + μ .

Since the function #(s) = λs + μ satisfies

_ ,
Jo λs + μ

it follows from Lemma 5.1, p. 428, of [5] that there exists a number
M > 0, depending only on g, a, β such that | x\t) \ ^ M, teR. Let
B be the Banach space of all functions / = (fu f2) e C[[0, Γ], i22] such
that /i(0) = /i(T). Then the problem of the existence of nontrivial
T-periodic solutions of (4.5) is equivalent to the problem of finding
nontrivial solutions x e B of the system

(4.9)
0 1

— q —p_

0

r

It is evident that the operator U of the proof of Th. 4.1 will be
defined on a suitable compact, convex subset of the set {u e B; || u \\τ =
I ux I + I u21 ^ β 4- M}. A particular case of (4.5) is the following
equation:

(4.10) x" + [1 + x/(l + x2)]xf - [3 - sin x']x = - [ 5 + cos ί] .

Here we have a — 1, /5 = 3. Thus, (4.10) has at least one 2π-
periodic solution x(t), such that 1 ^ x(ί) ^ 3 , te(— 00, co).

5* Positive solutions on infinite intervals* The theorem of this
section extends to the case (*) a result of Medvedev [12], who con-
sidered perturbed linear systems. By K we denote the cone {ζ e Rn;

THEOREM 5.1. jPor ίλe system (*) assume the following:
( i ) ίfeβ rβαϊ n x % matrix A(t, u) is defined and continuous on

the set R x K;
( i i) [I [I + AA(ί, £)](&! - O H ^ (1 - p/OIK ~ Sail / o r β ^ π /

(ί, f, α?lf £c2) € i? x K x JBW x J2%, h e (0, £Γ), where p, H are positive

constants with pH < 1;
(iii) [/ + hA(t, ξ)]x G K for every xeK and (t,ς,h)eRxKx
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(0, H);
(iv) F: R x K—> Rn, continuous, and a <: Ft(t, ξ) ̂  β, (ί, ξ) e R x

If, where a, β are constants with 0 < a < β.

Then the system (*) Aαs at least one solution x(t), which is de-
fined and bounded on R, and satisfies x^t) ̂ > a, te R, i = 1, 2, , n.

Proof. Consider the system

(5.f) x ' - A(t, f ( t ) ) x + F(t, f ( t ) ) , t e R ,

where fe C[R, Rn] and f(t) eK, teR. Then it follows from Th. 2 in
[12] that there exists a unique bounded solution xf(t), t e R of (5.f)
such that \\xf\\B^\\F\\/p = X, where || F\\ = sup || F(t, u) ||, (tfu)e
R x K. Moreover, the components Xf,i{t), i = 1, 2, , w, satisfy
xf,i(t) ^ a, teR. We note that xf(t) is not necessarily the only
solution of (5.f) with the property XfΛ{t) ^ a. Now let {£TO}, m =
1, 2, , 0 < tm < ίm+1, be a sequence of points such that lim,^ tm =
+ oo, and consider the system

(5.m) xf = A(t, f(t))x + F(t, f(t)) , ί e / , = [-ίm, ί J ,

where/e C[[-ίm, ίw], JB*], /<(*) ̂  α, i = 1, 2, , w. If we fix m and
/, then the system (5.m) has at least one solution xf, which satisfies
xf>i(t) ^ a, telm and | | # / | | m ^ λ (here || | |m denotes the sup-norm on
/m). In fact, / is the restriction on Im of a function / e C[R, Rn]
with /(ί) G K, and #/ is the restriction on Im of the unique bounded
solution of (5.f), which corresponds to / . Now let

(5.6) S={feC[Im,R*];MeK,teIm,\\f\\m£\,\\f'\\m£μ},

where μ = 4|| F\\/pH. Then S = Q is a compact and convex set.
Now let the operator U map the function feQ into the set of solu-
tions of (5.m), which satisfy xt{t) ̂  a, telm and | | a ; | | m ^ λ . Then
every xeUf satisfies

- v)\\F\\lv + \\F\\ = μ .

The above inequality follows from the fact that the vector
A(t, ξ)x satisfies a Lipschitz condition w.r.t. x in Rn x Rn with
Lipschitz constant 4/£Γ — p, uniformly in {t, u)e R x Rn (cf. Medvedev
[12]). Thus, as before, the set Uf is a compact, convex subset of Q.
It remains to show that U is continuous, but this follows as before
and the proof is omitted. Consequently, there exists at least one
solution xjt) of (*), which is defined on Im, and satisfies xmΛ{t) ^ a,
i — 1, 2, •••,%- and || xm \\m ̂  λ. Since the choice of m was arbitrary,
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an application of the proof of Lemma 8.1, p. 149 of [9] proves the
existence of a bounded solution of (*), which, in our case, has to
satisfy xt(t) ^ a > 0, i = 1, 2, , n, teR, as a uniform limit, on
finite intervals, of a diagonal sequence of functions with the same
property.

EXAMPLE 5.1. Consider the system (*) with

[1 + sin2xj 0

A(t, x) =
— cos x2

Li

and

F(t, x) =
2 + sin (txt)

2 + cos (xt + 1)_

Then we have

(5.7)

for every fe C[R, R2] with f(t) eK, teR and every ξ e R2. Thus, if
the components of the vector (5.7) are Qlf Q2y we have

2 ^ o^_ = _^- | ί / l ( ί ) , + χj ^ __1

dQ, - 0 ,

It follows from the remark (c) of Medvedev [12] that the con-
dition (ii) of Th. 5.1 is satisfied with p = 1/2 and h e (0, 1). Moreover,
an H < 1 can be chosen so that I + hA(t, ζ), h e (0, H), has nonnega-
tive entries. It follows from Th. 5.1 that there exists at least one
solution x(t) of (*) such that xt(t) ^ 1 for t e R and || x \\R<^\\ F\\/p = 12.

6. Discussion* A condition of the type (4.1) was first given by
Opial [13], who considered the system (*) along with the generalized
boundary conditions Tx = r, where T is a bounded linear operator
on C[[a, b], Rn] with values in Rn, and reRn is fixed. In the case
studied by Opial, T was invertible on Rn, and this reduces the prob-
lem to finding solutions to a system similar to (*) but with homo-
geneous boundary conditions Tx = 0. Thus B = {xeC[[a, 6], JB*];
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Tx = 0}, and Schauder's fixed point theorem can be applied instead
of one for multi-valued mappings. The considerations in Thms. 3.1
and 4.1 can be extended to infinite intervals, provided that enough
information is available for the associated linear systems. We should
note that every system of the form

(6.1) x' = D{t, x) + E(t, x) ,

can be written in the form (*) if the ^-vector D(t, x) is continuously
differentiable with respect to x. For a proof of this statement the
reader is referred to [10, p. 73].

The author wishes to express his thanks to the referee for his
helpful suggestions.
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