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CHARACTERIZATION OF A FUNCTION BY CERTAIN
INFINITE SERIES IT GENERATES

CHARLES K. CHUI AND PHILIP W. SMITH

Let A be a set of real numbers and F be a class of
complex-valued functions defined on the real line such that
for each feFthe infinite series S(x, f) — Σ~=i/(fo*0 converges
for every nonzero x in A. If Oe A, we set S(0,f)=f(0). It
seems to be an interesting problem to study the different sets
A and function classes F such that each feF is uniquely de-
termined by the sums S(x,f) where xeA. Clearly, the larger
the class F is studied, the larger set A is needed to guarantee
uniqueness. We have positive results for a class of entire
functions of exponential type and for fairly large classes of
continuous functions. Some examples are also given to show
that in general A cannot be too small.

l Introduction* For a function / holomorphic in the open unit
disc U of the complex plane and continuous on the closure of U, let

Sn(f9 8) = - Σ f(eiMk'*) , n = 1, 2, • , 0 < δ ^ 1 .
n *=i

Sufficient conditions on the function / were given in [2, 5] to guarantee
that / is uniquely determined by the means sn{f, 1), and in [3] both
positive and negative results were given for the case 0 < δ < 1. The
annulus case was also studied in [4]. In this paper we study a related
problem for an unbounded interval.

Let A be a set of real numbers and F be a class of complex-
valued functions defined on the real line R such that for each feF,
the infinite series S(xf f) = Σ~=1 f(kx) converges for every nonzero
xeA. If Oe A, we denote S(0, /) = /(0). We study various sets A
and various function classes F such that each feF is uniquely
determined by the sums S(x, f) where xeA. Some examples will be
given to show that in general A cannot be too small.

2* Results for entire functions* We start with a fairly small
function class. For r > 0, let PW(rπ, 1) be the class of all entire
functions f(z) of exponential type at most rπ such that f(x) e U{R)
and that for some p > 1, f(nfr) = 0([ ̂  [-̂ ) for n = ±1, ±2, . Let
Z be the set of all integers. We have the following theorem of the
Carlson type.

THEOREM 1. Every function f in PW(π, 1) is uniquely determined
by the sequence S(n, f) where ne Z.
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We remark that the above result is in a sense sharp in that every
S(n, f)j ne Z, is needed to determine / . That is, we have the following

LEMMA 1. For each ne Z, there is a unique function fn e PW(π, 1)
such that S(m, fn) = δmn for all m e Z, where δm/rι is the Kronecker
delta.

Let μ(n) denote the Mobius function (cf. [8]), that is,

1 if n = 1

μ(n) = (—1)& if n = Pi Vk with distinct primes pό

0 if p21 n for some p > 1 .

We can determine the functions fn in the above lemma explicitly as
in the following

LEMMA 2.

/o(s) = - ^ ^ , and for n - 1, 2, ,
πz

d)™**®, and for n^-1,-2,-,
— k)

Of course, at the removable singular points these functions are
defined so that they are entire. It is then clear that they are in
the class PW(π, 1). By using the equations

n

k

it is not difficult to show that they satisfy the relations S(m, fn) =
om>n for all m, ne Z. Finally, the uniqueness result in Theorem 1
guarantees that they must be the functions in Lemma 1. By using
this sequence of functions fn, we can actually construct each function
/ G PW(π, 1) from the corresponding sequence S(n, /), neZ, as in the
following

THEOREM 2. Let f e PW(π, 1). Then

(1) /(*)= Σ S(n,f)Mz)

where the infinite series converges uniformly on each horizontal
strip (Im^l <; K < oo of the complex plane.

To prove Theorem 1, we let fe PW(π, 1) such that S{m, /) = 0
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for all meZ. That is /(0) = 0,

(2) Σ f(km) = 0 and Σ /(-Am) = 0

for all m = 1, 2, . . . . Since f(n) = 0(l/|wΓ) for some p > 1 and n =
± 1 , ±2, . - . , these infinite series converge absolutely. As in [2] we
multiply μ(m) to the first series in (2) and sum it from 1 to N to
obtain

( 3 ) / ( ) Σ ( Σ

Let d(m) be the number of divisors of m and it is known (cf. [8])
that d(m) = O(mδ) for all positive δ. Pick 3 = (p - l)/2. Then from
(3), we get

Σ Σ

Σ
N+

Hence, /(I) = 0. For each fixed k ^ 1, we let α, = f(jk) and note
that Σ?=i α* = ° TWs gives /(ft) = a, = 0. Hence, /(ft) = 0 for
ft = 1, 2, •••. Applying the same proof to the second series in (2),
we have f(k) — 0 for k — —1, —2, « . Next, by the Paley-Wiener
theorem (cf. [1]) we can write

f{z) = [ e'«g(t)dt
J — π

where g e L2(—π, π). Since /(ft) = 0 for all fteZ, all the Fourier
coefficients of g vanish, so that g = 0 a.e., or / is the zero function.
This completes the proof of Theorem 1.

To prove Theorem 2, we let K be any positive number, and by
a Phragmen-Lindelof theorem, we note that | sin πz/πz \ ̂  eπKjτtK = Cκ

for all z in the strip | Im z \ ̂  K. Hence, for | Im z \ <; K,

\fn{z)\^CkΣ\μ(^)\^Cκd{n) .

Let fePW(π, 1). Then f(n) = O(\n\~v) for some p>l as
Hence, for ^ = ± 1 , ±2,

\S(n, f)\ £

Pick § = (p - l)/2. Then for all z in the strip \lmz\<^K, we have
1 ^ , f)fn(z)\ ^ c8|w|-prf(|w|) ^ Cπ, δ |^ |- ( ί ) + 1 ) / 2, so that the series
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converges uniformly on every horizontal strip | Im z | ^ K < °o to an
entire function /*(»)- Next, we consider the sequence

By the same estimate as above and by the Weierstrass M-test, the
series Σ*=i 9*(t) converges uniformly to a continuous function g(t) on
[—π, π]. Hence,

* eitzg(t)dt = Σ Γ eitzgn(t)dt
— π n=i J—7Γ

7#
π(z — k)

= Σ S(n,
% = 1

Therefore, we have

f*(z) - Γ e"'
J —7Γ

By the Paley-Wiener theorem (cf. [1], p. 103) we can conclude that
/* is an entire function of exponential type at most π and belongs to
L2(R) on the real axis. For positive integers n, it is not difficult to
show that

I/*(*)! = Σ μ(-)SQc9f)

μ(k)S(kn, f)

This also holds for negative integers n. That is, we have proved
that /* G PW{π, 1). Now, since S(n, /*) - ΣΓ«-.S(fc, /)S(π, /*) -
S(w, /) for all n e Z, we have / = /* by Theorem 1, and thus, the
proof of Theorem 2 is completed.

3* Examples and counterexamples* In this section we will
present some examples which will be used to indicate the sharpness
of results to follow. The first proposition deals with entire functions
of exponential type.



CERTAIN INFINITE SERIES IT GENERATES 367

PROPOSITION 1. Every function f e PW(rπ, 1), r > 0, is uniquely
determined by the sequence S(x, f) where x e r~xZ\ furthermore r~xZ
cannot be reduced.

The next three propositions deal with more general sets A and
functions defined on the interval [0, oo) = R+. If A is bounded below,
we have

PROPOSITION 2. If 0 < § = inf {x: x e A} then every f with

(supp/)c[0,δ)

satisfies S(x, f) = 0 for all x e A.

If A is bounded above we obtain

PROPOSITION 3. If A = sup {x: x e A} < oo then there is a non-
trivial function f e PW(2π/J, 1) satisfying S(x,-f) = 0 for all xeA.

Finally we show that A may contain an interval about the origin
and also be unbounded or A may be a neighborhood of infinity and
contain a sequence converging to zero. Let S be the space of complex-
valued functions / which are in C°° and for any n > 0, | fix) \ \ x \n =
0(1) as I x I —• oo, and let Z+ be the set of positive integers. We have

PROPOSITION 4. There is a nontrivial function f eS whose
cosine transform fc is also in S satisfying S(x, f) = 0 for all xe A =
[0, 1/2] U Z+ and S(x, fc) = 0 for all 2π/x e A.

We turn now to the proof of Proposition 1. Actually Proposition
1 requires little work since it can be seen that this is just a restate-
ment of Theorem 1 and Lemma 1 with a change of variable. The
important point in Proposition 1 is that as A = r~xZ becomes larger,
i.e., r gets larger, the sums characterize a larger function class.

Proposition 2 is clear since all the sums vanish identically. We
will soon show that this proposition is in a sense dual to Proposition
3. The duality is due to the Poisson summation formula. Let / e
&(R+) and following [10] define fe the cosine transform of / to be

fc(t) = JΆ \ f(x) cos xt dx .

If / , in addition, is continuous and {fina)}~=ΰ e I1 for a > 0 then

βγι\\fM + tfeinβ)] = ̂ /fl/CO) + ±f(na)]
L 2 «=i J L 2 »=i J

where aβ — 2π. This formula is known as the Poisson summation
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formula.
If / has compact support in

(0, 2π/J), f = 0, and A f] [0, 2π/J) = 0 ,
JR+

then Proposition 1 tells us that S(x, f) = 0. Suppose / is smooth
enough (say C2) so that fc e PW(2π/Δ, 1). Then, by the Poisson sum-
mation formula we have S(2π/x, fc) = 0 for all xeA. Note that
sup {2π/x: xe A} ̂  Δ, and this proves Proposition 3.

Thus, if we wish to recapture a large class of functions from
their sums we must have a set A which is unbounded and contains
a sequence converging to 0. Proposition 4 shows that we even need
much more than that. Let / have a cosine transform fc which is
in C°° and has compact support in (0, 4π) (hence fceS). Suppose
\ Λ = 0 and fc is odd about 2ττ, then S(x, fc) - 0 for all 2π/x e A
JR+

and then by the Poisson summation formula S(x, /) = 0 for all x e A.
Furthermore, f e S since the Fourier transform is an L2(R) iso-
morphism of S onto S.

4* Results for larger classes. Let W1Λ(R+) be the Sobolev space
of functions in Lλ(R+) which are absolutely continuous and whose
derivatives are in L\R+). In [9] it was shown that for any / e Wίl(R)>
S(x, f) is absolutely convergent for any x Φ 0. Of course, a similar
statement is true for / e W1Λ(R+) and x > 0. We have the following
result.

THEOREM 3. Let A = {Lά\n\ n = 1, 2, , 0 = Lλ < L2 < •} then
the set of functionals {S(x, •): xe A) is total over W1Λ(R+) if and only
if the sequence {Lj} is unbounded.

If the Li are bounded above, then Proposition 3 tells us that
{S(x, -):xeA} is not total. The converse is a bit more difficult.
Suppose {LJ|Li is unbounded, and suppose / is in Wlι{R+) and satisfies
S(x, /) = 0 for all x e A. We must show that / = 0. We first observe

that \ / = 0. Indeed, for any h > 0 we have
JR+

f(t)dt - hS(h, f)

/ Λ \

kh

\f{t)-f(kh)\dt
h

oo rich Ct

= Σ f'
& = 1 J(A;-1)A Jkh

dt
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Let {hj} be a sequence in A with hj —• 0. Set t ing h = hj in (4) yields
the result.

Let v(t) be the "saw-toothed" function defined by

v(t) =
M - « + 1 t ί.

0 t e Z .

For any a? e A, x Φ 0, and / as above, we have as in [5]

( 5) = - Γy(ί/aO/'(ί)dί + 1 \"f(t)dt - 1/(0)
Jo a; Jo 2

In [6, 7] Davenport established

sin 2πnt = lim Σ

where the convergence is uniform. Now for any xe A, x/k e A.
Hence, if x Φ 0, xe A, we have by (5)

0 = lim Σ — ^ [°v(kt/x)f'(t)dt
iV-*oo fc=i ^ Jo

= \°[$in(2πt/x)]f'(t)dt .
Jo

But this means that the Fourier sine transform of / ' vanishes at all
the points 2π/x, xeA. Since this set is dense on R+ and f'eLι{R+)
we conclude that / ' = 0. Hence, / = 0 which was to be shown.

It is interesting to note the algebraic nature of the set A in
Theorem 3. In order to use Davenport's result, we needed to have
kA~ι c A'1 for every positive integer k. Along these same lines we
have

LEMMA 3. Let f be a bounded function from R+ into R satisfying
f(x) = O(x~p) for some p > 1, as x —> oo. Let A = (δ, oo)f δ *> 0, then
the values S(x, /), xeA, uniquely determine f on (δ, oo).

For suppose that S(x, f) — 0, x e A, then we obtain the infinite
homogeneous linear system

0 = S(nx, f) , n = 1, 2, .
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As seen in the proof of Theorem 1, this system has only the trivial
solution, hence f(x) — 0 for all x e A = (δ, oo). This lemma is re-
markable in that very few restrictions were put on the functions / .
In fact, / may be nonmeasurable. Of course, as a corollary we
obtain

COROLLARY 1. // / is as in Lemma 3 and f is continuous,
then S(x,f),xeA, uniquely determines f on (δ, oo) where A need
only be a dense subset of (δ, oo) satisfying kAaA for all keZ+.

In all the above results of this section we have needed the density
of the determining set A'1 in R+ (as in Theorem 3) or the whole
interval (δ, oo) when we determine the functions on (δ, oo). Further-
more, Propositions 2, 3, and 4 seem to indicate that A must be large
in order to characterize large function classes. However, we have
the following

LEMMA 4. Iffe C2(R+), f(x) = O(x~p) for some p>l, as x->oo,
and /'(0) = 0, then f is uniquely determined by the sums S(x, f) for
all x in

A = [0, δ j U (δ2, oo)

where 0 < δx < δ2.

Suppose S(x, f) = 0,xeA. Then by Lemma 3 we know that
(supp/) c[0, δ2]. Let, as before, fc be the cosine transform of / .
Due to the regularity of / we see that fc also satisfies the hypotheses
of Lemma 3. Furthermore, the Poisson summation formula yields

0 = S(x, f) = SΆ fλ
\ x /

for all x e (0, Sx). Lemma 3 then implies that fc vanishes identically
in (2π/δlf oo). But fc is entire so fΰ = 0. Thus / = 0 which was to
be proved.

Comparing Lemma 4 to Proposition 4 it is clear that the hy-
potheses can be relaxed only slightly since the functions in Proposition
4 can be chosen to satisfy the hypotheses of Theorem 4. We do have
the following

THEOREM 4. Let f be as in Lemma 4, and for δ > 0 let

(6) A - (δ, c«){j{2δ/k:keZ+} .

Then f is uniquely determined by the sums S(x, f), xe A.
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As usual we assume that S(x, f) = 0, x e A, and conclude by
Lemma 3 that (supp/) c [0, δ]. It follows that fc is entire of expo-
nential type at most δ. By the Poisson summation formula

(7) S(x,fc) = 0

for xe {kπ/δ}, k = 1, 2, . Integration by parts shows that fc(%) =
O(x~2) as x—> oo, hence fcePW(δ, 1). Since fc is even we have by
(7) S(kπ/δ, fc) = 0 for k = ± 1 , ±2, . By a change of variable as
in Proposition 1 we conclude by Theorem 2 that fc{z) — a sin δzjδz.
The constant α must be zero since fc(x) = O(αr2) as cc —> oo. It follows
that / Ξ 0.

We finally remark that by Proposition 4 the set A in (6) cannot
be replaced by

However, if we assume in addition / e C°° we can replace A in (6) by
the set

(δ, oo)[j{2δ/k:k = N, N+ 1, ...}

for any positive integer N.

REFERENCES

1. R. P. Boas, Jr., Entire Functions, Academic Press, New York, 1954.
2. C. H. Ching and C. K. Chui, Uniqueness theorems determined by function values
at the roots of unity, J. Approximation Theory, 9 (1973), 267-271.
3. , Analytic functions characterized by their means on an arc, Trans. Amer.
Math. Soc, 186 (1973), 175-183.
4. , Recapturing a holomorphic function on an annulus, Proc. Amer. Math.
Soc, 41 (1973), 120-126.
5. f Approximation of functions from their means, Proc. Symposium on
Approximation Theory, Austin, Jan., (1973), Ed. G. G. Lorentz, Academic Press, 1973,
307-313.
6. H. Davenport, On some infinite series involving arithmetical functions, Quarterly
J. of Math., 8 (1937), 8-13.
7. , On some infinite series involving arithmetical functions, Quarterly J. of
Math., 8 (1937), 313-320.
8. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford
University Press, Oxford, 1954.
9. P. W. Smith, Characterization of the function class Wm'p, Proc. Symposium on
Approximation Theory, Austin Jan., (1973), Ed. G. G. Lorentz, Academic Press, 1973,
485-490.
10. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd Ed.
Oxford University Press, Oxford, 1948.

Received March 25, 1973.

TEXAS A & M UNIVERSITY






