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HYPONORMAL CONTRACTIONS AND STRONG
POWER CONVERGENCE

C. R. PUTNAM

Let T7* be a hyponormal contraction on a Hubert space,
so that TT* - T * Γ = D^ 0 and || Γ|| S 1. It is shown that
if, in addition, T* is completely hyponormal, then the sequence
{Ϊ7n}n=i.2, converges strongly to 0 as n->oo. The result is
obtained as a consequence of properties of the solution w(z)
of (JΓ — zl)w(z) = a?, where a? is a certain vector in the range
of D.

l Let Γ be a bounded operator on a Hubert space φ with
spectrum tf(T) and point spectrum Π0(T). The range and null space
of Γ will be denoted by R(T) and N(T) respectively. If A is any
linear manifold in φ, its closure will be denoted by [A], Also, we
shall consider the set of numbers z for which zeΠ0(T*) and which
will be denoted by (Π0(T*))*.

Let Tz = T — zl for any complex number z and let D be a
nonnegative self-adjoint operator satisfying

(1.1) TzTt ^D^O for all z in C .

It was shown in Putnam [8] that if D has the spectral reso-
lution

(1.2) D = 1 udFu
Jo

and if a? is any vector satisfying

(1.3) x - F((s, oo))s , s > 0 ,

then Trxx is bounded and weakly continuous on C — P, where P =
{z:zeΠQ(T) or £e/70(T*)}. (Actually, the set P occurring in [8] was
defined differently but should have been defined as above.) This
result will be strengthened below to the following

T H E O R E M 1. Suppose ( 1 . 1 ) , ( 1 . 2 ) and that xe$ satisfies

(1.4) Λ. = Γ u-WWF.xtfKoo .
J+o

Then there exists a vector-valued function w{z) on C satisfying

(1.5) Tzw(z) = x and \\ w(z) \\ ^ k ψ , 2 G C ,
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and having the following properties. At every point zogΠo(T),
w(z) is weakly continuous, that is, for every f in !Q, (W(Z), f) is
continuous at zQ. Further, if ξ> is separable then, for every f in
φ, the function (w(z), f) is Lebesgue planar measurable on the set
C — (ΠQ(T*))*. In addition, if a is any rectifiable curve in C with
arc length measure ma and if ma(a Π (770(T*))* = 0 then (w(z), f) is
ma-measurable as well as dz{ — dx + idy)-measurable on a.

REMARKS. Note that if z$Π0(T) then necessarily w(z) = Tr'x,
and that, for any / in φ, (w(z), f) is analytic in C — σ(T). Further,
it is clear that all vectors x of (1.3) satisfy (1.4) and hence that the
set of vectors x satisfying (1.4) is dense in R(D).

That the set Π0(T*) occurring in the statement of Theorem 1
and, more generally, the point spectrum of any bounded operator
on a separable Hubert space, is Lebesgue planar measurable follows
from a result of Dixmier and Foias [3] as Nikolskaya [7]. We are
indebted to K. F. Clancey for informing us of these facts.

Recall that a bounded operator S is said to be hyponormal if
S*S — SS* Ξ> 0 and completely hyponormal if, in addition, there does
not exist any non-trivial reducing subspace of $ on which its re-
striction is normal. If Sz = S - zl, then Sg*S, - S,SZ* = S*S - SS*.
Clearly, if S is hyponormal then Π0(S) c (770(S*))* and any eigenvector
of S belonging to z is also an eigenvector of S* belonging to z. In
particular, Π0(S) must be empty whenever S is completely hyponormal.
Further, it is easy to see that if Γ* is hyponormal then (1.1) holds
with D — TT* — T*T. Consequently, in view of Theorem 1, we have
the following

THEOREM 2. Let T* be completely hyponormal on § and let
D= TT* - T * r ( ^ 0 ) have the spectral resolution (1.2). If xe®
satisfies (1.4) then there exists a vector-valued function w(z) on C
satisfying the conditions of Theorem 1. Thus, relation (1.5) holds
and w(z) is weakly continuous at all points zo£Πo(T). If φ is
separable, then, since Π0(T*) is now empty, (w(z), f) is Lebesgue
planar measurable in C and is measurable with respect to arc
length measure and to the dz = dx + idy measure on all rectifiable
curves in C.

As a consequence of Theorem 2 there will be proved

THEOREM 3. Let Γ* be completely hyponormal on § and suppose
that T is a contraction, that is, || Γ|| ^ 1. Then {Tn}n=1)2>... converges
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strongly to 0 as n-+ oo, that is, \\ Tnf\\ —>0 as n—» oo for every f
in ξ>.

REMARKS. It follows from Theorem 3 that if T* is any hypo-
normal contraction then T can be written as the direct sum T =
Tί 0 N, where T* is completely hyponormal, Tΐ —• 0 strongly as
n —* oo, and N is normal. Clearly, JV = l zdKz can be further
decomposed as N = \ zdKz + I zdKz = -Ni 0 -W2, where iVf —* 0

Jl«l<i J|z|=i

strongly as ^-^CXD and N2 is unitary. Hence, one has the following

COROLLARY 1 OF THEOREM 3. Let T* be any hyponormal con-
traction on a Hilbert space. Then T = Γ 2 Θ U where T?—>0 strongly
as n —> oo and U is unitary, where it is understood that either
component of the direct sum may be missing.

Thus, if T* is any completely nonunitary (cf. Sz.-Nagy and
Foias [11], p. 72) hyponormal contraction, then Tn —>0 strongly as
w—> oo, so that T is of class Co. (cf. [11], p. 72). In was shown in
[8], p. 167, that if T* is a hyponormal contraction for which Tn-A0
then T has a nontrivial invariant subspace. The above Corollary
yields the stronger result that T* (hence T) even has a unitary part.
Also, it follows from the Corollary that if T* is a hyponormal con-
traction for which Tnf -A0 as n —> oo whenever / Φ 0, then Γ must
be unitary. In case T* is also subnormal, this last result was obtained
by Stampfli [10].

COROLLARY 2 OF THEOREM 3. Let Tbea completely hyponormal
contraction on a Hilbert space. Then Γ* is (unitarily equivalent to)
the restriction of the adjoint of a unilateral shift to an invariant
subspace.

Proof. Actually, every contraction S satisfying Sn-+0 strongly
as n —•> oo is unitarily equivalent to the restriction of the adjoint of
a unilateral shift to an invariant subspace (Foias [4], de Branges
and Rovnyak [1, 2]. See also Halmos [5], problem 121, and Sz.-Nagy
and Foias [11] p. 95. Note that the unilateral shift in question is,
in general, not the simple unilateral shift.

2* Proof of Theorem 1. The proof will be an extension and
refinement of the argument given in [8]. Let z be fixed and let
TZT* have the spectral resolution

(2.1) T.Tϊ - Γ
Jo

udE{

u
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Then, by an argument like that on pp. 165-166 of [8],

Γ lim (u + t)+1d | | E(

u

z)x | |2 ^ kx ,
JO i->0+

where kx is defined by (1.4). It follows that

(2.2) E{z)({0})x = 0 a n d Γ vΓxA \\ E^x \\2<,kx,
J+o

and hence, for any z in C,

(2.3) y(z) = Π u-1/2dE(

u

z)x is defined and || y(s) ||2 ^ fcβ .
J+o

Next, let Tz = T — zl have the polar factorization (see Kato [6],
pp. 334-335)

(2.4) Tz = U(z)G(z) ,

where G(z) = (Γ* Tz)
112 and Ϊ7(s) is partially isometric with initial set

[i2(G(s))] and final set [R(TZ)]. Then Γ,^(2)»(«)==(E7(β)(?(«)^*(«)M«) =
{TzT?)ιl2y(z) = x. On putting

(2.5) w(z) = U*(z)y(z) ,

one sees that (1.5) follows from (2.3).
Next, it will be shown that the above defined bounded vector-

valued function w(z) on C is weakly continuous at every point z0

not in Π0(T). It must be shown that w(z) converges weakly to
w(z0), that is, for any / in Q, (w(z), f) —* (w(z0), f) as z —• z0. If this
limit relation did not hold however, then, since w(z) is bounded,
there would exist a z0 and a sequence {zn} such that w(zn) —> p (weakly)
as zn —• 20 with p Φ w(zQ). It follows from the relation Tzw(z) = a?,
on letting s = 3» and noting that || Γ— ΓΛ || —>0, that TZop = x and,
since TZQw(z0) — x, t h a t

(2.6) Γ.0(p - w(z0)) - 0 .

Since z0gΠ0(T), then p = w(̂ 0)> a contradiction.

There remains then to establish the measurability of w{z) in the
sense described in Theorem 1, at least if $ is separable. To this
end, we first shall show that, whether or not § is separable, if T
is any operator with the polar factorization of (2.4), then

(2.7) U(z)-+ U(z0) strongly as z~>z0 whenever zo&Πo(T) .

Assume then that zogΠo(T). Note (cf. [6], pp. 334-335) that
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U(z) is defined for vectors in R(G(z)) by U(z): G{z)u —* Tzu and that
U(z) is then extended by continuity to be isometric on [R{G(z))\.
For y in N(G(z))( = N(Tz)), U(z)y = 0. Since z0£ Π0(T), then N(G(z0)) = 0
and so U(z0) is isometric.

Since R(G(z0)) is dense in £>, relation (2.7) will follow if it is
shown that

(2.8) U(z)v > U(zo)v (strongly) as z > zQ, whenever v e R(G(z0)) .

Suppose then that v e R(G(zQ)), so that v — G(zQ)u for some vector
u. In view of U(z)G(z)u = Tzu and U(zo)G(zo)u = TZou9 we have
U(z)v - E7ϊ*0)v = (Γ, - Tz)u - ?7(z)(G(s) - G(zQ))u. Since || Γ , - Γ,o || —0,
hence also ||Cr6s) — G(zQ)\\ —» 0, as z—>z0, relation (2.8), hence also
(2.7), follows. By symmetry, we have also

(2.9) U*(z) > U*(z0) strongly as z > z0 whenever zo<£ i70(T*) .

Henceforth, it will be supposed that T is the operator occurring
in the statement of Theorem 1. By (2.2) and (2.3), y(z) e [R{TzTt)ιl2\ =
[R(TZ)]> and this set is the initial set of U*(z). Since w(z) = U*(z)y(z),
it follows that U(z)w(z) = U(z)U*(z)y(z) = y(z). We shall show that

(2.10) y(z) -—> y(zQ) weakly as z > zQ, z0 £ /70(Γ*) .

If (2.10) did not hold then, since y(z) is (uniformly) bounded in C,
there would exist a sequence {zn} for which zn—>z0 and y(zn)-+q
(weakly) as n —•»• oo with q Φ y(z0). Since w(z) is also bounded, we
may choose a subsequence of {zn}, which will also be denoted by {zn},
such that w(zn)—>p (weakly).

Let / be arbitrary in φ. Then (y(zn)f) —> ( ,̂ / ) and also
(y(Zn)9 f) - (U(zn)w(zn)9 f) = W 4 Z7*(«J/). In view of (2.9), we
have (w(zn), U*{zn)f)-+{p, U*(zQ)f) - (U(zo)p,f), and hence g = ϋί*0)p.
Since y(z0) = U(zQ)w(z0), we see that q — y(z0) — U(zQ)(p — w(zQ)). But,
as noted earlier, TZo(p — w(z0)) = 0 (cf. (2.6)), so that p — w(z0) e
N(G{z0)) and hence U(zo)(p — w(z0)) = 0. Thus <? = y(z0), a contradiction,
and so (2.10) is proved.

In summary, we see that the vector-valued function w(z) on C
is weakly continuous at zogΠo(T). The vector-valued function y(z)
is weakly continuous at z0 if zoίΠo(T*). Also, the operator-valued
function U*(z) on C is strongly continuous and, hence, U(z) is weakly
continuous at z0 if zo& Π(T*).

Suppose now that $ is separable. Then, as noted earlier, i70(Γ*)
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(hence also (Π0(T*))*) is Lebesgue planar measurable. It will be
shown that for any / in φ, the function (w(z), f) is Lebesgue planar
measurable on C - (Π0(T*))*. For, let {φn}(n = 1, 2, .. -) be any
complete orthonormal system for φ. Then (w(z), f) = (y(z), U(z)f) —
Σ*=i (2/0*0, Φn)(φn, U(z)f). But each term of the summation is a
function continuous at all points z for which 2 is not in Π0(T*). In
particular, each such term, and hence the sum, is (planar) measurable
on C - ΠQ(T*))*. (The argument is similar to that used in [9], p. 384,
in connection with the proof of Stone's theorem on unitary groups.)

Finally, a similar argument establishes the assertion of the last
part of Theorem 1 and the proof is now complete.

3. Proof of Theorem 3. Without loss of generality it may be
supposed that § is separable. It follows from Theorem 2 that if
w{z) is defined by (2.5) and if / is arbitrary in φ, then (w(z), f) is
(bounded and) measurable with respect to arc length and to the
measure dz = dx + idy on every circle Cr = {z: \z\ — r}, 0 < r < 00.
Let

(3.1) y(r) = ~(2πi)~ι \ w(z)dz(= -φπi)-1 [ w(rt)dt) ,

where C = d and all circles are oriented positively. It is understood,
of course, that y(r) is defined in terms of the relation (y(r), f) =

— (2πi)~1 \ (w(z), f)dz for any / in !Q and that the latter integral is

a Lebesgue integral. A similar remark applies to the other integrals
of this section.

The set Π0(T) ΓΊ {z: \ z \ = 1} is empty; otherwise, T would have
a normal part. (In fact, if T is any contraction and if z is an
eigenvalue of T satisfying | z \ = 1 with eigenvector / then z is an
eigenvalue of T* with the same eigenvector /; cf. [11], p. 8.) If z
is fixed and \z\ = 1, then, by Theorem 2, w(rz) —• w(z) (weakly) as
r—>1 — 0. For any fixed / in φ, it follows from (3.1) and the
uniform boundedness convergence theorem that

(V(r), /) = -{2πi)~Λ (w(z)ff)dz
}cr

> - (2πi)~1 \ (w(z\ f)dz as r > 1 - 0 ,

Thus, y(r)-+y(l) (weakly) as r—>1 — 0. Similarly, y(r)~>y(l) (weakly)

as r - > l + 0. But, if r > 1, -(2τrί)-1 f Tτιvdz = v, for arbitrary
)cr

v, so that, if x is any vector satisfying (1.4), y(r) = x for r > 1
and hence y(l) = x. Hence, we have for such vectors x,
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(3.2) y(τ) > x (weakly) as r > 1 — 0 .

In view of (1.5),

Ty(r) = -(2ττi)-1 ( Tw(z)dz

= -(2πί)-ί [ (T ~ z + z)w(z)dz ,

= ~(2πi)-1 \ zw(z)dz .

Similarly, one sees that Tny{τ) — — (2πi)~1 \ znw(z)dz for n=l,2, ,
Jc r

and hence

(3.3) Tny(r) > 0 (strongly) as n > oo, for r < 1 .

Next, let SB = {v: Tnv -> 0 (strongly) as n-+oo}. Since T is a
constraction, SK is a subspace invariant under T. Also, by (3.3),
each y(r), r < 1, belongs to SB. Hence, by (3.2), if u is any vector
in SB1, 0 = (y(r), u) *-+(x, u) as r —* 1 — 0, and so x e SB, where cc is
any vector satisfying (1.4). Since such vectors are dense in R{D),
R{D) c SB.

Let now £ denote the least subspace containing R{D) and reducing
T. It will be shown that

(3.4) S c SB .

To see this, note that if u e SB then Tu e SB. Also, ΓΓ* - ΓΓ* = Z>
and hence TnT*u = T*~ιT*Tv, + T*~ιDu. Since D ^ G S B , then
T%~ιDu -> 0 as w -* oo and hence lim s u p . ^ [ | ΓΛ Γ*^ 11 ̂  11 Γ% 11.
Repetition of this argument shows that lim sup,-*, || TnT*u || ^ || Γ^u ||
for k = 1, 2, . . . , and hence TnTu~*0 as w-»oo, so that T*UGSB.

Thus, whenever ^ is in SB so also are Tu and T*w. Since J?(D) c SB,
the desired relation (3.4) follows.

It is clear that S 1 also reduces T and that Γ j S 1 is normal.
Since T* is completely hyponormal then 21 = 0, and so by (3.4),
SB = Q. This completes the proof of Theorem 3.
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