REARRANGING FOURIER TRANSFORMS ON GROUPS

Chung Lin

Let G denote an infinite locally compact abelian group and X its character group. Let θ be a suitable Haar measure on X, and $1 . For a <math>\theta$ -measurable function ϕ on X, we define $\theta_{\phi}(t) = (\{\chi \in X : |\phi(\chi)| > t\})$ and $\phi^*(x) = \inf\{t > 0 : \theta_{\phi}(t) \le x\}$ for x > 0. ϕ^* is called the nonincreasing rearrangement of ϕ . Note that even though ϕ is defined on X, the domain of ϕ^* is $(0, \infty)$. A nonnegative function g defined on $(0, \infty)$ is called admissible if g is nonincreasing and $\lim_{x \to \infty} g(x) = 0$. Theorems:

- 1. Let G be nondiscrete with a compact open subgroup and g admissible. Then $g|_N = \hat{f}^*|_N$, where N is the set of positive integers, for some $f \in L^p(G)$ if $\sum_{k=1}^{\infty} g(k)^p k^{p-2} < \infty$.
- 2. Let G be nondiscrete with no compact open subgroup and g admissible. Then $g=\hat{f}^*m$ a.e. for some $f\in L^p(G)$ if $\int_{-\infty}^{\infty}g(x)^px^{p-2}dx<\infty$.
- 3. Let G be an infinite discrete abelian group which contains $Z, Z(r^{\infty})$ or $Z(r)^{\aleph_0}$ as a subgroup, g admissible. Then $g|_{(0,1)} = \hat{f}^*|_{(0,1)} m$ a.e. for some $f \in L^p(G)$ if $\int_0^1 g(x)^p x^{p-2} dx < \infty$.

Hardy and Littlewood [1], [2] characterized functions on Z such that every rearrangement is the Fourier transform of a function in $L^p(T)$, 2 . They also characterized functions on <math>Z such that some rearrangement is the Fourier transform of afunction in $L^p(T)$, 1 . Hewitt and Ross [4] generalized these results to arbitrary compact infinite abelian groups. We are interested in the case of LCA (locally compact abelian) groups. Here are our results.

THEOREM 1. Let G be nondiscrete with a compact open subgroup,

and g an admissible function. Then $g|_N = \hat{f}^*|_N$ for some $f \in L^p(G)$ if and only if $\sum_{k=1}^{\infty} g(k)^p k^{p-2} < \infty$. Moreover, there exists a constant A_p that depends on p only such that

$$\left(\sum_{k=1}^{\infty} g(k)^p k^{p-2}\right)^{1/p} \le A_p ||f||_p$$

for evrey such f.

THEOREM 2. Let G be a nondiscrete LCA group with no compact open subgroup and g an admissible function. Then $g = \hat{f}^*$ for some $f \in L^p(G)$ if and only if $\int_0^\infty g(x)^p x^{p-2} dx < \infty$. Moreover, there exists A_p that depends only on p such that

$$\left(\int_{0}^{\infty}g(x)^{p}x^{p-2}dx\right)^{1/p} \leq A_{p}||f||_{p}$$

for every such f.

THEOREM 3. Let G be an infinite discrete abelian group containing Z, $Z(r^{\infty})$ or $Z(r)^{\aleph_0}$ as a subgroup and g an admissible function. Then $g|_{(0,1)} = \hat{f}^*|_{(0,1)}$ for some $f \in L^p(G)$ if and only if $\int_0^1 g(x)^p x^{p-2} dx < \infty$. Moreover there exists A_p that depends only p such that

$$\left(\int_{0}^{1} g(x)^{p} x^{p-2} dx\right)^{1/p} \leq A_{p} ||f||_{p}$$

for every such f.

Theorems 1 and 2 give us a complete solution for all nondiscrete LCA groups. Theorem 3 holds for "almost all" discrete abelian groups, but I am not able to settle the case where G contains $\prod_{n=1}^{+\infty} Z(r_n)$ as a subgroup, with $r_n \to \infty$.

The forward implications " \Rightarrow " of all three theorems and the existence of the constants A_p are due to Hunt [5]; see Stein and Weiss [6], Chapter V, Corollary 3.16.

II. A few lemmas.

LEMMA 1. Let G be a LCA group and H an open subgroup of G. Let $H^{\perp} = \{\chi \in X : \chi = 1 \text{ on } H\}$. Then for each $f_0 \in L^p(H)$, there exists $f \in L^p(G)$ such that $\hat{f}^* = \hat{f}_0^*m$ a.e. (where we use suitable Haar measures on X and X/H^{\perp} for the definitions of \hat{f}^* and \hat{f}_0^*).

Proof. Let $f_0 \in L^p(H)$ and define $f(x) = f_0(x)$ if $x \in H$ and f(x) = 0 otherwise. Since H is open, f is still λ -measurable in G

and $f \in L^p(G)$. Choose Haar measure λ_H on H to be the restriction of λ to H. Choose θ_{H^\perp} to be the normalized Haar measure on H^\perp , and θ_X to be an arbitrary Haar measure on X. Then a Haar measure θ_1 on X/H^\perp exists so that Weil's theorem applies [3; Vol. II, 28.54]. \hat{f} is clearly constant on each coset of H^\perp . That is, $\hat{f}(\chi) = \hat{f}_0(\chi H^\perp)$ for all $\chi \in X$. A calculation, using Weil's theorem shows that $\hat{f}^* = \hat{f}_0^* m$ a.e.

For the rest of this paper, we let g be a fixed admissible function on $(0, \infty)$, $1 and <math>\int_{0}^{\infty} g(x)^{p} x^{p-2} dx$ is finite.

LEMMA 2. (i) $\int_{0}^{1} g(ct)dm(t) < \infty \quad for \quad all \quad c > 0.$ (ii) $0 \leq \int_{0}^{\infty} g\left(ct\right) \sin xt \ dm(t) \leq \int_{0}^{\pi/x} g\left(ct\right) \sin xt \ dm(t) < \infty \quad for \quad all \quad x > 0, \quad c > 0.$

Proof. (i) Since

$$\begin{split} \int_{0}^{1} & g(ct)^{p} dm(t) \leq \int_{0}^{1} & g(ct)^{p} t^{p-2} dm(t) \leq \int_{0}^{\infty} g(ct)^{p} t^{p-2} dm(t) \\ & = \frac{1}{c^{p-1}} \int_{0}^{\infty} & g(t)^{p} t^{p-2} dm(t) < \infty \end{split},$$

we see that $\int_0^1 g(ct)^p dm(t)$ is finite and hence $\int_0^1 g(ct) dm(t)$ is finite. (ii) For $k = 1, 2, \dots$, let

$$u_k = (-1)^{k+1} \int_{(k-1)\pi/x}^{k\pi/x} g(ct) \sin xt \, dm(t)$$

It is clear that $\nu_1 \ge \nu_2 \ge \nu_3 \ge \cdots \ge 0$ and $\nu_k \to 0$. It follows that

$$\int_{0}^{\infty} g(ct) \sin xt \, dt = \sum_{k=1}^{\infty} (-1)^{k+1} \nu_{k}$$

and hence

$$0 \leqq \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty} \! g(ct) \sin xt \, dt \leqq
u_{\scriptscriptstyle 1} = \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \pi/x} \! g(ct) \sin xt \, dm(t) < \, \circ \! \cdot$$
 .

This completes the proof of Lemma 2.

Define $G_c(x) = \int_0^{|x|} g(ct) dm(t)$ for $x \in R$. This is well-defined because $\int_0^1 g(ct) dm(t) < \infty$ by (i) of Lemma 2 and g is bounded in between 1 and |x|.

LEMMA 3. (i) $G_c(x) = o(x^{1/p})$ as $x \to 0$ and as $x \to \infty$.

(ii)
$$\int_0^\infty G_c(x)^p x^{-2} dm(x) < \infty \ ext{for all } c>0.$$

Proof. See [7], Vol. I, Ch. I, §9.16.

LEMMA 4. There exists $f \in L^p(R)$ such that $\hat{f}^* = gm$ a.e.

Proof. Define, for $x \in R$

$$\varphi(x) = \int_0^\infty g(2t) \sin xt \ dm(t) \ .$$

Then, by part (ii) of Lemma 2 $0 \le \varphi(x) \le G_2(\pi/x)$, for x > 0, because $0 \le \varphi(x) \le \int_0^{\pi/x} g(2t) \sin xt \ dm(t) \le \int_0^{\pi/x} g(2t) \ dm(t) = G_2(\pi/x)$. Since G_2 is an even function, we have that $|\varphi(x)| \le G_2(\pi/x)$ for all $x \in R \setminus \{0\}$. Part (ii) of Lemma 3 says that $G_2(\pi/x) \in L^p(R)$. If follows then that $\varphi \in L^p(R)$. Define, for $n \in N$,

$$\varphi_n(x) = \int_0^n g(2t) \sin xt \, dm(t) \quad (x \in R) .$$

Let x > 0. For each n, choose $m \in N$ such that $|2m\pi/x - n| \le \pi/x$. Then

$$egin{aligned} |arphi_n(x)| & \leq \int_0^{2m\pi/x} g(2t) \sin xt \ dm(t) + \left| \int_{2m\pi/x}^n g(2t) \sin xt \ dm(t)
ight| \\ & \leq \int_0^\infty g(2t) \sin xt \ dm(t) + g \Big(rac{2(2m-1)\pi}{x} \Big) \left| rac{2m\pi}{x} - n
ight| \\ & \leq arphi(x) + g \Big(rac{2\pi}{x} \Big) rac{\pi}{x} \leq arphi(x) + \int_0^{\pi/x} g(2t) dm(t) \\ & = arphi(x) + G_2 \Big(rac{\pi}{x} \Big) \ . \end{aligned}$$

This shows that $|\varphi_n(x)| \leq |\varphi(x)| + |G_2(\pi/x)|$ for all $x \in R\setminus\{0\}$. Since $\varphi_n(x) \to \varphi(x)$ pointwise and $\varphi(x)$, $G_2(\pi/x) \in L^p(R)$, we must have $||\varphi_n - \varphi||_p \to 0$ be the dominated convergence theorem. So we can obtain φ by approximating φ_n . Let us compute φ_n :

$$egin{align} 2iarphi_n(x) &= 2i\int_0^n g(2t)\sin xt\,dm(t) = \int_0^n g(2t)\,(e^{-ixt}-e^{ixt})dm(t) \ &= \int_R g(-2t)I_{[-n,0]}(t)e^{-ixt}dm(t) \ &- \int_R g(2t)I_{[0,n]}(t)e^{-ixt}dm(t) \;. \end{split}$$

Recall that the Haar measure m on R is chosen so that the inversion theorem holds. We know that $g(2t)I_{[0,n]}(t)$ and $g(-2t)I_{[-n,0]}(t) \in$

 $L^{1}(R)$ and $\varphi_{n} \in L^{p}(R)$. Hence, by [3; Vol. II, 31.44 (b)], we have

$$2iarphi(x) = egin{cases} -g(2x) & ext{if} & x \geqq 0 \ & m ext{ a.e.} \ g(-2x) & ext{if} & x < 0 \end{cases}$$

Now define $f = 2i\varphi$ so that $|\hat{f}(x)| = g(|2x|)$ m a.e. It is then easy to check that $\hat{f}^* = gm$ a.e., which is what we needed to prove.

LEMMA 5. For each $n \in N$, there exists $f \in L^p(\mathbb{R}^n)$ such that $\hat{f}^* = gm$ a.e.

Proof. By Lemma 4, we may assume that n > 1. Define, for $k \in \mathbb{N}$,

$$\begin{split} \varphi(x) &= \int_0^\infty g(2^n t) \sin xt \, dm(t) \\ \varphi_k(x) &= \int_0^k g(2^n t) \sin xt \, dm(t) \\ f(x_1, \, \cdots, \, x_n) &= 2^n i \varphi(x_i) \frac{\sin x_2}{x_2} \cdots \frac{\sin x_n}{x_n} \\ f_k(x_1, \, \cdots, \, x_n) &= 2^n i \varphi_k(x_1) \frac{\sin x_2}{x_2} \cdots \frac{\sin x_n}{x_n} \end{split}$$

Let $m_n = m \times m \times \cdots \times m$ on R^n , $x = (x_1, \dots, x_n)$. Then

$$\varphi(x)$$
, $\varphi_k(x)$, $\frac{\sin x}{x} \in L^p(R)$.

Therefore

$$egin{aligned} & \int_{\mathbb{R}^n} |f_k - f|^p dm_n \ & = 2^{n^p} \! \int_{\mathbb{R}^n} \! \left| arphi_k(x_1) - arphi(x_1)
ight|^p \! \left| rac{\sin x_2}{x_2}
ight|^p \cdots \left| rac{\sin x_n}{x_n}
ight|^p dm_n \ & = 2^{n^p} \! \int_{\mathbb{R}} \! \left| arphi_k - arphi
ight|^p \! dm \left(\! \int_{\mathbb{R}} \! \left| rac{\sin x}{x}
ight|^p dm
ight)^{n-1} \, . \end{aligned}$$

As in the proof of Lemma 4, we have $||\varphi_k - \varphi||_p \to 0$, and so $||f_k - f||_p \to 0$ in $L^p(\mathbb{R}^n)$. Straight forward calculations show that

$$\widehat{f}_k(x_1,\ \cdots,\ x_n) = egin{cases} g(-2^nx_1) & ext{if} & -k \leqq x_1 < 0 ext{ and } x_j \in [-1,\,1] \ ext{for} & 2 \leqq j \leqq n \ -g(2^nx_1) & ext{if} & 0 \leqq x_1 \leqq k ext{ and } x_j \in [-1,\,1] \ ext{for} & 2 \leqq j \leqq n \ 0 & ext{otherwise} \end{cases}$$

 m_n a.e. and hence

$$\hat{f}(x_1, \dots, x_n) = egin{cases} g(-2^n x_1) & ext{if} & x_1 < 0, \, |x_j| \le 1, \, 2 \le j \le n \ -g(2^n x_1) & ext{if} & x_1 > 0, \, |x_j| \le 1, \, 2 \le j \le n \ 0 & ext{otherwise} \end{cases}$$

 m_n a.e. It follows that

$$m_n\{x \in \mathbb{R}^n: |\hat{f}(x)| > t\} = 2^n m\{x_1 > 0: g(2^n x_1) > t\}$$
.

This in turn shows that for x > 0

$$\hat{f}^*(x) = \inf\{t > 0: 2^n m\{x_1 > 0: g(2^n x_1) > t\} \le x\} = g(x)$$

m a.e., which completes the proof of Lemma 5.

III. Proof for the nondiscrete case. Let G be an infinite LCA group. To prove Theorem 1 and Theorem 2, Lemma 1 and the structure theorem [3, Vol. I, 24.30] shows that we may assume $G = K \times R^n$, where K is a compact abelian group.

Proof of Theorem 1. In this n=0, so that G=K. Then there exists $f_0 \in L^p(K)$, by [4], such that $\widehat{f}_0^*|_N = g|_N$.

Proof of Theorem 2. In this case n>0. By Lemma 5, there exists $f_0 \in L^p(\mathbb{R}^n)$ such that $\widehat{f}_0^* = gm$ a.e. Define $f(x,y) = f_0(y)$ for $x \in K$ and $y \in \mathbb{R}^n$. Let $m_n = m \times \cdots \times m$ be the Haar measure on \mathbb{R}^n , λ_K be the normalized Haar measure on K and $\lambda_{K \times \mathbb{R}^n}$ the Haar measure on $K \times \mathbb{R}^n$ so that Weil's theorem holds. It follows that f is in $L^p(K \times \mathbb{R}^n)$ and $||f||_p = ||f_0||_p$. Moreover, for $\chi_1 \in \widehat{K}$, $\chi_2 \in \mathbb{R}^n$, we have

$$f(\chi_1\chi_2) = \begin{cases} f_0(\chi_2) & \text{if } \chi_1 = 1 \\ 0 & \text{otherwise.} \end{cases}$$

Choose $\theta_{\hat{K}\times R}n$, $\theta_{\hat{K}}$ and θ_{R^n} the Haar measures on $\hat{K}\times R^n$, \hat{K} and R^n respectively, so that Planchevel's theorem holds. Then Weil's theorem holds for these measures by [3, 31.46(c)]. Clearly $\theta_{\hat{K}}$ is the discrete measure on \hat{K} . Then for t>0

$$egin{aligned} (heta_{\hat{K} imes R^n})_{\hat{f}}(t) &= \int_{\hat{K} imes R^n} I_{\{\chi:|\hat{f}(\chi)|>t\}} d heta_{\hat{K} imes R^n} \ &= \int_{R^n} \int_{\hat{K}} I_{\{\chi:|\hat{f}(\chi)|>t\}} d heta_{\hat{K}}^* d heta_{R^n} \ &= \int_{R^n} I_{\{\chi:|\hat{f}_0(x)|>t\}} d heta_{R^n} &= (heta_{R^n})_{\hat{f}_0}(t) \; , \end{aligned}$$

and it follows that for x > 0,

$$\hat{f}^*(x) = \inf \{t > 0 : (\theta_{\hat{K} \times R^n})_{\hat{f}}(t) \le x\} = \inf \{t > 0 : (\theta_{R^n})_{\hat{f}_0}(t) \le x\}$$
$$= \hat{f}^*_0(x) = g(x)m \text{ a.e.}$$

Note that Theorem 1 is essentially the theorem in [4].

IV. Proof of Theorem 3. For each $n=1, 2, \dots$, let r_n be an integer ≥ 2 . Denote by θ the normalized Haar measure on $X=\prod_{n=1}^{\infty} Z(r_n)$ and λ the usual restriction of Lebsque measure to [0, 1]. Define a function $\varphi \colon X \to [0, 1]$ via

$$\varphi(\varepsilon) = \sum_{n=1}^{\infty} \frac{\varepsilon_n}{p_1 p_2 \cdots p_n} \quad \varepsilon = (\varepsilon_1, \, \cdots, \, \cdots) \in X$$

Then g is measure preserving; in fact, the following is well known.

LEMMA 6. E is measurable in X if and only if $\varphi(E)$ is measurable in [0, 1], and $\theta(E) = \lambda(\varphi(E))$. φ is an onto map and φ is one-to-one on X except for a countable set. Moreover,

$$\int_x h \circ \varphi d\theta = \int_0^1 h d \lambda$$

for all bounded λ measurable functions h on [0, 1].

LEMMA 7. Theorem 3 is true if $G \supset Z$.

Proof. By Lemma 1, we may assume G = Z. Define

$$a_{\scriptscriptstyle 0}(n) \, = rac{1}{2\pi} \int_{\scriptscriptstyle 0}^{2\pi} g(t) \sin\,nt\,dt \quad ext{for } n \in Z \; .$$

The values of the integrals involved are finite, by (i) of Lemma 2. Also $a_0 \in l^p(Z)$ because

$$egin{aligned} (2\pi)^p \sum_{n\in \mathbb{Z}} \left|a_0(n)
ight|^p &= \sum_{n\in \mathbb{Z}} \left|\int_0^{2\pi} g(t)\sin\,nt\,dt
ight|^p \leq \sum_{\substack{n\in \mathbb{Z} \ n
eq 0}} \left|\int_0^{\pi/n} g(t)dt
ight|^p \ &= \sum_{\substack{n\in \mathbb{Z} \ n
eq 0}} G_1\!\!\left(rac{\pi}{n}
ight)^p \leq \int_{\mathbb{R}} G_1^p\!\left(rac{\pi}{x}
ight)\!dx = \pi \int_{\mathbb{R}} G_1^p(y)y^{-2}dy \;. \end{aligned}$$

The last integral is finite by (ii) of Lemma 3. Similarly, if we define

$$b_0(n) = \frac{1}{2\pi} \int_0^{2\pi} g(t) \cos nt \, dt$$
 for $n \in \mathbb{Z}$

then $b_0 \in l^p(Z)$. So if we set $c(n) = b_0(n) - ia_0(n) = 1/2\pi \int_0^{2\pi} g(t)e^{-int}dt$ for $n \in Z$, then $c \in l^p(Z)$ and $\hat{c}(t) = g(t)$ a.e. [3, 31.44, (b)]. Since g is nonincreasing in $[0, 2\pi]$, we then have $\hat{c}^* = g\theta$ a.e.

470 CHUNG LIN

LEMMA 8. Theorem 3 is true is $G \supset \Pi^*Z(r)$, where $r \in N$, $r \ge 2$.

Proof. We may assume that $G = \Pi^* Z(r)$, by Lemma 1.

Let $X=Z(r)^{\aleph_0}$, the character group of G. Define $\varphi(\varepsilon)=\sum_{n=1}^\infty \varepsilon_n/r_n$ for $\varepsilon=(\varepsilon_n)\in X$, and note that Lemma 6 applies to φ . For a real number t, denote [t] by the greatest integer which is not greater than t. For $m\in N$, define

$$\chi_m(t) = e^{i2\pi [r^m t]/r}$$

for $t \in [0, 1]$. Then $\chi_m \circ \varphi(\varepsilon) = e^{i(2\pi/r)\varepsilon_m}$ where $\varepsilon \in X$ and ε_m is the mth component of ε . It follows that G is isomorphic to the group of finite products of elements in $\{\chi_m \circ \varphi\}_{m=1}^{\infty}$. In this proof we write $I_{m,\nu}$ for the characteristic function of the interval $[v/r^m, (v+1)/r^m]$

$$\chi_m(t) = \sum_{u=1}^{r^{m-1}} \left(\sum_{j=0}^{r-1} w^j I_{m,(u-1)r+j}(t) \right)$$

for θ a.e. t, where $w = e^{i(2\pi/r)}$. And hence

$$\chi_{m_1}^{l_1}(t) \cdots \chi_{m_k}^{l_k}(t) = \sum_{u=1}^{r^{m_1-1}} a_u \left(\sum_{j=0}^{r-1} w^{l_1 j} Im_1, (u-1)r + j(t) \right)$$

where $a_u^r=1$ for all $u=1, \dots, r^{m_1-1}$; $m_1>m_2>\dots>m_k$ and $0\leq l_1$, $l_2, \dots, l_k\leq r-1, l_1>0$.

Define a function f on G via

$$f(\chi_{m_1}^{l_1} \circ arphi, \; \cdots, \; \chi_{m_k}^{l_k} \circ arphi) = \int_{\mathbb{R}} g \circ arphi(arepsilon) \chi_{m_1}^{l_1} \circ arphi(arepsilon) \; \cdots \; \chi_{m_k}^{l_k} \circ arphi(arepsilon) darepsilon \; .$$

Define, for $u=1, 2, \cdots, r^{m_1-1}$ and $j=0, \cdots, r-1$,

$$k_{\scriptscriptstyle (u-1)\,r+j} = \int \! I_{\scriptscriptstyle m_1,\,(n-1)\,r+j}(t) g(t) dt$$
 , $b_{\scriptscriptstyle (u-1)\,r+j} = a_u w^{jl_1}$.

Then $\{k_0, k_1, \dots, k_{r^{m_1}-1}\}$ is a positive nonincreasing sequence, and

$$\left|\sum_{l=0}^{s}b_{l}\right|\leq r$$
 for all $s=0,1,2,\cdots,r^{m_{1}}-1$

In fact,

$$\sum\limits_{j=0}^{r-1}b_{(u-1)\,r+j}=\sum\limits_{j=0}^{r-1}a_uw^{jl_1}=a_u\sum\limits_{j=0}^{r-1}w^{jl_1}=0$$
 .

It follows that

$$|f(\chi_{m_1}^{l_1}\circarphi,\ \cdots,\ \chi_{m_k}^{l_k}\circarphi)|=\left|\int_0^1\!g(t)\chi_{m_1}^{l_1}(t),\ \cdots,\ \chi_{m_k}^{l_k}(t)dt\right|$$

$$\begin{split} &=\sum_{u=1}^{r^{m_{1-1}}} \left(\sum_{j=0}^{r-1} a_u w^{jl_1} \int I_{m_1,(u-1)r+j}(t) \, g\left(t\right) dt\right) = \left|\sum_{l=0}^{r^{m_{1-1}}} b_l k_l\right| \\ &\leq k_0 \max_{0 \leq s \leq r^{m_{1-1}}} \left|\sum_{l=0}^{s} b_l\right| \leq k_0 r = r \int_0^{1/r^{m_1}} g\left(t\right) dt = r G\!\!\left(\frac{1}{r^{m_1}}\right). \end{split}$$

Writing Σ' for a sum over all $(m_1, \dots, m_k, l_1, \dots, l_k)$ satisfying $k \in N$, $m_1 > m_2 > \dots > m_k \ge 0$, $0 < l_1 \le r - 1$, $0 \le l_j \le r - 1$ for j = 2, \dots , k, we obtain

$$egin{aligned} ||f||_p^p &= \Sigma' |f(\chi_{m_1}^{l_1}arphi,\ \cdots,\ \chi_{m_k}^{l_k}arphi)|^p & \leq \Sigma' r^p G^p \Big(rac{1}{r^{m_1}}\Big) \ & \leq \sum\limits_{m_1=0}^{\infty} r^{m_1} r^p G^p \Big(rac{1}{r^{m_1}}\Big) = r^{p+1} \sum\limits_{m_1=0}^{\infty} r^{m_1-1} G^p \Big(rac{1}{r^{m_1}}\Big) \ & \leq r^{p+1} \sum\limits_{m_1=0}^{\infty} (r^{m_1} - r^{m_1-1}) G^p \Big(rac{1}{r^{m_1}}\Big) \leq r^{p+1} \int_0^{\infty} G^p \Big(rac{1}{x}\Big) dx < \infty \end{aligned}.$$

So $f \in L^p(G)$ and hence $\hat{f} = g \circ \varphi$. It follows that $\hat{f}^* = gI_{[0,1]}$ m a.e.

LEMMA 9. Theorem 3 is true if G contains $Z(r^{\infty})$, $(r \ge 2)$.

Proof. We may assume that $G=Z(r^{\infty})$ by Lemma 1. Let Δ_r be the group of r-adic integers; then $Z(r^{\infty})$ is a discrete group with $Z(r^{\infty})^{\hat{}}=\Delta_r$. Define

$$\varphi(\varepsilon) = \sum_{n=1}^{\infty} \frac{\varepsilon_n}{r^n} \varepsilon = (\varepsilon_n) \in \mathcal{A}_r$$
.

As in Lemma 6, φ is a measure preserving map from Δ_r onto [0, 1], and

$$\int_{A_{\tau}} h \circ \varphi d^{\theta} = \int_{0}^{1} h dt$$

for all bounded measurable functions h on [0,1], where θ is the normalized Haar measures on Δ_r . We write I_{m,s_1,\ldots,s_m} for the characteristic function of the interval

$$\left[\frac{r^{m-1}s_1+r^{m-2}s_2+\cdots+s_m}{r^m},\frac{r^{m-1}s_1+r^{m-2}s_2+\cdots+s_m+1}{r^m}\right].$$

For $m \in N$, define

(3)
$$\chi_m(t) = \sum_{s_1 \dots s_m = 0}^{r-1} w_m^{s_1 + r s_2 + \dots + r^{m-1} s_m} I_{m, s_1, \dots, s_m}(t)$$

where $w_m = e^{i(2\pi/r^m)}$. Then $\chi_m \circ \varphi(\varepsilon) = w_m^{\varepsilon_1 + r_{\varepsilon_2} + \dots + r^{m-1}} \varepsilon_m \theta$ a.e. where $(\varepsilon) \in \mathcal{A}_r$ and $\varepsilon_1, \dots, \varepsilon_m$ are the first m coordinates of (ε) . It follows that G is isomorphic to the group generated by $\{\chi_m \circ \varphi\}_{m=1}^{\infty}$. Define for

 $m, l \in N \text{ and } (l, r) = 1$

$$f(\chi_m^l) = \int_{\mathbb{R}^n} g \circ \varphi(\varepsilon) \chi_m^l \circ \varphi(\varepsilon) d\theta$$

Then f is a function on G, and by (2) and (3),

$$f(\chi_m^l) = \int_0^1 g(t) \chi_m^l(t) dt$$

= $\sum_{s_1, \dots, s_m=0}^{r-1} (w_m^l)^{s_1+rs_2+\dots+r^{m-1}s_m} \int I_{m,s_1,\dots,s_m}(t) g(t) dt$.

Let $k_{r^{m-1}s_1+\cdots+s_m}=\int I_{m,s_1,\cdots,s_m}(t)g(t)dt$. Then $\{k_0,\,k_1,\,\cdots,\,k_{r^{m-1}}\}$ is a positive, nonincreasing sequence. Let $b_{r^{m-1}s_1+\cdots+s_m}=(w_w^l)^{s_1+rs_2+\cdots+r^{m-1}s_m}$. For any $0\leq s\leq r^m-1$, we write $s=r^{m-1}s_1+\cdots+s_m$ with $0\leq s_1,\,\cdots,\,s_m< r$. Then

$$\sum_{n=0}^{s} b_n = \sum_{n=1}^{r^{m-1}s_1 + \dots + s_m} b_n$$

$$= \left(\sum_{u=1}^{r^{m-2}s_1 + \dots + s_{m-1}} \sum_{h=0}^{r-1} b_{(u-1)r+h}\right) + \left(\sum_{i=0}^{s_m} b_{r^{m-1}s_1 + \dots + rs_{m-1} + i}\right)$$

For each $u=1, \cdots, r^{m-2}s_1+\cdots+s_{m-1}$. Choose $0 \le u_1, \cdots, u_{m-1} < r$ such that $(u-1)r=r^{m-1}u_1+\cdots+ru_{m-1}$, and hence

$$\begin{split} \sum_{h=0}^{r-1} b_{(u-1)\,r+h} &= \sum_{h=0}^{r-1} b_{r^{m-1}u_1 + \dots + ru_{m-1} + h} \\ &= \sum_{h=0}^{r-1} (w_m^l)^{u_1 + ru_2 + \dots + r^{m-2}u_{m-1} + r^{m-1}h} \\ &= (w_m^l)^{u_1 + ru_2 + \dots + r^{m-2}u_{m-1}} \sum_{h=0}^{r-1} (w_m^l) r^{m-1h} \\ &= (w_m^l)^{u_1 + ru_2 + \dots + r^{m-2}u_{m-1}} \sum_{h=0}^{r-1} (e^{i(2\pi l)/r})^h = 0 \end{split}.$$

The last equality holds because (l, r) = 1. This shows that

$$\left| \sum_{n=0}^{s} b_n \right| = \left| \sum_{j=0}^{s_m} b_{r^{m-1}s_1 + \dots + rs_{m-1} + j} \right| \le s_m + 1 \le r$$

and hence

$$egin{aligned} |f(\chi_m^l)| &= \left|\sum\limits_{n=0}^{r^m-1} b_n k_n
ight| \leq k_0 \max_{0 \leq s \leq r^m-1} \left|\sum\limits_{n=0}^s b_n
ight| \leq r k_0 \ &= r \int_0^{1/r^m} g(t) dt = r G_1\!\!\left(rac{1}{r^m}
ight) \end{aligned}$$

for all $m, l \in N$ and (l, r) = 1. Denote by Σ' the sum over $(m, l) \in N$, (l, r) = 1 and $0 \le l < r^m$. Then we have

$$||f||_p^p= \Sigma'|f(\chi_m^l)|^p \leqq \Sigma' r^p G_{\scriptscriptstyle
m I}^p iggl(rac{1}{r^m}iggr) \leqq \sum_{m=0}^\infty r^m r^p G_{\scriptscriptstyle
m I}^p iggl(rac{1}{r^m}iggr)$$
 .

As in Lemma 8, we conclude that $f \in L^p(G)$ and $\widehat{f}^* = gI_{[0,1]}m$ a.e.

Patching Lemmas 7, 8 and 9 together gives the proof of Theorem 3.

I would like to extend my sincere thanks here to Professor K. A. Ross for his helpful suggestions.

The remaining open question is whether Theorem 3 holds if $G = \prod_{n=1}^{\infty} {}^*Z(r_n)$ where $r_n \in N$, $r_n \geq 2$ for all n and $\lim_{n \to \infty} r_n = \infty$.

REFERENCES

- 1. G. H. Hardy and J. E. Littlewood, some new properties of Fourier constants, Math. Annalen, 97 (1926), 159-209.
- 2. ———, some new propeties of Fourier constants, J. London Math. Soc., 6 (1931), 3-9.
- 3. E. Hewitt and K. A. Ross, *Abstract Harmonic Analysis*, 2 vols. (Springer-Verlag, Inc. Berlin-Heidelberg-New York 1963, 1970).
- 4. ———, Rearrangement of L^r Fourier Series on compact abeliangroups, Proc. London Math. Soc., (3) **29** (1974), 317-330.
- 5. R. A. Hunt, On L(p, g) spaces, L' Enseignement Math., 12 (1966), 249-275.
- 6. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. (Princeton, New Jersey, Princeton University Press, 1971).
- 7. A. Zygmund, Trigonometric Series, 2nd edition, 2 vols. (Cambridge Press 1959, reprinted 1968).

Received February 20, 1975.

UNVERSITY OF OREGON