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REARRANGING FOURIER TRANSFORMS
ON GROUPS

CHUNG LIN

Let G denote an infinite locally compact abelian group
and X its character group. Let Θ be a suitable Haar measure
on X, and 1 < p < 2. For a ^-measurable function φ on X,
we define θφ(t) = ({χ e X: \ φ(χ)\ > t}) and φ*(x) = inf {t > 0: θφ(t) ^
x} for x > 0. φ* is called the nonincreasing rearrangement
of φ. Note that even though φ is defined on X, the domain
of φ* is (0, oo). A nonnegative function g defined on (0, oo)
is called admissible if g is nonincreasing and limx_,D g(x) = 0.
Theorems:

1. Let G be nondiscrete with a compact open subgroup
and g admissible. Then g\N = f*\N9 where N is the set of
positive integers, for some feLp(G) if Σ?=i g(k)pkp~2 < oo.

2. Let G be nondiscrete with no compact open subgroup
and g admissible. Then g = f*m a.e. for some feLp(G) if
[°°g(x)pxp-2dx < oo.
Jo

3. Let G be an infinite discrete abelian group which con-
tains Z, Z(r~) or Z(r)*° as a subgroup, g admissible. Then
0lco,D =/*lco.i>w a.e. for some feLp(G) if \ g(x)pxp~2dx < oo.

Jo

I* Introduction* As usual the Fourier transform / of a function

/ G Lι(G) is defined on X such that f(χ) = 1 /χcϋλ, where λ is a
JG

fixed but arbitrary Haar measure on G. For 1 < p < 2, feLp'(G)
and p' is the conjugate exponent of p. The set of real numbers,
^-dimensional Euclidean space, the circle group, the integers, the r-
adic integers, the countable product of the group of integers modula
r and the subgroup of the circle whose elements have order a power
of r are denoted by R, Rn, T, Z, Ar, ΠZ{r) and Z(r°°), respectively.
Also p will denote any number such that 1 < p < 2. Let m be l/τ/2τr7
Lebesque measure on R.

Hardy and Littlewood [1], [2] characterized functions on Z such
that every rearrangement is the Fourier transform of a function in
LP(T), 2 < p < oo. They also characterized functions on Z such that
some rearrangement is the Fourier transform of afunction in LP(T),
1 < p < 2. Hewitt and Ross [4] generalized these results to arbitrary
compact infinite abelian groups. We are interested in the case of
LCA (locally compact abelian) groups. Here are our results.

THEOREM 1. Let G be nondiscrete with a compact open subgroup,
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and g an admissible function. Then g\N =/*!#• for some feLp(G)
if and only if ΣϊU Q(fc)pkp~2 < oo. Moreover, there exists a constant
Ap that depends on p only such that

(±g(k)>k>-)ι*£A,\\f\\,

for evrey such f.

THEOREM 2. Let G be a nondiscrete LCA group with no compact
open subgroup and g an admissible function. Then g = /* for some

S oo

g(x)pxp~2dx < oo. Moreover, there exists
0

Ap that depends only on p such that

( ^ J ^Ap\\f\\p

for every such f.

THEOREM 3. Let G be an infinite discrete abelian group con-
taining Z, Z(r°°) or Z(r)*° as a subgroup and g an admissible function.
Then 0L1) ^/Ίtc i ) for some feLp(G) if and only if Ϋg{x)pxp~2dx <

Jo

oo. Moreover there exists Ap that depends only p such that

( \ [ ) £A,\\f\\9

for every such f.

Theorems 1 and 2 give us a complete solution for all nondiscrete
LCA groups. Theorem 3 holds for "almost all" discrete abelian groups,
but I am not able to settle the case where G contains Π*=i Z{rn) as
a subgroup, with rn —• oo.

The forward implications "=>" of all three theorems and the
existence of the constants Ap are due to Hunt [5]; see Stein and
Weiss [6], Chapter V, Corollary 3.16.

II* A few lemmas*

LEMMA 1. Let G be a LCA group and H an open subgroup of
G. Let H1 = {χeX:χ = Ion H}. Then for each foeLp(H), there
exists f 6 LP(G) such that /* = /0*m a.e. (where we use suitable Haar
measures on X and X/HL for the definitions of /* and /0*).

Proof. L e t f o e L p ( H ) a n d d e f i n e f ( χ ) = f o ( x ) i f x e H a n d
f(x) = 0 otherwise. Since H is open, / is still λ-measurable in G
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and feLp(G). Choose Haar measure XH on H to be the restriction
of λ to H. Choose ΘHL to be the normalized Haar measure on H1,
and θx to be an arbitrary Haar measure on X. Then a Haar measure
θ, on XIHL exists so that WeiΓs theorem applies [3; Vol. II, ̂ 8.54].
/ is clearly constant on each coset of H1. That is, f(χ) = fo(χHL)
for all χ e X. A calculation, using WeiΓs theorem shows that /* =
/0*m a.e.

For the rest of this paper, we let g be a fixed admissible function

S oo

g(x)pxp~2dx is finite.
0

LEMMA 2. (i) I g(ct)dm(t) < oo for all c > 0.

S oo Jo Γπfx

g (ct) sin xt dm(t) ^ \ g (ct) sin xt dm (t) < oo for all
o Jo

x > 0, c > 0.
Proof, (i) Since

[g(ct)pdm(t) ^ [g(ct)ptp-2drn(t) ^ [°g(ct)ptp-2drn(t)
Jo Jo Jo

4τ [
Cp x Jo

we see that \ g{ct)pdm(t) is finite and hence 1 g(ct)dm(t) is finite,

(ii) For k = 1, 2, ••., let

JOfc-Dπ/α;
sin xt dm(t) .

It is clear that vx ^ v2 ^ î 3 ^ . . . ^ 0 and 14 —> 0.
It follows that

[°g(ct) si
Jo
[g() sin xtdt = jt ( -
Jo

and hence

r̂(cί) sinα ίcίί ^ Vj, = I g(ct) sin xtdm(t) < 00 .

0 Jo

This completes the proof of Lemma 2.
g(ct)dm(t) for x 6 JB. This is well-defined because

S o

g(ct)dm(t) < 00 by (i) of Lemma 2 and g is bounded in between 1
0

and \x\.

LEMMA 3. (i) Gc(x) = o{xUp) as x —> 0 and as x —> 00.
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(ii) \ Gc(x)px~2dm(x) < oo for all c > 0.
Jo

Proof. See [7], Vol. I, Ch. I, §9.16.

LEMMA 4. There exists f e LP(E) such that / * = gm a.e.

Proof. D e f i n e , f o r x e R

( oo

g(2t) sin xt dm(t) .

Then, by part (ii) of Lemma 2 0 <̂  φ(x) <; G2(π/x), for x > 0, because

0 ^ φ(x) ^ Γ/ββr(2ί) sin xt dm(t) ^ Γ'Xflr(2ί) dm(t) = Ga(π/α). Since G2 is
Jo Jo

an even function, we have that \φ{x)| ^ G2(π/x) for all xe iί\{0}. Part
(ii) of Lemma 3 says that G2(π/x) e LP(R). If follows then that
φ e LP(R). Define, for n e N,

sin a?ί dm{t) (xeR).

Let a? > 0. For each n, choose meN such that \2mπ/x — n\ ^ TΓ/CC.

Then

I <pn(χ) \<Z\m* Xg(2t) sin xt dm(t) + I \% g(2t) sin ajέ dm(ί)
Jo \j2m>πh

<ί Vg(2t)Smxtdm(t) + g(2(2m - l)g\| 2gwr. _
Jo \ 05 / I ίC

^ <P(x) + g(—)— ^ 9>(OJ) + \'img(2t)dm(t)
\ X / X Jo

This shows that \φn(x)\ ^ \φ(x)\ + | G 2 ( ^ ) I for all #ei2\{0}. Since
φn{x)—*φ{x) pointwise and φ(x)9 G2(π/x) eLp(R), we must have \\φn —
φ\\p—•O be the dominated convergence theorem. So we can obtain
φ by approximating φn. Let us compute φn:

2iφn(x) = 24*flr(2i)sina?irfm(i) = Γ#(2£) (<r ίxί - eixt)dm{t)
Jo Jo

Recall that the Haar measure m on R is chosen so that the in-
version theorem holds. We know that g(2t)I[0>n^(t) and g(—2ί)J[_n>0](ί) €
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L\R) and φneL*(R). Hence, by [3; Vol. II, 31.44 (b)], we have

ί-g(2x) if x ^ 0

2iφ(x) — \ m a.e.

[g(-2x) if x < 0

Now define / = 2iφ so that I/O)I = Q{\2X\) m a.e. It is then easy
to check that / * = gm a.e., which is what we needed to prove.

LEMMA 5. For each ne N, there exists f e Lp(Rn) such that
f* = gm a.e.

Proof. By Lemma 4, we may assume that n > 1. Define, for

keN,

φ{x) = 1 g(2nt) sin xtdm(t)
Jo

S k

g{2nt) sin xt dm(t)
0

Therefore

\f*-f\'dmΛ

Let mn = m x m x ••• x m o n i2w, α? = (xl9 , a?Λ). Then

dm (I
\JR

x2

sin a?

x
dm

As in the proof of Lemma 4, we have \\φk — ̂ | | p — > 0 , and so \\fk

f\\p-+0 in Lp(Rn). S t ra ight forward calculations show t h a t

fk(%l9 * * * 9 Xn) =

(g(-2nxj if -& ̂  ^ < 0 and xjβ [-1, 1]

for 2 <S i ^ 72,

-g(2Txd if O^x^Jc and %e [-1, 1]

for 2 ̂  i ^ ^

0 otherwise
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mn a.e. and hence

(g(-2nx1) if x,< 0, \xj

f ( x u ••-, xn) = if a;,. > 0, I xj I ̂  1, 2 ^ i ^

otherwise

mn a.e. It follows that

mn{x e Rn: \f(x) \ > t) = 2nm{a?1 > 0: #(2*%) > ί} .

This in turn shows that for x > 0

/*(α?) = inf {ί > 0: 2»m{α?1 > 0: <7(2<X) > t} ^ x} = g(χ)

m a.e., which completes the proof of Lemma 5.

III Proof for the nondiscrete case* Let G be an infinite LCA
group. To prove Theorem 1 and Theorem 2, Lemma 1 and the
structure theorem [3, Vol. I, 24.30] shows that we may assume G =
K x Rn, where K is a compact abelian group.

Proof of Theorem 1. In this n = 0, so that G = K. Then there
exists foeLp(K), by [4], such that /0*U = flrU

Proof of Theorem 2. In this case w > 0. By Lemma 5, there
exists foeLp(Rn) such that /0* = #m a.e. Define f(xf y) = /0G/) for
xe K and 2/€ i2w. Let mw = m x x m be the Haar measure on
Rn, \κ be the normalized Haar measure on K and \KxRn the Haar
measure on K x Rn so that WeiΓs theorem holds. It follows that
/ is in U(K x Rn) and | | / | | , = | |/ 0 | | p . Moreover, for χ.eK, χ2eR\
we have

(0 otherwise.

Choose ΘkxRn, θ^ and ^̂ ^ the Haar measures on K x JB%, K and i?w

respectively, so that PlancheveΓs theorem holds. Then WeiΓs theorem
holds for these measures by [3, 31.46(c)]. Clearly 0& is the discrete
measure on K. Then for t > 0

-u-
and it follows that for x > 0,
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/*(») = inf {ί > 0: (θtXBn)}(t) ^x} = inf {ί > 0: (0Λ );o(t) £ x)

= /ό*O) = 9(x)m a.e.

Note that Theorem 1 is essentially the theorem in [4].

IV* Proof of Theorem 3. For each n — 1, 2, , let rn be an
integer ^ 2. Denote by θ the normalized Haar measure on X =
Π~=i <£(?%*) and λ the usual restriction of Lebsque measure to [0, 1],
Define a function φ: X-+[0, 1] via

Then # is measure preserving; in fact, the following is well known.

LEMMA 6. E is measurable in X if and only if φ{E) is meas-
urable in [0, 1], and Θ{E) = X{φ{E)). φ is an onto map and φ is
one-to-one on X except for a countable set. Moreover,

ί hoφdθ = Ϋhd λ

for all bounded λ measurable functions h on [0, 1],

LEMMA 7. Theorem 3 is true if G D Z.

Proof. By Lemma 1, we may assume G = Z. Define

1 f27Γ
ao(n) = — - I g(t) sin-^ίcίί for ne Z .

2ττ Jo

The values of the integrals involved are finite, by (i) of Lemma
2. Also aoelp(Z) because

(2π)p Σ IaQ(n) \p = Σ I ('*»(*) s i n ^ dt * ̂  Σ I Γ
wez ίiezl JO nez \ JO

= Σ G/-Y ^ ί Gf (2-)dx = π \ Gr(y)y->dy .Y ί
n=£Q

The last integral is finite by (ii) of Lemma 3. Similarly, if we define

1 Γ27Γ

bo(n) = — \ g(t) cosntdt for ne Z
2π Jo

then boelp(Z). So if we set c(n) = bo(n) - iaQ(n) = l/2π ^'g(t)e'intdt

for neZ, then celp(Z) and c(ί) = flr(ί) a.e. [3, 31.44, (b)]. Since g
is nonincreasing in [0, 2π], we then have c* = gθ a.e.
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LEMMA 8. Theorem 3 is true is Gz>Π*Z(r), where r e N, r ^ 2.

Proof. We may assume that G = i7*ϋΓ(r), by Lemma 1.

Let X = Z(r)*°, the character group of G. Define φ(e) = Σ~= 1 εjrn

for ε = (en) € X, and note that Lemma 6 applies to φ. For a real
number t, denote [t] by the greatest integer which is not greater
than t. For me N, define

for £e[0, 1]. Then χm°φ(e) = eί(2jr/r)e™ where ε e X and εm is the mth
component of ε. It follows that G is isomorphic to the group of
finite products of elements in {χm

oCP}Z=ι> In this proof we write Im > v

for the characteristic function of the interval [v/rm, (v + l)/rm]

for ί a.e. ί, where w = eί(27Γ/r). And hence

XιA(t) 7ΰik(t) = ^ a
i=o

* (u -

where ar

u = 1 for all u = 1, , r*1"1; mι> m2 > > mfc and 0 ^ Zx,
l2, .. ,h^r- 1, ϊx > 0.
Define a function f on G via

Ψ) =

Define, for u = 1, 2, . , r™1"1 and i = 0, , r — 1,

Then {k0, klf •• ,&r̂ 1_1} is a positive nonincreasing sequence, and

Σ bι ^ r for all s = 0, 1, 2, . . . , rm i - 1

In fact,

Σ6(.-i)r+y = Σ α . ^ 1 = α
i

= 0 .

It follows that
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k0 max <: kor = r I
l/r«l

0

Writing Σr for a sum over all (mlf , m*,
N, mι > m2 > . . > mk ^ 0, 0 < lt ^ r - 1, 0
• , Λ, we obtain

ll/li; = ̂

, Ik) satisfying k e
^ r - 1 for i = 2,

— )
a? /

dx

So f eLp(G) and hence f = g°φ. It follows that / * = ^J[0,i]
 m a e

LEMMA 9. Theorem 3 is true if G contains Zir00), (r ^ 2).

Proof. We may assume that G = Z(r°°) by Lemma 1. Let Δr

be the group of r-adic integers; then Z(r°°) is a discrete group with
Z(r"T = J r . Define

As in Lemma 6, φ is a measure preserving map from J r onto [0, 1],
and

( 2 )

for all bounded measurable functions h on [0, 1], where Θ is the
normalized Haar measures on Ar. We write /w,8l,...,8m for the charac-
teristic function of the interval

1 1
J

For me N, define

(3) χ,

where ww = β*(^rW). Then χmo<p(ε) = w^+r^+'"+rm~1εm θ a.e. where (ε) e
Δr and elf •••, εm are the first m coordinates of (e). It follows that
G is isomorphic to the group generated by {χm°φ}Z=i. Define for
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m,leN and (I, r) = 1

Then / is a function on G, and by (2) and (3),

fill) =

- Σ (
»i. , »=o

Let krm-i,ι+...+.m = ^Im,.v...,.m(t)g(t)dt. Then {Jc0, ku , fcr«_J is a posi-

tive, nonincreasing sequence. Let 6r»-iSl+...+,m = (wL)'1+r*2+'"+r™""1*m F o r

any 0 <: s ^ r m — 1, we write s = rm~% + + sm with 0 £Ξ s l t ,

sm < r. Then

Σ K = Σ

xr~ι v-1 x i l l V 1 Zv

For each u — 1, , rm~2Si + . . . + sm_1# Choose 0 ^ ulf , uTO_χ < r
such that (u — l)r = r 7"" 1^ + . . . + r^m_x, and hence

r—ί r—1

r—1

The last equality holds because (ϊ, r) = 1. This shows that

Σ*.

and hence

i = 0

Σί
%=o

^ sm + 1 ^ r

max Σ&,

S l/r

for all m, le N and (i, r) = 1. Denote by Σf the sum over (m, Z) e iV,
(lf r) = 1 and 0 ^ i < rm. Then we have
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11/II? = Σ'\f(χl)\> ^ Σ'r>G?(-L) S Σ rmr»Gf(\) .
\ γm / m=o \ γm /

As in Lemma 8, we conclude that / e U{G) and /* = glio^m a.e.
Patching Lemmas 7, 8 and 9 together gives the proof of Theorem 3.
I would like to extend my sincere thanks here to Professor

K. A. Ross for his helpful suggestions.
The remaining open question is whether Theorem 3 holds if G =

Π^=i* Z(rn) where rn e N, rn Ξ> 2 for all n and lim^^^ rn = oo.
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