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REARRANGING FOURIER TRANSFORMS
ON GROUPS

CHUNG LIN

Let G denote an infinite locally compact abelian group
and X its character group. Let @ be a suitable Haar measure
on X, and 1 < p <2. For a f-measurable function ¢ on X,
we define 0,4(t) = ({x € X: | ¢(x)| > t}) and ¢*(x) = inf {£ > 0: 6,(¢) =
x} for £ > 0. ¢* is called the nonincreasing rearrangement
of . Note that even though ¢ is defined on X, the domain
of ¢* is (0,0). A nonnegative function g defined on (0, )
is called admissible if g is nonincreasing and lim,.. g(x) = 0.

Theorems:
1. Let G be nondiscrete with a compact open subgroup

and ¢ admissible. Then ¢g|y = f*! ~» wWhere N is the set of
positive integers, for some fe€ L2(G) if X5, g(k)?k?~% < co.

2. Let G be nondiscrete with no compact open subgroup
agd g admissible. Then g = /*m a.e. for some feL?G) if
So g(x)Pxr2dx < oo,

3. Let G be an infinite discrete abelian group which con-
tains Z, Z(r>) or Z(r)® as a subgroup, g admissible. Then
9l = f*lo,om a.e. for some feL?G) if S:g(x)f’w’"zdx < oo,

1. Introduction. As usual the Fourier transform 7 of a function
FeLXG) is defined on X such that f(y) =S fxdn, where )\ is a
fixed but arbitrary Haar measure on G. Fox? 1<p<? fe L (G)
and p’ is the conjugate exponent of p. The set of real numbers,
n-dimensional Euclidean space, the circle group, the integers, the r-
adic integers, the countable product of the group of integers modula
r and the subgroup of the circle whose elements have order a power
of r are denoted by R, R, T, Z, 4,, Il Z(r) and Z(r~), respectively.
Also p will denote any number such that 1 < p < 2. Let m be 1/1/27.
Lebesque measure on R.

Hardy and Littlewood [1], [2] characterized functions on Z such
that every rearrangement is the Fourier transform of a function in
L*(T), 2 < p < . They also characterized functions on Z such that
some rearrangement is the Fourier transform of afunction in L*(T),
1< p < 2. Hewitt and Ross [4] generalized these results to arbitrary
compact infinite abelian groups. We are interested in the case of
LCA (locally compact abelian) groups. Here are our results.

THEOREM 1. Let G be nondiscrete with a compact open subgroup,
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and g an admissible function. Then g|, = F* |y for some f € L*(G)
if and only if Do 9(k)*k*™* < oo. Moreover, there exists a constant
A, that depends on p only such that

(2 o) = 4,071l
for evrey such f.

THEOREM 2. Let G be a nondiscrete LCA group with no compact
open subgroup and g an admissible function. Then g = f* for some

feL*(G) if and only if Sog(w)”x”‘zdx < oo. Moreover, there exists
A, that depends only on p such that

(S:’g (x)pm—zdx)'“’ < 4,071,
for every such f.

THEOREM 3. Let G be an infinite discrete abelian group con-
taining Z, Z(r”) or Z(r)* as a subgroup and g an admissible function.
Then gloy = f*](o,n for some f e L*(G) if and only if Slg(x)”x”‘zdx <
oo. Moreover there exists A, that depends only p such that

1 1/»
(g @raraa)” < 4,11 71y
for every such f.

Theorems 1 and 2 give us a complete solution for all nondiscrete
LCA groups. Theorem 3 holds for “almost all” discrete abelian groups,
but I am not able to settle the case where G contains []}= Z(r,) as
a subgroup, with r, — .

The forward implications “=” of all three theorems and the
existence of the constants A, are due to Hunt [5]; see Stein and
Weiss [6], Chapter V, Corollary 3.16.

II. A few lemmas.

LEMMA 1. Let G be a LCA group and H an open subgroup of
G. Let H- ={yeX:x =1 on H}. Then for each f,c L*(H), there
exists f e L*(G) such that F* = f*m a.e. (where we use sgitable Haar
measures on X and X/H* for the definitions of F* and £¥).

Proof. Let f,eL?(H) and define f(x) = fo(x) if xeH and
f(x) = 0 otherwise. Since H is open, f is still A-measurable in G
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and f e L?(G). Choose Haar measure Ay on H to be the restriction
of » to H. Choose 04. to be the normalized Haar measure on H*,
and 6, to be an arbitrary Haar measure on X. Then a Haar measure
0, on X/H* exists so that Weil’s theorem applies [3; Vol. II, 28.54].
7 is clearly constant on each coset of H*. That is, f(x) =f0(xHL)
for all ye X. A calculation, using Weil’s theorem shows that F* =
f;“m a.e.

For the rest of this paper, we let ¢ be a fixed admissible function
on (0, ), 1< p<2and S g(x)*x**dx is finite.
0

LEmMMA 2. (i) Slg(ct)dm(t) < e for all ¢ > 0.
(ii) ogg g (ct) sin @t dm (t) gg g(ct)sinat dm() < oo for all
0 0
z>0,¢>0.

Proof. (i) Since

S:g(ct)”dm(t) < S:g(ct)”t"’zdm(t) < S:g(ct)”t””zdm(t)

- c—l— Smg(t)"t”*dm(t) <o,

-1

we see that Slg(ct)”dm(t) is finite and hence Slg(ct)dm(t) is finite.
[] 0
(ii) For k=12, ..., let

kr|z

v, = (=1 g / g(ct) sin xt dm(t) .

(k—1)

It is clear that y, =y, =y, = -+ =0 and v, — 0.
It follows that

S:og(ct) sin xt dt = ,,2::1 (—1)¥*y,
and hence
0= Sjg(ct) sinatdt <y, = S:/xg(ct) sin 2t dm(t) < oo .
This completes the proof of Lemma 2.

Define G.(x) = Imlg(ct)al'm(t) for x € R. This is well-defined because
1 0
g(et)ydm(t) < « by (i) of Lemma 2 and ¢ is bounded in between 1
)
and |z|.

LEmMMA 3. (i) G.(x) = o@"'*) as t— 0 and as € — oo,
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(ii) SNGO(x)”x‘zdm(x) < o for all ¢ > 0.
0

Proof. See [7], Vol. I, Ch. I, §9.16.

LEMMA 4. There exists f € L*(R) such that F* = gm a.e.

Proof. Define, for ze R
@) = Swg(Zt) sin ot dm(t) .
0

Then, by part (ii) of Lemma 2 0 < ¢(x) < Gy(n/x), for x > 0, because
0= () = So 9(2t) sin 2t dm(t) < g 9(2t) dm(t) = Gy(w/x). Since G, is

an even function, we have that I;D(ﬂg)l < Gy(r/z) for all € R\{0}. Part
(i) of Lemma 3 says that G,(z/x)e L?(R). If follows then that
@€ L*(R). Define, for ne N,

P,(z) = S:g(Zt) sinztdm(t) (weR).

Let x > 0. For each %, choose me N such that |[2mn/x — n| < 7/x.
Then

S g(2t) sin wt dm(t)l

2(2mm 1)7:)‘ 27:7:

@l |

=< So 9(2t) sin xt dm(t) + g(

_ nl
w|%
=2@ + o(Z)E < 2@) + | g@)dm@
= g’(x) + Gz("a‘;‘) .
This shows that |@,()| < |@@®)| + |Gu(w/x)| for all xe R\{0}. Since
?,(x) — @(x) pointwise and @(x), G(w/x) € L*(R), we must have |[|p, —
®||,— 0 be the dominated convergence theorem. So we can obtain
® by approximating @,. Let us compute @,:
2P, (@) = 2i§"g(2t) sin ot dm (t) = S”g(zt) (€ — &*)dm(t)
= | g(—20 I e am)
R
— | 9@ Lo am @) .

Recall that the Haar measure m on R is chosen so that the in-
version theorem holds. We know that ¢(2t) I}, ,.;(¢) and g(—2t)I;_, (%) €
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L'(R) and @, e L?(R). Hence, by [3; Vol. II, 81.44 (b)], we have

—9@x) if 2=0
2ip(x) = m a.e.
g(—2x) if <0

Now define f = 2ip so that |f(@)| = g(|2z)) m a.e. It is then easy
to check that f* = gm a.e., which is what we needed to prove.

_ LeEmma 5. For each me N, there exists fe L*(R") such that
f*=gm a.e.

Proof. By Lemma 4, we may assume that n > 1. Define, for
ke N,

D) = gjg(2”t) sin t dm(t)

P, () = S:g(Z”t) sin at dm(z)

| 8in &, sinz,
) cen
X, X,

f(xlv Tty xn) = 2"7,@(%1’

ySinz,  sinz,
7
2, X,

fk(wly 0y xn) = 2nz¢k(x1
Let m,=mXxXm X ««« Xmon R*, = (%, +-+,2,). Then

¢wymxﬂ”amm.

Therefore

I

"“.\sinx,, P

= 27(_|oue) — p(o)[[| 22 am,
R® L, |,
— 2~MJS ¢k _ q)pdm <S Sinw lpd’In)ﬂ—l .

R R x

As in the proof of Lemma 4, we have ||®, — #||,— 0, and so || f, —
fllp—0 in L?(R™). Straight forward calculations show that
g(—2"x) if —k=<2,<0 and z;€[—1, 1]
for2j7<n
Fol@y ++v,2,) ={—g@ ) if 0<x <k and x;e[—1, 1]
for27=<n
0 otherwise
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m, a.e. and hence

f@, o ) ={—0@2) if 2,>0,|2;]<1L,2<5<n
0 otherwise

m, a.e. It follows that
m,{xe R": [f(w)l >t} = 2"mfx, > 0: g(2"x) >t} .
This in turn shows that for = > 0
F*(x) = inf {t > 0: 2"m{x, > 0: g(@"x,) >t} < a} = g(x)

m a.e., which completes the proof of Lemma 5.

II1. Proof for the nondiscrete case. Let G be an infinite LCA
group. To prove Theorem 1 and Theorem 2, Lemma 1 and the
structure theorem [3, Vol. I, 24.30] shows that we may assume G =
K x R", where K is a compact abelian group.

Proof of Theorem 1. In this n =0, so that G = K. Then there
exists f,e L*(K), by [4], such that f¥|, = gly.

Proof of Theorem 2. In this case » > 0. By Lemma 5, there
exists f,e L?(R") such that F¥ =gm a.e. Define f (x, ¥) = fo(y) for
xe K and ye R*. Let m, =m X .-« X m be the Haar measure on
R*, Ax be the normalized Haar measure on K and \g,z« the Haar
measure on K X R* so that Weil’s theorem holds. It follows that
f is in L*(K x R") and || f|l, = || foll,» Moreover, for y, € IZ’, L€ R~
we have

fO(Xz) if L= 1
0 otherwise.

S = {

Choose 0%z, 0% and 6. the Haar measures on K x R*, K and R*
respectively, so that Planchevel’s theorem holds. Then Weil’s theorem
holds for these measures by [3, 31.46(c)]. Clearly 64 is the discrete
measure on K. Then for ¢ > 0

(Oxxrn); ) = S,\ J PRI
KXR™
=S SAI(XZK}(l)l>ﬁd01A(d0R”
R™ JK
= 0 n = 0 n)$ 9
SmLz:l?o(z)bud B Oz )f"(t)

and it follows that for « > 0,
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F*@) = inf {£ > 0: Orxpn)? () < @} = inf {t > 0: (On)3, () < @)
= fi@) = g(@)m a.e.

Note that Theorem 1 is essentially the theorem in [4].

IV. Proof of Theorem 8. For each n =1,2, ..., let », be an
integer = 2. Denote by 6 the normalized Haar measure on X =
M. Z(r,) and N the usual restriction of Lebsque measure to [0, 1].
Define a function @: X — [0, 1] via

pE) =S — _ e=(g, +vr, - )eX.
A= PPy e Da

Then g is measure preserving; in fact, the following is well known.

LEMMA 6. E is measurable in X if and only if ®(E) is meas-
urable in [0, 1], and 6(E) = Mp(H)). @ s an onto map and P 1is
one-to-one on X except for a countable set. Moreover,

[ #opas = | nan
for all bounded N measurable functions h on [0, 1].
LEMMA 7. Theorem 3 is true if GO Z.
Proof. By Lemma 1, we may assume G = Z. Define

_ 1 2T .
() = o go gt)sinntdt for ne Z .

The values of the integrals involved are finite, by (i) of Lemma
2. Also a,€1?(Z) because

27)” 3, |ao(m) P = zls g(t) sin nt dtr =3 S”’"g(t)dtr

0

=:% Gx(%)” < SRGf’(%)dx = LGf’(y)y‘Zdy -

The last integral is finite by (ii) of Lemma 3. Similarly, if we define
by(n) = 1 Sng(t) cosntdt for ne Z
2 Jo
then b,el”(Z). So if we set c(n) = by(n) — ia,(n) = 1/27 SM g(t)emdt

for me Z, then cel’(Z) and &(t) = g(t) a.e. [3, 31.44, (b)]. Since g
is nonincreasing in [0, 27], we then have é* = gé a.e.
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LEMMA 8. Theorem 3 is true is G D II*Z(r), where re N, r = 2.
Proof. We may assume that G = I[I*Z(r), by Lemma 1.

Let X = Z(r)™, the character group of G. Define @(e) = X2, €,/7,

for ¢ = (¢,) ¢ X, and note that Lemma 6 applies to ®. For a real
number £, denote [t] by the greatest integer which is not greater
than t. For me N, define

Xm(t) — eizz[rmt]/r

for £€[0, 1]. Then Y, op(e) = e'*”/"n» where ¢€ X and ¢, is the mth
component of e. It follows that G is isomorphic to the group of
finite products of elements in {Y,°®}n-;. In this proof we write I,
for the characteristic function of the interval [v/r™, (v + 1)/r™]

1)) = 5 (5 0 Taarrs®))

u=1 \7=0

for 6 a.e. t, where w = ¢***/”, And hence

L) -+ 2O = S 0 E wiIm,, (- Dr + i)

where a; =1 for all u =1, «-c, r™m, >my,> -+ >m,and 0 < [,

lz; °°

Glh<r—11,>0.

Define a function f on G via

f&%°¢p-ux%°¢)=S;ﬂ¢@mao¢@)~-x%°¢@m6.

Define, for v =1,2, ..., r™* and =0, .-, 7r — 1,

k(u—l)r-H’ = SIml,(n—l)r+j(t)g(t)dt; b(u——l)r+j = a’uwjll .

Then {k,, k., - -+, k,m_,} is a positive nonincreasing sequence, and

ibz‘ér for all s=0,1,2,---,']'m1_1
1=0

In fact,

r—1 r—1 i r—1 "
Z b(u—l)r+]' = 2 a/uw] 1= aru Z w" 1= 0 .
j=0 i=0 7=0

It follows that

(o, o, 2dgo @) =| [00280), -, 2O
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=5 (S Lo 00dt) = | 'S bk

8

3 b,‘ <lkg =7 S " @)de = TG<TLM) .

1
< k, max
-0 0

0gesr™ion

Writing 3’ for a sum over all (m,, «--, my, L, -+, 1) satisfying ke
Nom>m>+ee>m=00<,<r—1,0=L;<r~1 for j=2,
..., k, we obtain

Wy = 2" fURP, -, XEPIT = z'rPGP(T%n_;)

= i r™r? G (—;—1’;) = Pt i rmGe <-——1—>

my =0 my=0 rm™

<o S o — o e(L) s e e (Lo < oo

my=0 ™ -E
So fe€ L?(G) and hence F=gop. It follows that f* = gl m a.e.
LEMMA 9. Theorem 3 is true if G contains Z(r™), (r = 2).
Proof. We may assume that G = Z(»*) by Lemma 1. Let 4,

be the group of r-adic integers; then Z(r™) is a discrete group with
Z(r*)" = 4,. Define

P(e) :2 s"e:.:(s,,)ez!,.

nl’r”

As in Lemma 6, @ is a measure preserving map from 4, onto [0, 1],
and

(2) Kdrho%l" = K:kdt

for all bounded measurable functions % on [0, 1], where @ is the
normalized Haar measures on 4,. We write I,,,...,, for the charac-
teristic function of the interval

r* s, + r* 7y 4 cee +8,, r"7ls, A+ r" 7,4 oo + 5, + 1
" ’ " )

For m e N, define

r—1

(3) An(t) = 35 wiptrattmTml e ()

8pece8yy =0
where w,, = ¢'®"™™_,  Then y,, o @(€) = wit ™"+, 0 a.e. where (¢) €
4, and ¢, ---, ¢, are the first m coordinates of (¢). It follows that
G is isomorphic to the group generated by {Y.c®}n... Define for
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m,le N and (I, ) =1

) =, g0 penthe 2o
Then f is a function on G, and by (2) and (3),

row = [ g0t

r—1

- 5 (wgn)81+"z+---+f"‘“’mgIm,,l,...,sm(t)g(t)dt.

Let Kymotys.se, = SIm,,l,...,,m(t)g(t)dt. Then {ko, k, «+ -, kym_.} is & posi-
tive, nonincreasing sequence. Let b,m-131+...+,m=(w‘w)’l““Z“‘”‘*"”"l‘m. For
any 0 =s<r"—1, we write s=7r""'s;,+ -+- +8, with 0 <s, ---,
S, < 7. Then

s rM=lg) feeets
b= 3 b,
n=0 n=1
rM=2) teiea, g r—1 Sm
= ( Z Z b(u—l)r+h> + ( brm“181+-'-+nm_1+i>
u=1 h=0 i=0

For each u =1, -+, ™%, + «+- + 8,_;. Choose 0 Z Uy, +vov, Upy < T
such that (u — )r = ™4, + «.. + ru,_,, and hence

r—1 r—1

hz_.obm—m+h = };jbrm—lul+---+rum_l+h

— Ti‘: (win)“l""'“z“"”+”m“2"m—1+"m_1h
h=

— (win)u1+ru2+---+rm"2um_1 Ti: (wan),rm“ih
h=0

— (w’lm)u1+ru2+---+r"""‘2um_1 rz—l (ei(zzl)lr)h =0.
k=0

The last equality holds because (I, r) = 1. This shows that

Sm

% br""'—131+---+rsm_1+j

ibn §8m+1_£_r

n=0

and hence

28; b,| = 7k,

n=0

70| =[S k| < &, max
n=0 0SssSrM—1

— S:"mg(t)dt - rGl(;};)

for all m,le N and (I, r) = 1. Denote by 3’ the sum over (m, l) € N,
@, r) =1and 0 =1 <™ Then we have
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R 7 1y |? W -Yal) 1 S patpa? (1) 1
Hpr—Zlf(XmH éZTGI — éZ’I"”l’Gl —
r m=0 r

As in Lemma 8, we conclude that f e L*(G) and Fr= 9l ym a.e.
Patching Lemmas 7, 8 and 9 together gives the proof of Theorem 3.
I would like to extend my sincere thanks here to Professor
K. A. Ross for his helpful suggestions.
The remaining open question is whether Theorem 3 holds if G =
IIc.* Z(r,) where r,e N, r, = 2 for all » and lim,_,, 7, = oo.
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