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ON LEVI FACTORS OF DERIVATION ALGEBRAS
AND THE RADICAL EMBEDDING PROBLEM

FRrRANCIS J. FLANIGAN

Problem: given a finite-dimensional nilpotent associative
k-algebra N, find all unital associative k-algebras A such
that rad A = N. An approach: which subalgebras of Der, N
are images of Lie homomorphisms A/N — Der, N? Here the
author constructs N over very general fields © such that the
“Levi factor’’ of Der,N is a direct sum of orthogonal Lie
algebras o(V, b) of arbitrarily prescribed symmetric and al-
ternate bilinear spaces. In particular, if % is algebraically
closed of characteristic zero, then every direct sum of classical
gsimple Lie algebras A,, B,,C,, D, is Levi factor of some
Der;, N.

1. Some questions. We ask initially: What are the possible
Levi factors (or semisimple semidirect summands or, more generally,
semisimple subalgebras) of the Lie algebras Der, N of all k-derivations
N-— N, where N is required to be a nilpotent associative algebra
finite dimensional over a field k (not necessarily of characteristic zero,
and possibly finite)?

This rather general question, to be sharpened below, was prompted
by a certain approach to the following radical embedding problem
posed in Marshall Hall’s [4] and in our [2], [3]:

1.1. Given a nilpotent N as above, describe the set of unital
associative k-algebras A satisfying rad A = N (together with a certain
nondegeneracy condition [2]).

The approach referred to above is this: If the scalar field % is
perfect, then each solution A to 1.1 admits a semidirect Wedderburn
decomposition 4 = S + N, with S a separable semisimple subalgebra.
Since N is a Lie ideal in A.., the usual bracketing induces a Lie
homomorphism Si,. — Der, N witn “small” kernel (thanks to the non-
degeneracy condition). Moreover, for reasonable fields % the algebra
Siie is a direct sum of Lie ideals each of the form si(r, k) Pk for
various ranks 7,. We conclude that a solution 4 to rad A = N in
(1.1) tends to force Der, N to contain various copies of the familiar
special linear Lie algebra [3].

It was this last observation that led us ask the easily stated
but far too general “survey” question of the first paragraph above.
(Thus in characteristic p > 0, there need not be a Levi-Malcev de-
composition, and moreover the theory of semisimple Lie algebras is
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far from complete, even over algebraically closed fields.) In the
present paper, we offer answers, adequate for our purposes, to these
sharpened versions of the original question:

1.2. Is every special linear Lie subalgebra of Der, N induced
in the above manner by embedding N in an associative A = S + N?

1.3. Are there nilpotent N which admit orthogonal or symplectic
or other “classical” Lie algebras of derivations, apparently unrelated
to the radical embeddings of N?

2. Results and consequences. The point of the theorems below
is the existence of nilpotent N whose derivation algebras have semi-
direct sum decompositions with certain prescribed “wild” summands.
In perticular, the answers to the questions above are: to (1.2), 7o
(in Theorem 2.1, obtain si(2, k) as the orthogonal Lie algebra of the
alternate form b((X, X;), (Y, Yy) = XY, — X,Y,) and, to question
1.3, yes.

THEOREM 2.1. Given any field k of characteristic nmot 2 and
any array (V,bd), -+, (V. b,) of finite-dimensional nondegenerate
symmetric or alternate bilinear k-spaces, there exists a finite-
dimensional nilpotent associative k-algebra N such that

(i) N 4s directly indecomposable,

(ii) the derivation algebra Der, N is the semidirect sum A + 2
of o Lie subalgebra A and a nilpotent ideal 2,

(i) 4=0oVy,0)D -+ D o(Vy, ba)s

(iv) the ideal 2 consists of milpotent derivations.

In the above statement o(V, b) is the orthogonal Lie algebra of
the bilinear space (V, b), that is,

o(V, b) = {f € End, V|b(f(x), ¥) + b(x, f(¥)) =0, all &, ye V}.

Note that we do not assert that o(V, b) is always simple.

THEOREM 2.2. Let k and (V,b;) be as in (2.1), and suppose
given integers ry, -+, v, = 2, none divisible by the characteristic of
k. Then there exists a finite-dimensional nilpotent associative k-
algebra N such that

(i) the derivation algebra Der, N is the semidirect sum A + Q
of a Lie subalgebra A and a solvable ideal 2,

(ii) 4 = @i o(V,, b)) D (Bi=i sl(rs, k),

(iii) @ maximal toroidal subalgebra of 2 has dimension n + 1.

COROLLARY 2.3. Let k be an algebraically closed field of charac-
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teristic zero. Given any finite direct sum X of classical simple special
linear, orthogonal, and symplectic Lie algebras (types A,, B,, C,, D,)
over k, there s a finite-dimensional nmilpotent associative k-algebra
N such that the Levi factor of Der, N is isomorphic to Z.

We will construct these N in §383-5. Here are some further
comments.

2.4. In the language of [3], Theorem 2.1 produces nilpotent N
of genus zero, that is, nilpotents to which one can adjoin a unity
element in the familiar way (cf. A = k.1 4+ N), but cannot adjoin
any more complicated semisimple S. The direct indecomposability is
essential here. These N of genus zero are noteworthy in that their
derivation algebras are far from nilpotent. Compare Theorem 4.1
and the examples of §5 of [3].

2.5. Analogous constructions may be carried out for nilpotent
Lie algebras N. In this case one may begin with the characteris-
tically nilpotent Lie algebra of Dixmier-Lister [1] in place of the
algebra W (§3) all of whose derivations are nilpotent. A special
case of such a construction, involving one split simple three-dimen-
sional Lie algebra, was effected by Leger and Luks in [6, Proposition
6.5].

We are pleased to acknowledge a helpful correspondence with
George Leger on these questions, as well as our indebtedness to
certain ideas in §6 of [6].

3. Lemmas on nilpotent derivation algebras. Let the arbitrary
not necessarily associative k-algebra B=IL,@P -.-- P I, be a direct
sum of (two-sided) ideals. We will now relate the derivation algebra
of B to those of the I,. Define the subspaces

4,;, = {DeDer, B|D(I,)c I,, D(I,) =0 for h =1},
and, for 7 # j,
4.; = {DeDer, B|D(I,) = D(I}) = (0), h+j; D(I;) C Ann I} ,

where Ann I, is the two-sided annihilator of I, in I,.
The following is standard. Statement (ii) is Exercise 19, page
30 of Jacobson [5].

LeEmMMA 3.1. Let B=1,& --- DI, as above. Then

(i) Der, B =@,,;4:; as a k-space;

(ii) <f each I; = I,, then Der, B = @, 4,;, an ideal direct sum;
(iii) <f each I} D Ann I, then 4,; is an abelian ideal of Der, B



374 FRANCIS J. FLANIGAN

when 1 #* 7J;

(iv) af each I} D Ann I, and if each 4,; is a nilpotent Lie algebra,
then Der, B is a nilpotent Lie algebra;

(v) in particular, if all derivations of I, are wilpotent, then
I} D> Ann I, and all derivations of B are nilpotent.

We now go on to construct nilpotent associative algebras which
admit only nilpotent derivations. Choose integers «, 8 = 3 with a +
B — apB not divisible by char k. Let W be the k-algebra (without
unity) on two generators u, v satisfying the relations

ww =0, u*=vu=12°.

LEMMA 8.2. The k-algebra W is finite-dimensional nilpotent
associative with Ann WC W? and with all derivations nilpotent.

Proof. Only the nilpotence of DeDer, W needs to be checked.
Since W is nilpotent, it suffices to prove DWc W2 We have, for
a,bc dek,

Du = au + bv(mod W?), Dv = cu + dv(mod W?) .

Now one checks that 0 = D(uv) forces b = ¢ = 0. Having this, one
checks that Du* = D(vu) = Dv® forces aa = a + d = Bd, whence
(a+ B8 —aR)a =0 in k. It follows that ¢ =d =0, so that D is
nilpotent as asserted. Done.

In one part of his thesis, James Malley pushes these matters
further by examining the structural consequences of the hypothesis
Der, N nilpotent [7, Chapter 5].

4. Proof of Theorem 2.1. First we construct N. Define V, =
W.@ --- P W, where each W, is a copy of the algebra W of Lemma
32and t=sif s=1,2and t =s— 1if s= 3. (These choices will
be justified below.) The underlying k-space of N is now defined to
be V.RV.HD--- PV, and from now on we identify V, with the
corresponding subspace of N.

We multiply in N as follows: products in V, are as before,
V. V; = (0) for ¢, 7 distinct and, for «, ¥ in V; with 7= 1, define zy =
b,(x, y)z, where z,, ---, z, will now be chosen. Let w; be a nonzero
element of the (one-dimensional) Ann W;. If s =¢ =1, define z, =
w,. If s=¢t=2, define 2z, = w, + w, and 2z, = w, — w,. If s=3,
define z, = w,, +++, 2_; = Wy, and 2, = w, + -+ + w,_,. We observe
that N is nilpotent, that N? = (V,)’, and that Ann N has k-basis
Wiy o o0y W
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4.1. Now we check that N is indecomposable (assertion (i)). If
s = 1, this is immediate because every nonzero ideal contains z,.
Assume in general that N is an ideal direct sum P Q. On the
one hand, we have Ann N = P, Q,, where P, = PN Ann N and
likewise for @,. On the other hand, the nondegeneracy of the bilinear
form b, implies that z; is in either P, or @,. (In the anomalous case
s =1t =2, one also readily verifies that each w, is in either P, or
@,.) Having this, and noting that any ¢ or fewer of the z, are
linearly independent, one sees that the equation ¢ = dim Ann N =
dim P, + dim Q, forces Q, (say) to be zero, whence @ = (0). Thus
N is indecomposable, as asserted.

Comment. Our choice of ¢ was complicated by the possibility
that the scalar field k is finite and “small”. For & infinite and s >
2, taking ¢t = 2 suffices.

Now we analyze Der, N. For i=0,1, -..,s, let 7;: N— N be
the usual projection on the subspace V; corresponding to the decompo-
sition N=V, P ..- P V,. In what follows, we take D in Der, N and
define D;; = w,o Dow;, a k-linear map (not a priori a derivation) N—
N, so that D = 3., <o Dije

4.2. For 1 £1¢ <s, we prove D, (N?) = (0). Since N2 = (V) it
suffices to consider z, y€ V,. Then D,(xy) = D(xy) — D,iwe Di(xy).
But the left hand side here is in V; and D(zy) is in V,. Thus the
right hand side has zero projection into V,. Thus both sides are zero.

4.3. We prove that the restriction of D, to V, is a derivation
(and therefore nilpotent by (3.1) and (3.2)). For let 2, ye V,. Then
Dy(xy) = D(xy) — >iis1 Di(xy), and the result follows from (4.2) and
the fact that V,V, =V, V, = (0) for 7 # 0.

4.4. We prove that if 1<7<j=<s, then D; = D; =0. For
let xe V,, ye V;. Then

0 = D(0) = D(xy) = (Djx)y + xD(,;y) = bi(Dj;z, ¥)z; + bz, Dy)z; .

Since the 2, are pairwise linearly independent (consider our definition
for s = 2), we have b;(D;;x, ¥) = b,(x, D;;y) = 0. Butif D;x = 0, then
the nondegeneracy of b; implies there exists ¥ in V; such that b;(D;,zx,
y) = 0. Thus D;; =0, and likewise for D,; by symmetry.

4.5. We prove that if 1 <14 < s, then b,(D,x, ¥) + bz, D;;y) =0
for all #, ¥ in V,. For consider D(zy) = b,(x, ¥)Dz; = b,(x, ¥)Dywz;, by
(4.2). On the other hand,
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D(zy) = 2(Dyy) + (D, x)y = {b(z, D,y) + b,(D,.x, ¥)}z; .

If this last coefficient is nonzero, then 2z, is an eigenvector for D,
whose corresponding eigenvalue is nonzero, an impossibility by (4.3).

4.6. We prove that, for 1 <17 <s, D,; is a derivation of N.
For if x, y € N, then on the one hand xzy € (V,)}, so that D,(xy) = 0.
On the other hand, x(D,,y) + (D;x)y = w(x)D,(wy) + (D ()7 (y) =
0 by (4.5). This settles (4.6).

4.7. For DeDer, N, we define D* =D — >, .,<. D,;, a derivation
of N by (4.6). Thus we have a vector space decomposition Der, N =
AP ---PA,PR2, where 4, = {DeDer, N|D = D,;} and 2 ={De
Der, N|D = D¥. It is immediate that 4, is a Lie subalgebra of
Der, N.

4.8. Now we prove that 4, = o(V,, b;,) for 1 =<7 < s (statement
(iii)). By (4.5) we have an embedding of 4, into o(V, b;). To see that
this embedding is surjective, let feo(V, b,) and extend f to FiN—
N by defining f( V;) =0 for j # 4. One readily checks that Fisa
derivation of N, whence 4, = o(V;, b,).

4.9. We give a direct proof that 2 is a Lie ideal in Der, N.
Let DeQ, EcDer, N. We will show (DE),, = (ED),, =0 for each
1=1. Now (DE);; = Yu<iss DijEj; = D, By, and, likewise, (ED),, =
E,D,,. Since D,(N?) = E,(N? = (0) by (4.2), we are done if we can
prove that for any derivation E (say), E.(IN)C N°. Now note that
N2 = (V,)*D>(Ann N: N) = {u € N|uN, NuC Ann N}. Thus, one takes
x2,€V, x,€V, and readily checks that x.E,(x;) and E,(x;)z, are in
Ann N.

4.10. To prove statement (iv) that De 2 is nilpotent (whence
the ideal Q is nilpotent by Engel’s theorem), write D = >}, D,, + Dy, +
> Dy, with 1 <4 < s and simplify the iterates D? D3 ... by applying
these facts: D, is nilpotent, D, stablizes N? D,(N?) = (0), in par-
ticular D,,D,; =0, and Dy(N)C N?, as in (4.9). One readily sees
that some power of D vanishes. This completes the proof of Theorem
2.1.

5. Proof of Theorem 2.2. Define N to be PP Q as follows.
Use Theorem 2.1 to form a nilpotent P such that Der, P =4, + 2,
and 4, is a direct sum of the given algebras o(V,, b;). The algebra
Q will be a “block strictly upper triangular” matrix algebra Ty(o, k)
which we will now discuss.
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Let o = (7, ---, 7,) be a vector whose entries are positive integers,
and let r =7, + -+« + 7,. Form the usual full » by » matrix algebra
M(r, k) and imagine each matrix partitioned into rectangular blocks
of size r, by r; as usual, so that reading down the “block main
diagonal” one sees blocks of size 7, by », 7, by 75 «++, 7, DY 7,.
The “block upper triangular” subalgebra T(o, k) of M(r, k) consists
of all matrices with only zero blocks below the block main diagonal,
while the “block strictly upper triangular” algebra T(o, k) is the
nilpotent subalgebra of T(p, k) consisting of all matrices with only
zero blocks both below and on the block main diagonal. One checks
that Ty(o, k) = rad T(p, k) and that permuting the entries of the vector
© may yield nonisomorphic algebras.

The content of the following routine exercise is that all derivations
of Typ, k) are induced by bracketing with elements from T(o, k).

LEMMA 5.1. There is a short exact sequence of Lie algebra
homomorphisms

0 —— k-1 + Ann Ty(p, k) —— T(0, k)rse —— Der, To(0, k) — 0,

where ¢ = inclusion and (dc)c, = [¢, ¢,].

We note some consequences for the derivations of Typ, k). It is
immediate that T(o, k)uie = (@; M(r;, k)rie) + To(0, k)i, a semidirect
sum. Moreover, if the characteristic of £ does not divide 7, then
each M(r,, k)pi. = sl(r;, k) @ ke, where ¢, is the identity of M(r;, k),
sl(r;, k) consists of those matrices of trace zero, and this sum is Lie
direct. Applying Lemma 5.1 we conclude, under the hypothesis on
the characteristic of %, that the solvable radical of Der, T\(o, k) is
itself a semidirect sum of the toroidal subalgebra 3, kde, with the
nilpotent ideal 0 Ty(o, k). Note too that 3); de; = (1) = 0.

Having this general analysis of T\(o, k), we may complete the
proof of Theorem 2.2. Given 7, .-, 7,, in the statement, we define
0= (ry +++,rs, 1,1) and Q = Ty(o, k). Note that @* D> Ann Q. It
follows from the first paragraph of this section and from Lemma
3.1 that Der, N = Der, (PP Q) = Der, PP Der, Q P 4po D 4o» as a
vector space, with 4y, and 4y, abelian ideals consisting of nilpotent
derivations as in (3.1). Note [4zq, 4or] = (0).

From Theorem 2.1, Der, P = 4, + 2, with 4, a direct sum of
specified o(V;b,) and 2, an ideal of nilpotent derivations. Likewise,
from Lemma 5.1, Der, @ = 4y, + 2, where 4, is a direct sum of
specified sl(r, k) and 24 = (v kde,) + 0 To(0, k). Note that the
toroidal algebra spanned by the de, has dimension % + 1 (cf. statement
(iii)). Theorem 2.2 follows by putting 4 = 4, P 4, (cf. statement
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(i) and Q = Qp + Qo + dpo + g
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