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A NECESSARY AND SUFFICIENT CONDITION FOR
UNIQUENESS OF SOLUTIONS TO TWO POINT

BOUNDARY VALUE PROBLEMS

DENNIS BARR AND PETER MILETTA

In this paper it is shown that the uniqueness of solutions
to two point boundary value problems in which one end
point is held fixed is equivalent to the existence of a family
of Liapunov functions.

T. Yoshizawa [6] and H. Okamura [5] demonstrated that the
uniqueness of solutions to initial value problems was equivalent
to existence of a Liapunov function. J. Kato and A. Strauss [4]
and S. Bernfeld [1] provided necessary and sufficient conditions for
the existence of solutions to initial value problems on [t0, oo) with
the use of Liapunov functions. With regard to boundary value
problems J. H. George and W. G. Sutton [2] obtained a sufficient
condition in terms of a Liapunov function for the existence and
uniqueness of solutions to two point boundary value problems. In
this paper we shall employ a variation of the Okamura function to
obtain a generalization of the latter result for a certain class of
two point boundary value problems.

1* Preliminaries* In this section we state the definition of a
Liapunov function and establish a theorem which will be used in
the next section. We shall consider the second order differential
equation:

( 1 ) tf'= f(t9 x, of) ,

where / is a real-valued function defined and continuous on [α, b] x
i?2. It will be assumed that initial value problems associated with
(1) exist, are unique, and that solutions are defined throughout
[α, b]. In particular we shall be concerned with the uniqueness of
solutions to (1) satisfying

( 2 ) x{tt) = y1 x(t2) = y2

where a ^ tλ < t2 ^ b and ylf y2 € R. If xo(t) is any solution of (1)
satisfying (2) for some points tlf and t2, then by setting x{t) =
y(t) + xo(t) we obtain

(3) y'(t) = F(t, y(t), y\t)) ,

where F(t, y(t), y\t)) = f(t, y(t) + xQ(t), y\t) + x[{t)) - f(t, xύ(t), a?ί(ί)).
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Thus equation (1) has a unique solution satisfying (2) if and only if
y(t) = 0 is the only solution of (3) such that y{t^) = y(t2) = 0. Thus
we shall restrict our attention to the differential equation

(4) x" = F(t, x,x'),

where F(t, 0, 0) = 0 and the boundary conditions

(5) aft) = s(ίa) = 0 .

The principal tool employed in this paper will be Liapunov functions.

DEFINITION. A Liapunov function for (4) is a real valued func-
tion V defined on D = [a, b] x S where S is a closed subset of R2

and (0, 0) e S, such that

(6) V(t,0,x2) = 0

( 7) V(t, xί9 x2) > 0 if XiΦO

(8) V(t, xlf x2) is nondecreasing along solution curves of (4)

By condition (8) we shall mean that if x(t) is a solution of (4),
then V(tu x{tx), x'{Q) ^ V(t2, x(t2), x'{t2)) for all points tx and t2y

t, < ίa, such that (ti9 x(tt), x'(t%)) e D.
If V is a real valued function satisfying (6) and (7), then the

following theorem provides a sufficient condition for V to be a
Liapunov function.

THEOREM 1. Suppose V is continuous and satisfies a Lipschitz
condition locally with respect to xι and x2 in D, and

V(t, xi9 x2)

r ^ + -r [ V(t + hfxt + hx2, x2 + hF(t, xίy x2)) - V(t, xι, x2)] ̂  0

for t, xu x2 in the interior of D. Then V(t, xlf x2) is nondecreasing
along solution curves of (4).

Proof. Yoshizawa [6].

The following theorem gives a sufficient condition for the
uniqueness of solutions of (4) satisfying (5).

THEOREM 2. Suppose V{t, xίf x2) is a Liapunov function for
(4) defined on [a, b] x R\ Then for any tx and t2, a <: tλ < t2 ^ b,
there exists at most one solution to (4) satisfying (5).
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Proof. Employing a stronger definition of a Liapunov function
George and Sutton [2] have given a proof of this theorem. We
include a proof for referral at a later time. Suppose y(t) is a non-
zero solution of (4) satisfying (5). Then there exists a t0e(tlft2)
such that y(to)Φθ. Thus V(t0, y(t0), y\Q) > 0. However y(t2) = 0
implies that F(£2, 2/(£2), 2/'(ί2)) = 0. This is a contradiction to the
assumption that V(t, xlf x2) is nondecreasing along the solution curves
of (4).

Two known conditions insuring the uniqueness of solutions of
(4) satisfying (5) are consequences of Theorem 2. Hartman [3,
page 433] proved that if {x\t)f + x(t)F(t, x(f), x'{t)) > 0 wherever
x(t) Φ 0 and x\t)x'\t) = 0, for all solutions x(t) of (4) then x(t) = 0
is the only solution of (4) satisfying (5). It was noted by George
and Sutton that V(t, xlf x2) = {xtf satisfied their definition of a
Liapunov function and therefore by Theorem 2 the result of Hartman
follows. The same choice for V(t, xlf x2) will satisfy our definition.
It is also well known that if F(t, xl9 x2) is continuous and strictly
increasing in xx for fixed (t, x2) then x(t) = 0 is the only solution of
(4) satisfying (5). This result also follows from Theorem 2 by
choosing

V(t, xlf x2) = Γ I F(s, xu x2) - F(s, 0, x2) I ds .
Ja

2* Necessary and sufficient condition* In this section we will
further restrict our attention to the boundary value problem

( 9 ) tf'

(10) x(a) = 0 x(i) = 0 ,

where F(t9 0, 0) = 0 and a < Ύ ̂  b. Thus we shall fix tγ = a. We
now proceed to derive a necessary and sufficient condition for the
uniqueness of solutions of (9) satisfying (10).

For each M > 0 let DM denote the subset of [α, b] x R2 defined
by DM = {(t, a, β): 2 | a/(t - a) \ ̂  M, 2 | a/(t - b) | ^ M, 2 \ β \ ̂  M) U
{(α, 0, β): 2 I β \ ̂  M} U {(6, 0, β): 2 | β | ^ M). For each (t0, a, β) e DM,
a<tQ<b, let X*0,a,β) denote the set of all continuously differentiable
functions x(t) defined on [α, b] whose second derivative exists and is
continuous for all except at most one point of [a, b] and which
satisfy | x'{t) \ ^ M for all t e [a, b], x(a) = x(b) = 0, x(t0) = a, and
x'(tQ) = β. The restrictions on (tQ, a, β) in the definition of DM insure
that X^Q,aj) is not empty.

LEMMA 1. Suppose a < t0 < b. There exists a solution to (9)
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satisfying x(a) = x(b) — 0, x(t0) = a, and x'(t0) = β if and only if

(11) inf imum Γ | x"(t) - F(t, x(t), x'{t)) \dt = 0

for some M.

Proof. If there exists a solution to (9) satisfying the above
conditions then for some i l f > 0 , x(t)e Xff0>aJ). For this M, or any
larger M, the above infimum will be zero. Conversely suppose the
above infimum is zero for some M> 0. Let {xk{t)} be a sequence of
functions in X*^a,p) such that

(12) lim [ I x'k'(t) - F(t, xk{t\ x'k{t)) \ dt = 0 .

Letting yk{t) = Γ (x'k'(s) - F(s, xk(s), xk(s)))ds we see by (12) that yk(t)
Ja Ct

converges to zero uniformly on [a, b]. Let zk(t) = xk(t) — I yk(s)ds.

Then zk(t) = xk{t) - yk(t) = xk{a) + Γ F(s, α?fc(β), ^(s))c?s and for a ^

ίi < ta ^ 6

1 F(8, xk(s)f xk(s)) I ds <ί KM \t2 - tx I ,

where iζ^ = max ( t j I l i l 2 , e D l | F(ί, xlf x2) \. Also

Therefore, there exists a uniformly convergent subsequence of
{z'k{t)} which we shall again denote by {zk(t)}. In a similar manner
the sequence of functions {zk(t)} can easily be shown to be equi-
continuous and uniformly bounded. Thus we again obtain a sub-
sequence which we denote by {zk(t)}, such that {zk(t)} and {zk(t)}
converge uniformly on [α, b]. Denote the limit function by z(t).
Since zk(a) = 0 for all k, we have that z(a) = 0. Also yk(t) converges
to 0 uniformly on [α, b] implies that xk(t) converges uniformly to
z{t) and xk(t) converges uniformly to z\t) on [α, b].

Thus z(b) = 0, z(t0) = α,

«'(*o) = /5, and

«"(ί) = F{t, z{t\ z'{t)) .

Thus z(t) is a solution with the desired properties.
For each M > 0 we define a real valued function VM with

domain D^ by
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M { t , Xίf X2) = j β ( * ) e j r ( * , * l f * 2 ) Jα

(0
(13) j

( , α?χ = 0 .

THEOREM 3. Suppose that there exists at most one solution to
(9) satisfying (10) for every 7, a < 7 <ί 6. T&βw /or eαcfe ilf > 0, F^
satisfies the following conditions:

(14) Virft 0, *2) = 0

(15) VM(t, xu x2) > 0 if x, Φ 0

(16) Vjif(ί, a?lf #2) is nondecreasing along solution curves x(t) of (9)
which satisfy x{a) = 0 α^ώ (ί, α (ί), x'(t))eDM for all te [α, b].

Proof. VM clearly satisfies (14). Suppose x^Q and VM(t, xί9 x2) =
0. Then by Lemma 1 there exists a solution x(t) of (9) such that
x(a) = cc(6) = 0 and #(£) = xιm This contradicts the uniqueness as-
sumption. Thus VM satisfies condition (15). Let x(t) be a solution
of (9) such that (ί, a?(ί), ̂ e ^ for all te[a, b] and α?(α) = 0. Let
a ^tt< t2^b. If ίt = a or ί2 = b then it follows trivially from
the uniqueness of solutions of (9) satisfying (10), the uniqueness of
initial value problems associated with (9), and properties (14) and
(15) that VM(tl9 x{t,\ x\tt)) ^ VM(t2, x(t2), x'(t2)). Thus assume that
a < tί < tz < b. Again from uniqueness of solutions of (9) satisfying
(10) it follows that x(tj Φ 0 and x(t2) Φ 0. For each y(t) e
the function

\v(t) t,

is again an element of Xff1>xUl)>x>ίh))- Therefore

VM(tl9 x{t,\ rt(tj) = infimum Γ | x"{t) - F(t, x(t), x'{t)) \ dt

and in a similar manner

VM(t2, x{t2\ x'(Q) = infimum Γ | x'\t) - F(t, x(t), x'{t)) \ dt

Let {xk(t)} be a sequence in X?hfX{h)yX,{H)) such that

VM(U, »(«2), α'fe)) = lim Γ I a?fί(ί) - F(t, xk{t\ x'k{t)) \ dt .
A -oo Jt2

Then if
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(xk(t) t2<t^b

we have

^ lim j I yk(t) - F(t, yk{t), yk

= lim Γ I α#(ί) - F{t, xk(t), xf

k(t)) \ dt
&-*<*> J i g

Thus F* satisfies (16).
On the other hand if there exists a family of subsets [a, b] x

SM = DM, SM closed, of [a, b] x R2 such that every solution x(t) of
(9) satisfies (t, x(t), x'{t)) e DM for some M and a family of real
valued functions VM defined on DM and satisfying (14), (15), and
(16), then the only solution of (9) satisfying (10) for any 7β(a, b] is
identically zero on [a, b]. The proof of this is exactly the same as
the proof of Theorem 2. Note that condition (16) is weaker than
condition (8).

THEOREM 4. There exists at most one solution of (9) satisfying
(10) for all 7 e (α, 6] if and only if there exists a family of subsets
DM = [α, δ] x SM of [a, b] x R2 such that every solution x{t) of (9)
satisfies {t, x(t), x'{t)) e DM for some M and a family of real valued
functions VM defined on DM satisfying condition (14), (15), and (16).

Note that a similar theorem to Theorem 4 can be proved if
the right end point is fixed.
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