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ON A SPACE BETWEEN BH AND

JERROLD SIEGEL

P

Let F C Eoo —> Boo be the classifying space of fibre homotopy
equivalence classes of fibrations with fiber F. An obstruction to

the existence of a retraction Bco-̂ JEL is developed. This ob-
struction is shown to vanish when F is a stable
space. Consequences of the existence of a retraction are
indicated.

One asks the following question: Let F C f L A l L be a universal

fibration for $f (_, F), for which F do there exist retractions r: I?*—»EJ!
An obstruction theoretic answer to this question is given

below. The method is first to observe that F must be a loop

space. Then construct a fibration F C E+^*B+, admitting a retraction

r: JB+—>E+, that is "universal" with respect to this property. Finally,
compute the fibre of the classifying map J3+ -> B*. As an application of
this computation it is shown that a retraction exists whenever F is a
stable space.

Our interest in this question grew out of an observation in [71. In
particular, let L(ττ, n) be the classifying space for $f(_, X(ττ, n)), (fibre
homotopy equivalence classes of fibrations with fibre K(π, n)). Let
K(π,n)QE^L{π,n) be the universal fibration [1], in [7] it was
observed that there is a retraction of L(ττ, n) to £L. This observation
was used in [6] and implicitly in [71 to facilitate the computation of the
cohomology of L{τr, n). 2.13, below, generalizes that part of the main
result of [7] and seems to give the appropriate setting for that theorem.

We would like to thank the referee for his helpful comments and
especially for allerting us to the difficulties in the work of Allaud and
Dold.

1. Preliminaries. We follow Allaud [1], (see Dold [2] for an
alternate treatment)1. In addition, we make the blanket assumption
that all spaces are in % the category of spaces of the homotopy type of
countable connected C.W complexes (resp. ^ 0 base pointed) according
to [1], [5] the constructions below do not carry us out of these
categories.

1 Peter May has noted a difficulty in both works. In particular, neither work supplies well

defined set valued functors for the theory of fibrations. These, of course, are required for

application of Browns theorem. May will discuss various remedies in a forthcoming monograph.

235



236 JERROLD SIEGEL

DEFINITION 1.1. Let F be in % and let (X,x0) be in <g0. A fibre
space over X with fibre F (written (<£, g)) consists of a sequence of

g p

spaces and maps. F -^F—»X such that:

(a) The triple % = (F, p, X) is a fibre space.
(b) g: F—>p~!(jCo) is a homotopy equivalence.

DEFINITION 1.1a. If we further assume:
(1) (F &o) ε ^o
(2) <£° = (F, p, X, 5) is a fibre space with cross-section.
(3) g:(F,bo)-^(p~ι(Xo),s(Xo)) is a base point preserving

homotopy equivalence.
We call (<£°, g) a /ϊfere space vWfft cross-section.

DEFINITION 1.2. Let (g1? g,) and (g2, g2) be fibre spaces. A fibre

map (<£i,gi)-*(<?2, g2) is a triple of maps (g, /, /')

such that I commutes up to homotopy and Π commutes. We denote
the category of fibre spaces and maps by 9.

DEFINITION 1.2̂ . If (£?,gi) and {%\, g2) are fibre spaces with

cross-section and (^?,gi)-^(^?,g2) is a fibre map such that ]sx = sj'
then / is called a section preserving fibre map. We denote the resulting
category by 9°.

DEFINITION 1.3. Let (<£, g) be a fibre space over X with fibre
F. Let /: Y -> X be a base pointed map. We have the usual induced

fibration (f-\%),g) with fibre F. / induces (f" !(3r),g)-^(»,g) in #.

DEFINITION 1.3a. If (£°,g) carries a cross-section then so does
f~X%\g) and/ is in 9°.

DEFINITION 1.4. Restricting to a fixed fibre F there are con-
travariant functors 3ίf(_, F) and 2ί?0(-, F) from ^ 0 to the category of
sets. $f(%> F) (resp. #fo(X> F)), is the set of fibre homotopy equiva-
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lence classes of fibrations over X (resp. base section preserving) with
fibre F

We now state two theorems, the first of which appears in [1]. The
second can be proved by mimicking that proof. We offer an alternative
proof below.

THEOREM 1.5. Given F, there exists a space BocE ^ 0 and a fibre
space (&», goo) over Bx with fibre F such that the natural transformation

[X, B Jo-^ %(X, F) given by T[f] = ( f W , g.) is a 1-1 onto set map.

THEOREM 1.5a. There exists a space Bf E ̂ 0 and a fibre space
(<£t>gt) over Bf with fibre F such that the natural transformation

[X, J3t](A %o(X, F) given by T0[f] = ( f TO, £t) is a 1-1 onto set map.

We prove 1.5a by observing that, in fact, Bf is the total space of the
universal fibration over B^.

DEFINITION 1.6. If % = (F, p, X) is a fibre space with fibre F Let
F F consist of all maps from F into E which are a homotopy equiva-
lence into some p~\x), J C E X Fixing b E F, let pf = pf(b). Set
g F = (FF, p, X). g F is a principal Jf(F)-fibration where ίf(F) is the
space of homotopy equivalences of F to itself.

DEFINITION 1.6a. If %0 = {E,p,X,s) is a fibre space with base
pointed fibre (F, b) and cross-section s. Let Eζ QEF consist of all
maps / such that / is a base point preserving homotopy equivalence into
(p~ι(x), s(x)) for some x. %F is a principal ίf0(F)-fibration. Where
Ho(F) is the space of base point preserving homotopy equivalences.

We also need the following construction.

Let E->X be a fibration with fibre F Let E2^E be the "pull
back" over E of E —» X

sUp2 S ΪP

P

E - ^ X

The cross-section s is induced by the identity map. Fixing b E F we
have a map α: (F 2)F -» EF given by α(/) = t /.

LEMMA 1.7. a is a homeomorphism of (E2)ζ to EF.
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Proof. The inverse of a is β: EF -*(E2)F given by

β(f)=f(b)xf:F-^ExE.

P pi

THEOREM 1.8. Let 1L—>J5oo as in 1.5 then {El)F—>EOΰ is a

universal principal H0(F)-fibration.

Proof. By 1.7 a*: ̂ ((El)F

0) = πt(Eζ). By Theorem 4.1 of [1]
m(Eί) = 0.

COROLLARY 1.9. El^E* is universal for $fo(-, F).

P

Proof. Given <£° = E <± X we have, using the universality of Bx

E > Ex

p i]s I p.

X >B»

hence <£° is induced by a map into IL. But using 1.8 and trivial
modifications of the arguments in [4] §7, we have <£° and <£0' are base
section fibre homotopy equivalent iff the induced maps into Ex are
homotopic.

This explicit model will facilitate later computations. We will also
need the following observation about fibrations with cross-sections.

DEFINITION 1.10. Let (<£°,g) be a fibration over X with fibre
(F, b) and cross-section s. There is the usual associated fibration
( Ω Γ , Ω g ) over X with fibre Ω (F) where (ίlp)-\x) = Ω (p~\x)) based
at s(x).

LEMMA 1.11. Let (Έ\g) = FΛβ^Xbe a fibration with cross-
i s

section. Let Fs C X -> E be the fibration of the map s, then the pull

back
FsCs~ι(X) > X

pf I is

X - U E

is fibre homotopy equivalent with cross-section to (Ω?°,Ωg).
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Proof. First note s~\X)QEI and s~\X) = {/: I-+E |/(0) and
/(I) G s(X)} henpe there is the natural inclusion Ω (<£°) C s'^X) cover-
ing X, where Ω(<£°) here denoted the total space of
(Ω£°,Ω(g)). There is map y: s~ι(x)-^ΩEfτee given by y(f) =
(spf)~ι*f, where * denotes path composition. Since (Ωp)γ =
(pf)~1*Pf9 Ύ c a n be deformed to a fibre map γ ' : S'^JC)—»Ω(£°) such
that γ'/ = id. By a standard argument one shows ιγ is cross-section
preserving fibre homotopic to the identity.

We close this section with one final technical observation. The
proof is straightforward and we leave it undone.

The following notation is useful. Given a map X—»Y we let

Xf = X x fxoY1, and let Xf -» Y be the standard replacement of X-» Y
by a fibration.

Let F^E<±B be a fibration with retraction. We have the
following diagram.

•JP τπ> jp

rtip r'Up Tl

THEOREM 1.12.

E > Γ'(EP)

I P I p'

B = B

is a fibre homotopy equivalence.

2. The Space B+. We will be concerned with the question of
when there is a retraction of Bx to Ex. We begin with certain simple
technical facts we will need in the following.

THEOREM 2.1. Let F->Eτ±B be a fibration with r a retraction to
the total space. Then the composition ΩFΓ —> ΩB -* F is a homotopy
equivalence.

Proof. Consider the diagram
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0 —» ME) -^ 77,(5) -Λ π,-i(F)

r* i*
U ^ Ίli\Cj ) ^ lti\D ) * Ίli\FrJ

We show du is an isomorphism by a simple diagram chase. / is
then the geometric realization of this map.

du is a monomorphism. dux = 0 = 3 y 3 p*y = i*x but r*p*y =
y so y = r*p*y = r*i*x = 0 so I JC = 0 = x = 0.

du is an epimorphism. Let z E τΓi_i(F), z = dy = d(y — p*r*y) but
r*(y -p*r*y) = 0̂ so 3JC 3 . f x = y — p*r*y.

LEMMA 2.2. Lei if fee an H-space. Let (%<», goo) be *Λe universal
fibration for H then the sequence 0-» TΓ/ίfL)-* TΓfίBoo)-̂  πϊ-i(H)-»0 w

and

Proo/. Let if -> * —> JBH be the universal principal iϊ-fibration.

Consider the diagram.

H —> * —

I I
H —* Ex

This leads to the following diagram of homotopy group.

T*

is therefore split by τ*d~\

2.3. Let Bf/-H>E t £β t be the universal fibration for 2ίfo(-,
By 2.1 if is the fibre of s! Setting B+ = E t, E+ = Bu s = p+ and p t = r+
we have the following diagram.
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H = H

I I

gi r+%p+ ipx

where T is the fibre of p and T" is the fibre of σ.
It is the space T that we are interested in since, as we now know, it

measures the obstruction to retracting Bx to fL.

THEOREM 2.4. Let H-*Eτ±X be a fibration such that r is a
retraction ofXtoE then the classifying map f: X-^B* factors through
B+. That is, there exists /': X-+B+ and a diagram of fibre maps.

r\\p

p
X -^-> B+ ^ + B*

with pf'~f and f'r~r+f.
Moreover /' induces a unique map on homotopy. That is if

p/ί ~ pf2 then (/',). = (f'2), . τr,(X)-^ τr,(B+).

Proof. Consider the fibration

Xr

E

where p ~ p is a cross-section. Since B t = E+, we have the fibre map

Xr — B+
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and the associated diagram of fibrations

Λ.r > £> +

p' P'

but p ~ p implies that Ep —> Xr is fibre homotopy equivalent to Eβ —*• Xr

and by 1.12 we have

E > Ep

P I ΪP'

x —Uχ r

a fibre map. Let /' = if'.
In order to verify uniqueness consider the diagram

0

0 —> 7Γ, ( £ + ) < ^ TΓί \B+) —^ 7Γ,-i

Since f'r~r+f and E+ is universal for H0(-,BH) we have /£ is
unique (indeed /' is unique up to homotopy). The uniqueness of f*
follows from the splitting of the diagram.

It is reasonable to expect that /' is unique up to homotopy, however
B+ is not classifying space in sense of Brown [2]. Fibre spaces
admitting retractions do not form a suitable category.

To infer that /' is unique up to homotopy from the above requires
knowledge the two fibre maps that are homotopic along the base are
homotopic in the total space. In general of course this is not the case.

THEOREM 2.5. The fibration H-+E^B«> admits a retraction r, iff

the fibration T-*B+-^>B<» admits a cross-section, s.
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Proof.

Φ : Let Eπ^>Boo admit a retraction. Therefore, by 2.4 we can
factor the identity map id: IL—>J3oo through p. That is find s'lL—>£+
with ps' ~ id. Let s be a cross-section homotopic to 5.

φ : Consider the diagram.

i p+tk+

Here we use the fact that Bκ is universal to conclude that

s~l(E+)-*Bx is fibre-homotopy equivalent to £«,--> £«,.

Define

r = σr+s.

rpx = σr+sp*

= σr+pj

= σt

but σt is a homotopy equivalence so set r = {σt)~xr

We now study the problem of sectioning the fibration T -»JB+ --»Boo.

Consider again the diagram.

(2.6)
T —

gl

H

I

E+

B

= H

I
σ

» , p

THEOREM 2.7. g: T = T

Proof. By symmetry of fibre products the fibre of ζ and the fibre
of σ are the same.
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Description of Tf. Given a fibration (£0,£) with cross-
section. There is the "loop" fibre map.

|Ω(F) 1Ω(F) I

lii j 1 1 T i£i β j T x)

Ωg Ω(p)

Given by fibre-wise looping of the mapping space. We apply this

construction to BH-*B+*±E+ (see 2.3) in conjuction with 1.11 to

obtain the following diagram.

1
BB

+

H

I r+

Using the outer edges of 2.4 combined with 1.8 yield the following
communtative diagram of homotopy group.

7Γ n (E + ) - ^ * 7ΓΠ(E«)

and this plus the usual elementary considerations about mapping spaces
of fibre spaces shows.

THEOREM 2.9. Ω(Γ') /s homotopy equivalent to the fibre of

BHoH —> H o which we denote by L.

Description of L. We begin by noting that the map Ω is equivalent

to the map (BH)fg ^> (BH)S

T

 Ω β H induced by the canonical
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map. S Ω BH —» BH. The subscripts refer to the appropriate compo-
nent of mapping spaces.

Considering r as an inclusion we have the well known lemma:

LEMMA 2.10. (BH)f^^>(BH)s

τ

ίlBH is a fibration with fibre L =

{fe(BH)BH\flSΩBH = τ}.

If we further assume BH is a loop space then for any X all
components of BHX have the same homotopy type. Indeed

THEOREM 2.11. Let BH be a loop space then L is homotopy
equivalent to (BHBHISSϊB% where (BHISΩBH)0 is the cofibre of r.

Proof. This is a standard argument using associativity and the
existence of a homotopy inverse.

EXAMPLE 1.12. Suppose we define a n n - 1 connected space H to
be stable if 7Γi(ff) = 0, i > 2 n - 3 and BH is a loop
space. 5 Ω BH —> BH is an isomorphism in homology through dimen-
sion In - 2. But TΓXBH) = 0, i > In - 2 so

π,(L) = ^{{BHBHIsa\) = [S' Λ(BHISΩBH),BH]0 = 0, /g0.

We therefore have

THEOREM 2.13. Let H be stable then τr/(B+) = TΓ^IL), α// /. Hence,
p is a homotopy equivalence.

This generalizes 2.2 of [7].

Final Remarks 2.14. The importance of the existence of a retrac-
tion to the total space was discussed in [6] and [7]. In particular, the
existence of a retraction implies EZ" = 09q>0in the spectral sequence
of the fibration H C E+ΛJB+. Indeed, #*(£+) = E*° splits off.

Since H C * -»BH of course admits a retraction to the total
space. The classifying map BH-^Bn factors through B+.

2.15.
HC* > E+ > Eoo

1 ip+ I Poo

BH > B+ - ^ Bx
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Using 2.15, the observations about spectral sequences above and
the comparison theorem, one would like to conclude

H*(B+) = H*(E+) 0 H*(£H).

In general this is not true because the coefficient system H*(F) over B+

is not trivial. However, the machinery of [6] and [7] carries over to this
more general situation and allows specific computations to be carried
out. Hopefully, such information can be used to infer information
about Bx and /or the classifying map BH-+BX in such specific
situations.
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