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A REPRESENTATION THEOREM
FOR REAL CONVEX FUNCTIONS

ROY M. RAKESTRAW

The Krein-Milman theorem is used to prove the following
result. A nonnegative function / on [0,1] is convex if, and only if,
there exist nonnegative Borel measures μx and μ2 on [0,1] such
that

for every x E [0,1]. An example is given for which the re-
presentation is not unique.

1. Extremal e l ements . Let C be the set of all nonnegative
convex real-valued functions on [0,1]. Since the sum of two nonnega-
tive convex functions is in C and since a nonnegative real multiple of a
convex function is a convex function, the set C is a convex cone. It is
the purpose of this paper to determine the extremal elements of this
cone and to show that for the convex functions an integral representa-
tion in terms of extremal elements is possible (see [1] for
terminology). We prove the following theorem which characterizes
the extremal elements of C.

THEOREM 1. The set of extremal elements of C consists of the
following functions, where m > 0:

φ , f ; x ) = 0 , x ε [ 0 , ? ] and m(x - ξ) for x G[ξ,l], "here 0^ξ<\;
e+(m, l;x)=fl,x£[0,l) and m for x = 1
e-(m,0;x) = 0, x E(0,1] and m for x =0;
e-(m,ξ;x) = m(ξ-x), x E[0,£] and 0 for x E [ £ l ] where 0<ξ g l .

Proof Let / be a function in C which assumes exactly one
positive value in [0,1]. If / = e > 0 , then f(x) = ex + c(l -x) for
x E [0,1] and hence, / is not an extremal element of C. If / is not
constant, then / must be positive at one end point of [0,1], since / is
continuous on (0,1) [5, p. 109]. It is evident that the two functions
which are positive only at 0 and 1, respectively, are extremal elements
of C If fέ 0 on [0,1) and
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then / = /, + /2, where /, = 0 on [0,1), /,(l) = /( l )-/-( l )>0 and /2 =
f-fu and hence / is not an extremal element. Similarly, if / is an
extremal element and f^O on (0,1], then / must be continuous at 0.
Thus, all of the remaining extremal elements of C must be continuous
on [0,1].

Let / E C such that / is not constant and is continuous on [0,1], and
let /(jco) = inf{/(Jc):O^x^l}. If /(JCO)>O, then / = /(JC0) + [f-/(*<>)]
and so / is not an extremal element of C. If / is not monotonic, then a
nonproportional decomposition of / can be given by / = /i + /2, where
/,(*) =./(*) for jce[O,jCoL /i(*) = /(*o) for x6[x o , l ] and /2 =
/ - /,. Hence, all continuous extremal elements of C must assume the
value 0 and must be monotonic.

Let / E L C such that / is continuous and monotonic and
inf{/(jc): x E[0, l]} = 0. Suppose, without loss of generality, that /_
assumes at least two positive values in (0,1); we know that fί exists and
is left-continuous and nondecreasing on (0,1), since / is convex [5, p.
109]. Let 0 < J C , < J C 2 < 1 be such that 0 </_(*,) </1(JC2) and define
fi(x) = /(*), x e [0,x,], and /,(* ) = /(*,) + /:(*,)(x -xι), for
r e [ j c b l ] . Then f,eC and /2 = / - / , ε C ; that is, / = /i + /2 and
hence, / is not an extremal element of C. Thus, if / i s a continuous
extremal element of C, then /_ (and /+) assumes exactly one nonzero
value in (0,1).

For m >0, define the functions e+(m,ξ; ) and e_(m, £; ) as in the
statement of the theorem. It is easily seen that e+(m,ξ;-), where
0 ^ ξ < 1, and e_(m,£; ), where 0 < ξ ^ 1, are extremal elements of C
and moreover, they are the only continuous extremal elements of
C. Thus, for m > 0 and 0 S ξ ^ 1,

extr C = K(m,ξ; )}U{e.(m,ξ )},

where extr C denotes the set of extremal elements of C This
completes the proof of Theorem 1.

2. Integral representations. The set of functions C -
C = C + (- C) is the smallest linear space containing the convex cone
C. With the topology of simple convergence, C-C is a Hausdorff
locally convex space such that for each x E [0,1], the linear functional
Lx defined by L X (/ ) = /(JC) is continuous.

THEOREM 2. In C — C, the cone C has a compact base
Co. Moreover, the extreme points of Co form a compact set.

Proof. The linear functional F defined on C-C by F(f) =
f(x +2h)-2f(x +/t)+/(jt), for [JC,JC +2Λ]C[0,1], is continuous in the
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topology of simple convergence. By definition, C is the intersection of
a collection of closed half-spaces corresponding to such
functional. Hence, C is closed in C - C.

If / E C, then / is bounded by /(0) + /(1), and it follows from the
Tychonoff theorem that the normalized convex functions, namely

form a compact base for C. If we let

then ext Co = E+ U f?_, where ext Co denotes the set of extreme points of
Co.

Let Uo = {f E C - C: |/(0)| < 1/2} and 17, =
{ / G C - C : |/(1)| < 1/2}. Then C70 and 17, are open sets, £+Cί/0,
E- C 17! and 17O Π £_ = 17, Π E+ = 0 . Hence, E+ U JB_ is a separation of
extCo. If we define α+:[0,l]-»E+ by a+(ξ) = e+(U -£)"',£;•), for
0 ^ £ < l , and α+(l) = e+(l, l ), then α+ is a continuous
bijection. Since [0,1] is a compact space and E+ is a Hausdorff space,
then α+ is a homeomorphism. Likewise, α_: [0,1] -» E_, defined by
a-(ξ) = e-(ξ-ι

9ξ; ), for 0 < f ^ l , and o.(0) = e.(l,0; ), is a
homeomorphism. Hence, ext Co = E+ U 2?_ is a compact set, and the
proof is complete.

The mappings a+ and α_ introduced in the proof of Theorem 2 will
now be used to prove the representation theorem.

THEOREM 3. For each / ε C , there exist nonnegative Borel mea-
sures μx and μ2 on [0,1] such that

/(*)= f\l-ξrι{x-ξ)dμι(ξ)+ ί\ί-(xlξ)]dμ2(ξ)
JO Jx

for every x E [0,1].

Proof. Let / E Co. (Since each nonzero function in C is a positive
scalar multiple of some function in Co, we need only consider those
functions in Co.) Then, since Co and ext Co are compact subsets of the
locally convex space C-Q by the Krein-Milman representation
theorem there exists a probability measure μ on ext Co such that

L(/)=ί Ldμ,
J extCo
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for every continuous linear functional L on C - C [3, p. 6]. Thus,

f(x) = Lx(f) = ί Lxdμ = ί Lxdμ + f Lxdμ,

for all xE[0,1]. Define /u, on each Borel subset £ of [0,1] by
μι(B) = μ[a+(B)]; that is, μ, = μα+. Since Lx[a+(ξ)] = 0, for x e [0,£]
and (1 - ξ)-'(x - ξ), for x e [£ 1], then

f L^ίμ = ί Lxa+d(μa+) = ί'Lίt[α+(f)]dμ,(ί)

= Γ(ί-ξy1(x-ξ)dμι(ξ)
Jo

[2, p. 163]. Similarly,

where μ2 = μα-, and the theorem is proved.

3. R e m a r k s . If μx and μ2 are nonnegative Borel measures on
[0,1] and

o

for every x E [0,1], then it is easily seen that / is in C The measures
μx and μ2 which appear in the statement of Theorem 3 are not
necessarily unique because the probability measure μ in the proof of
Theorem 3 will not always be unique. This follows from the fact that

(l/4)(f, + U + U + U) = (l/8)(/3 + U + 3/5 + 3/6),

where Λ = e+(l,0; ), /2 = β_(l, l ), Λ = β+(4,(3/4); ), Λ= e.(4,(l/4);•),
/5 = e+((4/3), (1/4); ) and f6 = ^-((4/3), (3/4); ). We also note that C-C
properly contains the functions of bounded convexity on [0,1] [4].
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