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A METRIC BASIS CHARACTERIZATION
OF EUCLIDEAN SPACE

GRATTAN P. MURPHY

In JB" there is exactly one line containing a given pair of
points and exactly one /c-flat containing a given k -simplex (k + 1
points not contained in a lower dimensional space). The pur-
pose of this paper is to prove converses of these propositions in
the setting of complete, convex metric spaces. The most
striking of these is given in Theorem 1 where it is proved that a
complete, convex metric space which can be uniquely de-
termined by any pair of points must be isometric with a subset of
the real line. Theorem 2 is a higher dimensional analogue of
this theorem. Metric characterizations of E1 and En are
derived from these results.

The distance between points p and q will be denoted by pq. A
metric space M is convex if for each pair of distinct points p, q there
exists a point r with p^ r^ q and pq = pr + rq. M is externally convex
if there exists a point s with p^ s^ q and sq = sp + pq. For the
remainder of this paper a space M will always mean a complete and
convex metric space.

DEFINITION 1. A subset B of M is called a metric basis for M if
xz = yz for every z in B implies x = y.

It is easy to show that each pair of distinct points in En is a metric
basis for the line it determines and that the vertices of a nondegenerate
simplex form a metric basis for En.

The fact that each pair of points forms a metric basis for E1 is almost
characteristic of that space, as the following theorem shows.

THEOREM 1. // each pair of distinct points of M forms a metric basis
for Λί, then M is isometric with a subset of E\

Proof First we show that each three points of M are
collinear. Suppose M contains points p, q, and r which are not
collinear. By a theorem of Menger [5], each two points of M are the
end points of a metric segment (isometric image of a line segment) in
M Let pq ^pr and denote by S(p,q) a fixed segment joining p and
q. By the continuity of the metric and the fact that S(pyq) is connected,
it follows that there is a point x on S(p,q) with xq = xr. If m is a
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midpoint of q and r, then mq = mr. There are two cases to consider,
x = m and x^ m. If x = ra, then suppose without loss of generality that
xp ^ xr. Using arguments similar to those above, we find a point y
between x and p with xy = xr. Since q^ x, {q, x} is a metric basis for
M. But qy - qr and xy = xr imply y = r from which it follows that r is
between p and q, contradicting the nonlinearity of that triple. If JC^ m,
then {x, m} is a metric basis for M and xq = xr and mq = mr imply q = r,
a contradiction. This establishes that each three points of M are
collinear. If M is a singleton, then the theorem follows immediately.
Otherwise, M contains at least five points and every three points of M
are isometric with three points of E\ It is well known that such spaces
are isometrically contained in JE1 [1, p. 117].

Since the metric space M of Theorem 1 is complete and convex, its
image in E1 must be a singleton, a closed interval, a closed half-line, or
E\ itself. This suggests that, with very few additional assumptions we
may characterize E1. Indeed, we have:

COROLLARY 1.1. E1 is characterized among all complete, convex,
and externally convex spaces containing at least two points by the property
that each two distinct points form a metric basis for the space.

DEFINITION 2. A subset B of a metric space M is a complete metric
basis for M if B is a metric basis for M and if every isometry of B with
another subset of M may be extended to a motion of M (an isometry of
M to M).

COROLLARY 1.2. E1 is characterized among all complete and con-
vex metric spaces containing at least two points by the property that each
two distinct points form a complete metric basis for the space.

The aim of this part is to generalize Theorem 1 and its corollaries to
En. We formalize the properties of bases in £ n with the following
definitions.

DEFINITION 3. A metric space has the n-basis property if every
n + 1 points, not isometric with n + 1 points of En~\ form a metric basis
for M

DEFINITION 4. A metric space has the complete n-basis property if
every n +1 points, not isometric with n + 1 points of En~\ form a
complete metric basis for M.

A "first approximation" to a generalization to Theorem 1 might be:
If M has the n-basis property, then M is isometric with a subset of
En. The hyperbolic plane, however, is a counterexample for n =
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2. The axioms of a metric space imply that every triple of points are
isometric with some three points in E2. This is a subtle assumption in
Theorem 1. In order to prove a generalization of Theorem 1 by
methods similar to those of the proof of Theorem 1, we need to have
certain n + 2-tuples of points of M congruently contained in En+\ One
assumption which will insure such congruences for complete and convex
metric spaces is the euclidean four point property.

DEFINITION 5. A metric space has the euclidean four point property
if each four points of M are isometric with four points of JB3.

THEOREM 2. // M has the euclidean four point property and the
n-basis property, then M is isometric with a subset of En.

Proof. Wilson [7, 8] showed that, in M, the euclidean four point
property implies that every k +1 points of M are isometric with k + 1
points of Ek. If every n + 2 points of M are isometric with n + 2 points
of En, then M is isometric with a subset of En since En has quasicongru-
ence order n + 2 [1, p. 117]. Likewise, if each n + 1 points of M are
isometric with n + 1 points of En~ι then M is isometric with a subset of
En~\ If not, then there are n + 2 points x0, ,jcn+1 of M which are
isometric with n + 2 points of JBn+1, but not with n + 2 points of £ n . Let
yi be the midpoint of JC0 and xu and define y, (2 ^ i ^ n +1) in the
following way: if xxxt = xoxh then y, = xt if not and J^X, > xox«
(XiXi < xoxt), then y, is a point between x, and Xι(x0) with xoy. = *iy« K
yi> * * , yn+i is not isometric with a set of n -f 1 points of EH-U then it is a
metric basis for M and JC0 = JCi, which contradicts the assumption that
Xo,"'9xn+i are not isometric with n + 2 points of En. So assume
yi> syιi+i are isometric with n + 1 points of £„_!. Consider the set
5 = Y U X = {yι, 11 ̂  Ϊ g n + 1} U {xy 10 S / g n + 1}. Y is isometric
with a subset of En~ι so Y U {Λ:0} is isometric with a subset of En. Since
jcα lies on the line joining x0 and yu Y U {JC0, Xι} is isometric with a subset
of J3n. Likewise, for any i > 1, xf is collinear with y, and x0oτ xx or else
x, = y,. We then have S isometric with a subset of En. But X C 5 and
X was assumed not to be congruent with a subset of J5n. Therefore the
y,'s form a metric basis, and the proof is complete.

Requiring that M have the complete n-basis property allows
Theorem 2 to be extended in the same way that Corollary 1.2 extends
Theorem 1.

COROLLARY 2.1. En is characterized among all complete and con-
vex metric spaces having n + 1 points not isometric with n + 1 points of
Enl and the euclidean four point property by having the complete n-basis
property.
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Proof. Let M be a metric space with the hypotheses of the
Corollary. By Theorem 2, M is isometric with a subset of En so we may
think of M as a subset of En. Assume p is a point in En - M . By
hypothesis, M contains an n -simplex S and the convex hull of S. Let q
be an interior point of the simplex and choose x and y on the line
between p and q so that: (1) q is the midpoint of x and y, and (2) the
two n - 1 spheres, the endpoints of diameters of which are x and g and q
and y, are contained in S. Assume that x is between p and g. Let / be an
isometry between the two spheres such that f(y) = q and f(q) =
x. Since each of the spheres contains an n -simplex, / is an isometry
which maps a complete metric basis of M onto some subset of M. By
the definition of a complete metric basis, / may be extended to all of
Λί. Let g be that extension and note that g(x) = f(x) where / is defined
(they are isometries in En which coincide on an n -simplex). The
composition mappings gr==gog'o'''°gog are isometries of M into
M. By the Archimedean property of the reals there exists an m such
that p is between gm{q) and q. The convexity of M implies p is in M,
contradicting our choice of p. Therefore, M = En, completing the proof
in this case. That En has the properties of the Corollary is well known.

The euclidean four point property was shown by Wilson to charac-
terize (separable) inner product spaces among the class of all complete,
convex, externally convex metric spaces [7]. Our use of that property is
based on the fact that it implies that n -point property for every natural
number n in a complete and convex metric space. Since Wilson, many
authors have shown that weaker conditions than the euclidean four point
property may be used in the characterization of inner product space (see
[4], [6]). At least one of these, the weak euclidean four point property
(the efpp for quadruples containing a linear triple), is strong enough to
imply the n -point property for complete and convex metric spaces (see
[1, p. 128]).

It can be shown that both the feeble and the queasy euclidean four
point properties defined in [2], [3] imply the weak euclidean four point
property in a complete and convex metric space. The conclusion of
Theorem 2 will still be valid if the euclidean four point property is
replaced by the weak, feeble or queasy form of that property. Corollary
2.1 may be extended to:

COROLLARY 2.2. En is characterized among all complete and con-
vex metric spaces having n + 1 points not isometric with n + 1 points of
En~ι and the weak (feeble, queasy) euclidean four point property by having
the complete n-basis property.

It would be interesting to know whether Corollary 2.2 is valid if
weak, is replaced by any of the other properties used to characterize
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generalized euclidean space, i.e. isosceles, isosceles weak, isosceles
feeble, external isosceles weak, etc. (a list may be found in [6]).

The complete n -point basis property is defined for all n § 0 so, using
the usual conventions about E° and E1 we have the following from
Corollary 1.2:

COROLLARY 2.3. For n = 0,1, En is characterized among all com-
plete and convex metric spaces by the complete n-basis property.

Corollary 2.3 is not true for n = 2. This may be seen from the
following example. Let M = X U Y where X is the jc-axis and Y the
y-axis in the usual cartesian plane. Define distance in M to be the usual
distance for two points on the same line and xy = xθ + θy where
θ = (0,0). This space is complete, convex, has three points not isomet-
ric with three points of E1 and every noncollinear triple is a complete
metric bases, but it is not isometric with E2.
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