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UNCONDITIONAL SCHAUDER DECOMPOSITIONS OF

NORMED IDEALS OF OPERATORS BETWEEN

SOME /, -SPACES

Y. GORDON

Given a Banach space E, let

/(£)= sup inf sup I Σ ±v7(fl)pj

where &*(E) denotes the collection of all finite-dimensional
subspaces of E, the infimum ranges over all possible sequences of
finite-rank operators ft: F->E which satisfy the equality
ΣPi(/) = / for all f E F, and r(P) denotes the rank of an
operator P.

It is shown that there are finite-dimensional spaces with
arbitrarily large ί(E) values, and infinite-dimensional spaces E
with l(E) = oo. The specific examples with 1(E) ~ °o yield also
information on the rapidity of growth of unconditional Schauder
decompositions of £ into finite-dimensional spaces.

Clearly if E is finite-dimensional

l(E) = inf sup
{Pi} N,±

where the infimum ranges over all sequences P,f: E ~-> E satisfying
I i a l P,(x) = x for all xGE.

It is also obvious from the definition that the value 1{E) is not
greater than the local unconditional constant χu(E) introduced in [3]
which is defined similarly, the only difference being that for χu{E) only
sequences {P,} with r(Pi)= 1 for all i are considered. Spaces E with
finite Xu(E) were called in [3] spaces with local unconditional
structure. If E is complemented in a space with an unconditional basis
then clearly χu{E)<^>.

Besides this generalization the result stated above answers a ques-
tion of Professor H. P. Rosenthal by providing examples of spaces which
do not have unconditional Schauder decompositions into finite-
dimensional spaces all of the same dimension p, for any p = 1,2,3,
spaces E with 1{E)~<*> clearly cannot have such decompositions.

Specifically it is shown in section 2 that if E is the space of operators
on l2 equipped with any ideal norm α, then l(E) = oo unless α is
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equivalent to the Hilbert-Schmidt norm for operators on l2. This
implies Lewis' ([6]) characterization of the ideals of operators on l2 which
have local unconditional structure. In addition, it is proved in section 3
that the space E of operators mapping lx to c0 normed with any perfect
ideal norm a which is not equivalent to the operator norm || ° ||, also has
/(£) = oo. Additional results on spaces with /(£) = oo will appear in a
forthcoming paper by Professor P. Saphar and this author.

If l(E) = oo? then by Proposition 1 E does not have property Pk for
any integer k = 1,2, according to Lindenstrauss and Zippin ([7]) a
Banach space E has property Pk if there is a λ > 0 such that for every
finite-dimensional subspace F of E there is a Boolean algebra of
projections 58 on E with suρ{||P||; P E 38}^ λ and k vectors {JCJJ in E
such that F is contained in the closed linear span of {P(xt)', i = 1, , fc,
PE93}.

The terminology will generally follow that of [4]. $£" will denote
the n -dimensional linear space, {ej? the usual unit basis. Given any
vector 6 = (eu e2, * , en) with e{ = ± 1, Λ€ will denote the linear operator
on i " defined by h€(et) = eke« for all i. For any permutation σ of
{1,2, , n}, gσ will denote the operator defined by gσ(et) = eσ(i) for all i.

G will be the compact group of all isometries on /" and dg its unique
normalized Haar measure. S will be the unit sphere in /£ {x E
/" ||* H2 = 1} and dx will stand for the probability measure on S defined
by

f f(x)dx=ί f(g(e))dg, feC(S)
Js JG

where e E S is any fixed point.
Given any ideal norm a ([4]) and a Banach space E, a(E) will stand

for the value a(lE) where 1E is the identity operator on E. a* will
denote the adjoint ideal norm of α. a is perfect if α** =
a. [L(£, F), a] will be the space of all operators T\E-*F with
α(T)<oo? and Ef denotes the conjugate of E.

Recall that if E and F are finite-dimensional [L(E, F), α] ' is the
space [L(F, £",), α*] where the correspondence is given by

<S, Γ) = trace(SΓ), 5 E L(£, F), TEL(F, E).

πp and /p ( l ^ p ^ o o ) will denote the p-absolutely summing and p-
integral norms respectively. All Banach spaces are taken over the reals
as the results can be easily carried over to the complex case with some
changes in the constants.

LEMMA 1. // A E L(X, E\ B E L(E, X) and BA is the identity on
X,thenl(X)^\\A\\\\B\\l(E).
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Proof. Let F E &{X) and e > 0 be given. A (F) E
are Pι:A(F)^E with ΣPA(/) = A(/) for all / E F and

, SO there

sup 2 ±V7(Pf)Pι ^ /(£)+€.

Set Q{ = BP*A, then r(Qt)^ r(Pi) and Σ Qt(f) = / for all/ E F, and

sup
±,N

As e and F are arbitrary, the result follows.

PROPOSITION 1. If E has property Pk for some integer fe, then

/(J5)<oo.

Proo/. There is a λ > 0 such that if F C E is any finite-dimensional
subspace there is a subset {xκ}\ CE and a Boolean algebra of projections
m on J£, with sup{| |P| | ; P E 33}S A and FCspan{P(x y); / = 1, ••-,£,
PGS8}.

Using elementary arguments similar to Proposition 1 of [7], let
{yi> *'#? yp) be a basis of F. Given 6, there exists a subset of n-disjoint
elements {Pf}?C38 with Σ ? P ί = 7 , a subset {zrKCspan{P,(x;);
i = 1, , n, / = 1, ,fc} with ||z r - y Γ | | < e for every r = 1, ,p. It is
easy to see that if e > 0 is sufficiently small there is a 1 - 1 operator T on
E satisfying Γ(y r )= zr for all r and | | T | | , j|^Γ"11|<2.

Let Ri be the restriction to F of T^PJ, ί = l, ••-,«. Then
r(Ri)^K ΣJ?, is the identity on F and

sup IX ± V 7 ( ^ ) R , | g Vfcsup

5i 4Vfe sup I Σ ±Pill 3s 8Vk sup

this proves /(E)g8V/cλ.
The following elementary generalization of Holder's inequality will

be used.

LEMMA 2. Let xk,ykk=l,2,---,nbe vectors in Then
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Proof. Assume without loss of generality that span{yk} = 3?m. Fix
the sequence {yk} and consider the problem of minimizing the function

/({**}) = Σ Σ <**, y/)2 under the restriction Σ (Xk, y*> = 1.
7 = 1 fc = l fe = l

Using the "Lagrange multipliers" method, set

) = Σ Σ <**, yy)2-
fc=l

At the minimum value for /, which must exist, dφ/dxkι = 0 for all
k = 1,2, , n, i = 1,2, , m, where xk = ΣΓ-i Jcfcl- β,. The equations in
vector form are then

n

Σ (χ*> y>)y/= λyfe f o r a 1 1 fc = 1,2, , n.
/ = 1

Clearly λ φ 0, so the operator A = Σ"=1 y} ® y, satisfies the equations
A(jtfc) = λyk for all fc, hence has an inverse A" 1. Then

n n

m =trace(A"1A) = Σ <y/? A'^y;)) = Σ λ'^y,,^-)

finally,
= Σ Σ <**, y,Y = 2 <λyb x.) = λ =

2. Unconditional decomposition of ideals of
operators between Hubert spaces. The main result proved here
is the following:

THEOREM 1. Let a be an ideal norm, E = [L(/5, /;), α] , and let
a(n) = max{max{α(A)/τr2(A), τr2(A)/α(A)}; A G L(/J, /2

n)}

Proof. Let w = ΣΓ=i A, ® B, be any rank-m operator mapping E to
E, where Λ E £ ' = [L(/2

n, /2

n), a *] and J5, G E. We shall write
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(ei) = Σ &Φ e* a n d

for all ί = l, ,m, y = l, ••-,«, where {efc}? is the unit basis of
/;. Denote by KF the unit ball of a given Banach space F, and let
K = K€x KE be the product of the unit balls. Define on K the
probability measure μ by

= ί f 2-»Σf ί /(([α

where fEC(K), A^L(l^l") is a fixed non-zero operator, and Σ«
denotes the sum over all 2" possible choices of e = (± 1, ± 1, , ± 1).

The operator u defines a function of C(K) which is denoted by (w, °)
and defined as <u, α x ft) = {u{a\ b) = trace(fc(«(α))), a e E, bEEf.

Then,

- ί ί 2-"Σ ί ί Ky
JG JG e Js Js

=*[ f 2-Σf f |<(M
JG JG e JS JS

It is well known ([1]) that for any v G L(/" , /£) with υjk = ( ϋ ( O ,

ί \{v{x\
Js \i,k=ι

therefore

\((u(h(gAh))(x),y)\dydx

S 2 - 2 τr2 f Σ (trace (Λ.gAΛΛ ))B()

It is well known and easy to show that iί (Ω, X, μ,) is a probability
space and ft E C(Ω) / = 1, , fc, then

2 \

) ^

1/2
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therefore

"Σ. ί ί \{(u(KgAh)Xx)9y)\dydx
€ JS JS

1/2

, - 1 / 2 [ n

Σmi

211/2

the last is Khinchin's inequality (the constant e ~m is due to [9]). Thus

211/2

= ί Σ ( f A) (e.) I (π,(/5
/ ||2

Set w =ΣT=ιbijkAn then

ί
JG

r

[ n

[ n

Σ

\ i

),e,)2

2 1 1/2

j

this implies

[ n

j,k,s,t-l

( n I m

Σ ( Σ biik a,
j,k,s,r = l \ i = l

n m

Σ Σ bnk a*i

1/2

2\ 1/2

m
-1/2

= ττ2(A)m-1/2|trace(M)|.

1/2

(Lemma 2)
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Let now P, EL(E, E), ΐ = 1,2, , ΛΓ. Then

max

£ trace (P)

As α and P, are arbitrary, the inequality is true for α * and P\ too, noting
that P; maps [L(/2, /"), α*] to itself, and as

2 trace (P!) = Σ trace (P) and ± V7(P0 P;

it follows for arbitrary non-zero operators A, B on /" that

e 1/2(7r,(/2"))4 max

^ max{π2(A)/α(A), τr2(B)/a*(B)} trace

Finally, if Σ,^ P,(x) = x for all x E £ , then trace (Σ t i g l Pi)^ n2 and
the result follows from the inequality T Γ ^ / ^ S Vπn/2 ([2]).

COROLLARY 1. J/α is not equivalent to the Hubert - Schmidt norm for
operators on /2, then

l{[L{ln

2J
n

2\a}) and 1&L(12,12), <*])

Proof Let Jn: [L (/ , / ), a ] -> [L (/2, /2), α ] be the natural inclusion
and Pn: [L(/2, /2), α]->[L(/ 2 , / 2 ) , <*] be the natural projection. By
Lemma 1, since ||/n ||, \\Pn || g 1 and PJn is the identity on L(l2, l2) then

/([L(/2,/2),α])S/([L(/2- f / ; ) ,* ] )
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Let f ί b e a Hubert space, cp(H) be the closure of all finite-rank
operators A:H->H in the cp norm σp defined by: σp(A) =
[trace(A*A)p / 2]1 / p if 1 S p <», and σ^A) = || A || if p = » ([8]).

COROLLARY 2. /(cp(/5))^ n | 1 / p-' / 2 |e-' / 2(2/π) 2 and /(cp(/2)) = °° //

Proof. Taking a = σp, the result follows from the fact that σp(n) §

nιi/p-i/2|? Theorem 1 and Lemma 1.

Let [Lo(/2, /2), α] be the closure of the finite-rank operators on /2

normed by the ideal norm α.
If α is not equivalent to the Hilbert-Schmidt norm, then the

following result shows that [Lo(/2, /2), a] does not have an unconditional
Schauder decomposition into finite-diemnsional spaces if their dimen-
sions are not sufficiently rapidly increasing.

THEOREM 2. // pn n = 1,2, , is a sequence of integers for which
α(n)p~1/2~>oo9 then [L0(/2, /2), a] does not have an unconditional
Schauder decomposition into finite-dimensional spaces Et having the
following property: For any n, there is a subset In of integers for which
[L(/2, /")><*] is contained in ΣiGIn 0 E, where dim(jEj) ^ pnfor all i E /„.

Proof. Assume to the contrary [L0(/2, /2), a] has such an uncondi-
tional decomposition. Fix n and consider the factorization

", Γ2), a] Λ [L0(/2, /2), α ] Λ β Λ [(Lo(/2, /2), α] Λ [L(/2

n, /2 ), α]

where i E /„, /„ and 7) are the natural inclusion operators, Pf and Qn are
the natural projections. Let JR{ = QnTiPtJn, then r(Ri)'
for all ί E /n, and Σ l G J π jRt(x) = x for all x E L(/2

rt, / ; ) . Then

N

Σsup

^ sup

±P,

Σ ±R,

which is a contradiction.
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REMARKS. If 1{E) - α>, this does not necessarily imply that E does
not have an unconditional decomposition into finite-dimensional
spaces. In fact, by [5], the space cp(l2) for all K p < o o has such a
decomposition. Theorem 2 therefore informs us on the rapidity of
growth of the dimensions of many unconditional decompositions of cp(l2)
(p?£ 2) and is an answer to the question posed to this author by Professor
A. Pelczyήski at the June 1973 international conference on Banach
spaces at Wabash, Indiana. The author learned from Professor J.
Lindenstrauss that he has proved cp(l2) imbeds in a Banach space with an
unconditional basis for any 1 < p < <».

Finally, it should be mentioned that the condition imposed on In in
Theorem 2 is a very natural one, since lp has an unconditional basis and is
isomorphically complemented in cp (/2) hence cp (l2) has an unconditional
Schauder decomposition such that an infinite number of spaces have
dimensions equal to 1.

3. Unconditional decompositions in [TL(lu c0), «] .

THEOREM 3. Let a be any ideal norm, E = [L(/?, /"), a]. Then for
any operator B E L(/", /£)

e2l(E)\\B\\^a(B).

Proof. Let u = Σ?Li A, (g) B, be any rank-m operator mapping
E' = [L(/:, 11% a*] to £ ' , where A, G E and Bt E E'. Set

A(e,) = Σ aykfk, Btifj) = Σ bijkek
k=l

where {βk, /fc}"=i is the usual biorthonormal set for /".
Let A EL(l", /?) be an arbitrary non-zero operator. Defind on

K = KEx KE the probability measure μ by

μω = S Σ Σ/(([«*(A)r%g,AgΛ)χ(Φ<g>λ))
V W : 7 e,β,φ,λ τr,σ

(f E C(K)), where the first Σ sums over all possible vectors e, 0, φ, λ of
the form (± 1, ± 1, , ± 1), and the second Σ sums over all possible
permutations π, σ of the set {1,2, , n}.

The operator M defines a function denoted by (M, °) in C(K) by

<M, α x 6 } = (6, iι(α)> = trace (6 (w (a))), α E XE, ί? E K£.

Then,
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a*(A)μ(\(u,o)\)

= 2"4n y ^

Observe that if υ E L(lZ, I"), then by applying Khinchin's inequality
twice it follows that

( n \ 1/2

Σ (vif^m ,
and so

ea*(A)μ(\(u,°)\)

[ n

Σ[
(

i,j = l \ e,θ

\2Ίl/2

fi)\)
/ J

= (n!Γ Σ fΣ (Σ
τr,σ Li,y = l \ e,β

trace (A

Again, by Khinchin's inequality for any v: /ί

(
n \ 1/2

ΣW*),es>
2 ,

s = l /

therefore

m ^ 2 - 2 " k j ; trace(A

£ 2"" Σ [Σ[Σ ((
211/2

^ [ Σ (2- Σ I (hegΛgMs), ( 2 fc*Al) (es)

and another application of Khinchin's inequality shows that for any
x G /?, y E / :

1/2
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So

bu, tmce(AkhβgπAgΛ)
= l

[ n I m

]£ <g-Aft,(f.), frf ( Σ ^
and writing A(fs) = ΣΓ.j αs,, e, (s = 1, , n),

2") 1/2

j

Σ (Σbkiiakrs) al(s)^J
i,j,r,s = l \k=l /

δ f S- (S ̂ yOΪΣ («!ΓkW,,-,,l)l
Lι,],r,5 = l \k=l J \π,σ / J

[ n / m \ 2~| 1/2 / n

Σ (Σ***-) (Σ l^
i,/,r,s = l \k = l / J \p,q = l

k,j)|trace(M)|

1/2

where the last inequality is due to Lemma 2.
By duality it follows that for all B G L(ln

u /Ξ)

n2e2mlf2\\B\\μ(\(u,o)\)^a(B)\trace(u)\,

hence for any sequence of operators P,: E-> E satisfying Σ Pt (x) = x for
all x E JE, and for any integer N,

|B | |nVsup Σ ±V7(p7)Pi

= \\B\\n*e2 sup
IMHIy'!l=i

at(B) Σ trace(P ) >α(β)n 2

I N — M O

and the Theorem is established.
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COROLLARY 4. // a is a perfect ideal norm not equivalent to the

operator norm | |° | | for operators from lλ to c0, then /([L(/?, I"), « ] ) ~ ^ ° °

Proof Suppose l([L(Γu / :), a])^ λ <™ for all.n. Then | | B | | ^
a(B)^e2λ\\B\\ for all compact operators B from h to c0. Therefore
for every operator B<=L(luc0\ \\B | |g a**(B)^ e2λ \\B ||.

But as a is perfect, α = a **, so α is equivalent to the operator norm
||° ||, which is a contradiction.

REMARKS. Observe that if a = || ° || for operators from U to c0, then
L(/7, /") has an unconditional basis with basis constant equal to 1, the
usual basis fk ®/J (kj = 1, , ra).

By duality if β is a perfect ideal norm not equivalent to the integral
norm /i( = ||°||*) for operators from c0 to lu then again

^ 0 0 and

As in Theorem 2, if β(n) = sup{α(B)/|| B || B E L(/?, /ϊ)} and pn is

a sequence of integers satisfying β(n)p~m—>°°, then the space of
n—*°°

compact operators from lλ to c0 normed by α does not have an
unconditional Schauder decomposition into finite-dimensional spaces Et

with the following property: For any integer n there is a subset In of
integers such that L(/?, II) is a subspace of Σ/e/n 0 E t where diπ^E,) ^ p n

for each ί E /„.
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