OPERATOR-VALUED INNER FUNCTIONS ANALYTIC ON THE CLOSED DISC II

Stephen L. Campbell

Abstract

An operator-valued inner function V is called scalar if $\{V(w):|w|<1\}$ is a commuting family of normal operators. Suppose that T is a bounded linear operator with $\|T\| \leqq 1$ and spectral radius strictly less than one. Let V_{T} be its Potapov inner function and define $U_{T}=V_{T} V_{T}^{*}(1)$. The structure of nonnormal T for which U_{T} is scalar is discussed. An explicit characterization is given if the underlying Hilbert space is finite dimensional. Examples are given for the infinite dimensional case. The relationship between scalar inner functions and operators for which $T^{*} T$ and $T^{*}+T$ commute is examined.

1. Introduction. Sherman [9] introduced the concept of an inner function of scalar type. He observed that the Potapov inner function V_{T} of a normal operator $T,\|T\|<1$, was of scalar type. On the other hand Campbell [1] has shown that if $\|T \phi\|<\|\phi\|$ for all nonzero vectors ϕ, then V_{T} is of scalar type if and only if T is normal. There are, however, non-normal operators associated with scalar inner functions. It will be shown that if $T^{*} T$ and $T+T^{*}$ commute, then T is the restriction of an operator \tilde{T} such that $V_{\tilde{T}}$ differs from an inner function of scalar type by a constant unitary operator on the right. Thus, when studying the operators such that $T^{*} T$ and $T+T^{*}$ commute, it would be helpful to have information on operators with scalar inner functions and their invariant subspaces. We shall develop some of the needed information.
2. Terminology. We assume that the reader is familiar with the basic definitions of our terms. They may be found in [6]. Our notation is that of [1]. We review it briefly. Throughout this paper h will be a fixed separable Hilbert space. H_{\hbar}^{2} will denote the h-valued Hardy space of the circle, $|w|=1 . \quad S$ is multiplication by w in $H_{\hbar}^{2} . \quad T$ will always be a bounded linear operator from h into h. If $\|T\| \leqq 1$, $T^{n} \rightarrow 0$ strongly, and T^{*} is not an isometry, then the Potapov inner function V_{T} of T is defined by

$$
\begin{equation*}
V_{T}(w)=-T^{*}+w \sum_{n=0}^{\infty}\left(I-T^{*} T\right)^{1 / 2} w^{n} T^{n}\left(I-T T^{*}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

If the spectral radius of $T, r(T)$, is less than one, then (1) takes the form

$$
\begin{equation*}
V_{T}(w)=-T^{*}+w\left(I-T^{*} T\right)^{1 / 2}(I-w T)^{-1}\left(I-T T^{*}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

and V_{T} is analytic on the closed disc $|w| \leqq 1$. If $\|T\|<1$, then (1) becomes

$$
\begin{equation*}
V_{T}(w)=\left(I-T^{*} T\right)^{-1 / 2}\left(w I-T^{*}\right)(I-w T)^{-1}\left(I-T T^{*}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

For an inner function U, we say that U is an analytic inner function, $U \in(A I)$, if U is analytic on the closed disc $|w| \leqq 1$. If $U \in(A I)$ and $U(1)=I$, the identity on h, we say U is normalized. For any $U \in(A I)$, $U U^{*}(1)$ is called its normalized form. An inner function will be called scalar [9] if $U(w)$ commutes with $U(u)$ for almost all $|w|=|u|=$ 1. This is equivalent to having all the coefficients in the power series for U commute.

If $U \in(A I)$, let $z=i(1-w) /(1+w)$ and define $\tilde{U}(z)=$ $U(w)$. Then \tilde{U} is an inner function on the upper half-plane. Let x, y denote real values of z. The variables x, y, z, w will always be used in this manner. Now \tilde{U} satisfies the differential equation $\tilde{U}^{\prime}(x)=$ $i A(x) \tilde{U}(x)$ where $A(x) \geqq 0$ and A is analytic on a neighborhood of the real axis [7]. If $U=V_{T}$ for some $T, r(T)<1$, then we write A_{T} for A. A straightforward calculation gives

$$
\begin{equation*}
A_{T}(x)=\rho(x)\left(I-T^{*} T\right)^{1 / 2}(I-w T)^{-1}\left(w I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \tag{4}
\end{equation*}
$$

where $\rho(x)$ is a scalar valued function which is always nonzero.
For bounded linear operators X, Y, let $[X, Y]=X Y-Y X$.
Finally, we let $\Theta=\left\{T:\left[T^{*} T, T+T^{*}\right]=0\right\}$.
3. Preliminary results. It is clear from (1) that if V_{T} is scalar, then $\left[T, T^{*}\right]=0$ and T is normal. Given a $T \in \Theta$, we shall construct in Section 8 a non-trivial extension \tilde{T} of T such that $V_{\tilde{T}} V_{\tilde{T}}{ }^{*}(1)$ is scalar.

In order to try and understand the structure of these T, we will study those V_{T} with scalar normalized form. But first, we shall show how our results relate to the structure of a general analytic inner function. Note that if $U \in(A I)$, the normalized form of U is scalar if and only if there exists a constant unitary operator U_{0} such that $U U_{0}$ is scalar.

Proposition 1. Suppose that $U \in(A I)$. The normalized form of U is scalar if and only if $[A(x), A(y)]=0$ for every real x, y.

Proof. The only if part follows by twice differentiating $U(x) U(y)=$
$U(y) U(x)$. On the other hand if $[A(x), A(y)]=0$ for every real x, y, then $W(x)=\exp \left(i \int_{0}^{x} A(s) d s\right)$ and the normalized form of U both satisfy the differential equation $X^{\prime}=i A X, X(0)=I$, and hence are equal. But W is scalar, hence the normalized form of U is.

It was shown in $[1, \mathrm{p} .58]$ that if $U \in(A I)$, then

$$
\begin{equation*}
U=c V_{T} \tau U_{1} \oplus U_{2} \quad \text { where } \quad h=h_{1} \oplus h_{2} \tag{5}
\end{equation*}
$$

Here U_{i} is a constant unitary operator on h_{i}, T is an operator from h_{1} into h_{1} such that $\|T\| \leqq 1, r(T)<1, \tau$ is an isometry from h_{1} onto $R\left(\left[I-T T^{*}\right]^{1 / 2}\right)$, and c^{*} is an isometry from h_{1} onto $R\left(\left[I-T^{*} T\right]^{1 / 2}\right)$. Furthermore $A(x)=c A_{T}(x) c^{*} \oplus 0$. Using (4) and the definition of c we see that $[A(x), A(y)]=0$ for all real x and y if and only if $\left[A_{T}(x), A_{T}(y)\right]=0$ for all real x and y.

Thus as a consequence of Proposition 1 we have:
Proposition 2. If U and V_{T} are related as in (5), then the normalized form of U and the normalized form of V_{T} are either both scalar or both not scalar.

The determination of which normalized analytic inner functions are scalar reduces then to determining which analytic Potapov inner functions have a scalar normalized form. If $\|T\| \leqq 1, r(T)<1, T$ is not normal, and V_{T} has scalar normalized form, then 1 is an eigenvalue of $T^{*} T$ [3, Theorem 6].

We now turn to describing those T for which the normalized form of V_{T} is scalar. For notational convenience let $U_{T}(w)=V_{T}(w) V_{T}^{*}(1)$.

The next Proposition will be useful in what follows.
Proposition 3. Suppose that $\|T\| \leqq 1, r(T)<1$. Then T has a reducing subspace $M \subseteq h$ if and only if $U_{T}=U_{1} \oplus U_{2}$ where U_{i} is an inner function on $H_{h_{i}}^{2}, h=h_{1} \bigoplus h_{2}$.

Proof. If T has a reducing subspace M, the result is obvious. Suppose then that $U_{T}=U_{1} \oplus U_{2}$ on $H_{\hbar}^{2}=H_{\hbar_{1}}^{2} \oplus H_{\hbar_{2}}^{2}$. Now

$$
H_{\hbar}^{2} \Theta\left(U_{T} H_{\hbar}^{2}\right)=\left(H_{\hbar_{1}}^{2} \Theta U_{1} H_{h_{1}}^{2}\right) \oplus\left(H_{\hbar_{2}}^{2} \Theta U_{2} H_{\hbar_{2}}^{2}\right)
$$

But $H_{\hbar_{1}}^{2} \Theta U_{i} H_{h_{1}}^{2}, \quad i=1,2$, is an invariant subspace for S^{*} on $H_{k}^{2} \ominus U_{t} H_{h}^{2}$. Thus they are reducing subspaces. But S^{*} restricted to $H_{h}^{2} \ominus U_{T} H_{\hbar}^{2}$ is unitarily equivalent to T. The unitary map B from h to $H_{\hbar}^{2} \ominus U_{T} H_{\hbar}^{2}$ is given by $B \phi=\left(I-T^{*} T\right)^{1 / 2}(I-w T)^{-1} \phi$. That is, $S^{*} B \phi=$ $B T \phi$ for every $\phi \in h$. Thus $M=B^{-1}\left(H_{h_{1}}^{2} \Theta U H_{h_{1}}^{2}\right)$ would be reducing for T.

It is important to note that the h_{1} of Proposition 3 may not be a reducing subspace of T. However, as observed in the proof of Proposition $3, M_{i}=B^{-1}\left(H_{k_{1}}^{2} \Theta U_{i} H_{k_{i}}^{2}\right)$ is reducing for T. Thus $T=T_{1} \oplus T_{2}$ on $M_{1} \oplus M_{2}$. But then $U_{T}=U_{T_{1}} \oplus U_{T_{2}}$, and

$$
B M_{i}=H_{M_{i}}^{2} \ominus U_{T_{i}} H_{M_{i}}^{2}=H_{h_{i}}^{2} \ominus U_{t} H_{h_{i}}^{2} .
$$

If one assumes that $U_{1}^{\prime}(x=0)$ is one to one on h_{1}, then $h_{1} \subseteq M_{1}$ and $U_{T_{1}}$ is the identity on $M_{1} \ominus h_{1}$ since $U_{1}^{\prime}(x=0)$ being one-to-one implies that U_{1} does not have a constant summand [2]. But $U_{T_{1}} \phi=\phi$ implies that $\left(I-T_{1}^{*} T_{1}\right) \phi=0$. We summarize these observations in the next theorem.

Theorem 1. Suppose that $U_{T}=U_{1} \oplus U_{2}$ on $H_{\AA_{1}}^{2} \oplus H_{h_{2}}^{2}, \quad h=$ $h_{1} \oplus h_{2}$. Suppose further that $U_{1}^{\prime}(x=0)$ is one-to-one. Then T has a reducing subspace M such that $h_{1} \subseteq M$ and $M \Theta h_{1} \subseteq N\left(\left[I-T^{*} T\right]\right)$.
4. The finite dimensional case. Suppose that $r(T)<1$. If U_{T} is scalar and $\operatorname{dim} \ell=n<\infty$, then U_{T} is unitarily equivalent to an $n \times n$ diagonal matrix, $\operatorname{Diag}\left\{b_{1}, \cdots, b_{r}, 1, \cdots, 1\right\}$, where b_{i} is a finite Blaschke product times a complex number of modulus one. We can now apply Theorem 1 to get:

Theorem 2. Suppose that $\|T\|<1, \quad r(T)<1$, and $\operatorname{dim} h<$ ∞. Then U_{T} is scalar if and only if $T=\Sigma_{i=1}^{r} \oplus T_{i}$ on $h=\sum_{i=1}^{r} \bigoplus h_{i}$ where $\operatorname{rank}\left(I-T_{i}^{*} T_{i}\right)=1$.

Note that the T_{i} of Theorem 2 are unitarily equivalent to S^{*} restricted to $H^{2} \Theta b H^{2}$ where b is a scalar inner function. A related study may be found in [10]. Sickler, however, is primarily interested in the case $r(T)=1$ and his results do not overlap ours. The following characterization of the T_{i} in Theorem 2 follows fom the observation that T is an isometry on $N\left(I-T^{*} T\right)$.

Proposition 4. Suppose that $\operatorname{dim} h=n<\infty$ and $\|T\| \leqq 1$. Then $\operatorname{rank}\left(I-T^{*} T\right)=1$ if and only if $T=\delta V+W$ where δ is a scalar, $0 \leqq|\delta|<1$, and V, W are partial isometries such that; rank $V=1$, $\operatorname{rank} W=n-1, V^{*} W=0$, and $V W^{*}=0$.
5. The general case. In [9] Sherman showed that if U is scalar, then $U(w)=\int_{0}^{2 \pi} f(w, \lambda) d E(\lambda),|w| \leqq 1$, for a particular spectral measure $E(\cdot)$ on the unit circle. An easy modification of his arguments shows that if $U \in(A I)$ and U is scalar, then $f(w, \lambda)$ is a finite Blaschke
product for almost all λ. One can also conclude that the zeros of $f(w, \lambda)$ for different λ are essentially bounded away from $|w|=1$. However, the order and number of the zeros may be arbitrarily large. (Just take T to be the orthogonal sum of the appropriate operators acting in finite dimensional spaces.) One could then argue that if $\|T\| \leqq 1, r(T)<1$, and U_{T} is scalar, then T is an integral (or orthogonal sum if $E(\cdot)$ is a discrete measure) of operators T_{λ} where T_{λ} acts in a finite dimensional space and is of the form described in the previous section.

There is one weakness with this approach. Using $T \in \Theta$ it is possible to construct operators \tilde{T} such that $\|\tilde{T}\| \leqq 1, r(\tilde{T})<1$, and $U_{\tilde{T}}$ is scalar, but \tilde{T} does not appear to be like the finite dimensional case.

First, we wish to give some additional examples of scalar U_{T}. A way of testing a T to see whether U_{T} is scalar is needed. We begin by calculating the coefficients of U_{T}. From (1) and (2) we have that the constant term is

$$
\begin{align*}
& T^{*} T-T^{*}\left(I-T T^{*}\right)^{1 / 2}\left(I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \\
& \begin{aligned}
(6) & =T^{*} T-\left(I-T^{*} T\right)^{1 / 2} T^{*}\left(I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \\
= & T^{*} T-\left(I-T^{*} T\right)^{1 / 2}\left\{\left(I-T^{*}\right)^{-1}-I\right\}\left(I-T^{*} T\right)^{1 / 2} \\
& =I-\left(I-T^{*} T\right)^{1 / 2}\left(I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} .
\end{aligned} \tag{6}
\end{align*}
$$

The $(n+1)$-th term, $n \geqq 0$, is

$$
\begin{aligned}
& -\left(I-T^{*} T\right)^{1 / 2} T^{n}\left(I-T T^{*}\right)^{1 / 2} T+\left(I-T^{*} T\right)^{1 / 2} T^{n}\left(I-T T^{*}\right) \\
& \times\left(I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \\
& =-\left(I-T^{*} T\right)^{1 / 2} T^{n+1}\left(I-T^{*} T\right)^{1 / 2} \\
& +\left(I-T^{*} T\right)^{1 / 2} T^{n}\left(I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \\
& -\left(I-T^{*} T\right)^{1 / 2} T^{n+1} T^{*}\left(I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \\
& { }^{(7)}=-\left(I-T^{*} T\right)^{1 / 2} T^{n+1}\left(I-T^{*} T\right)^{1 / 2} \\
& +\left(I-T^{*} T\right)^{1 / 2} T^{n}\left(I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \\
& -\left(I-T^{*} T\right)^{1 / 2} T^{n+1}\left(I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \\
& +\left(I-T^{*} T\right)^{1 / 2} T^{n+1}\left(I-T^{*} T\right)^{1 / 2} \\
& =\left(I-T^{*} T\right)^{1 / 2} T^{n}\left(I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \\
& -\left(I-T^{*} T\right)^{1 / 2} T^{n+1}\left(I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} .
\end{aligned}
$$

Thus we have from (6) and (7) that:
Proposition 5. Suppose that $\|T\| \leqq 1, r(T)<1$. Then U_{T} is scalar
if and only if $\left\{\left(I-T^{*} T\right)^{1 / 2} T^{n}\left(I-T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2}: n \geqq 0\right\}$ is a commuting family of normal operators.

A useful sufficient set of conditions is then immediate.
Proposition 6. Suppose that $\|T\| \leqq 1, r(T)<1$, and

$$
\left\{\left(I-T^{*} T\right)^{1 / 2} T^{n} T^{* m}\left(I-T^{*} T\right)^{1 / 2}: n \geqq 0, m \geqq 0\right\}
$$

is a commuting family of normal operators. Then U_{T} is scalar.
The conditions of Proposition 6 are somewhat easier to work with than those of 5. It seems resonable to conjecture that Proposition 6 gives necessary as well as sufficient conditions for U_{T} to be scalar, but to date we have not been able to prove it.
6. Examples. In this section we will explicitly construct some operators T such that U_{T} is scalar. The construction using operators in Θ will be given later.

Recall that an operator T on ℓ is called n-normal if \hbar can be considered as an orthogonal sum of n-copies of a Hilbert space h_{0} and relative to this decomposition T can be written as an $n \times n$ matrix whose entries $A_{i j}$ are all normal operators which commute with each other.

We will also need the following lemma. We omit its proof.
Lemma 1. If $X, X Y X$ are commuting normal operators and X is one-to-one, then Y is normal and $[X, Y]=0$.

Suppose that $\|T\| \leqq 1, r(T)<1$, and U_{T} is scalar. Relative to the decomposition $h=R\left(I-T^{*} T\right) \oplus N\left(I-T^{*} T\right), T$ has the operator matrix

$$
\begin{gather*}
T=\left[\begin{array}{lr}
A & B \\
C & E
\end{array}\right], \text { where } \tag{8}\\
B^{*} B+E^{*} E=I, \\
A^{*} B+C^{*} E=0,
\end{gather*}
$$

and $I-A^{*} A-C^{*} C=D_{0}, D_{0} \geqq 0$, is one-to-one. Note that

$$
\left(I-T^{*} T\right)=\left[\begin{array}{ll}
D_{0} & 0 \\
0 & 0
\end{array}\right]
$$

From Proposition 6 we have
Proposition 7. If the A, B, C, E in (8) are commuting normal operators, then $T=\left[\begin{array}{cc}A & B \\ C & E\end{array}\right]$ is such that U_{T} is scalar provided that $r(T)<1$.

In building an example, T will be nonnormal if $B B^{*} \neq C^{*} C$ or $A C^{*}+B E^{*} \neq 0$ or $C C^{*}+E E^{*} \neq I$. One way to get $r(T)<1$ is to have $\|A+E\|+\|A\|+\|C\|<1$. It is an immediate consequence of Lemma 1 that:

Proposition 8. The A in the block form (8) of T is normal if U_{T} is scalar.

However, it is easy to construct T such that U_{T} is scalar and T in the block form (8) is not n-normal.

Example 1. Let $h=h_{0} \oplus h_{0}$ and let S be a unilateral shift on h_{0}. Define T_{δ} on h by

$$
T_{\delta}=\left[\begin{array}{cc}
\delta I & 1 / \sqrt{2} S \\
-\delta S^{*} & 1 / \sqrt{2} I
\end{array}\right], 0 \leqq \delta<1
$$

Then T_{δ} is in the block form (8). $\quad T_{\delta} \rightarrow T_{0}$ uniformly as $\delta \rightarrow 0$. But $r\left(T_{0}\right)=1 / \sqrt{2}<1$ so $r\left(T_{\delta}\right)<1$ for sufficiently small δ. That $U_{T_{\delta}}$ is scalar for $r\left(T_{\delta}\right)<1$ follows from Proposition 6.

Finally we note that if $\operatorname{dim} R\left(I-T^{*} T\right)>1$ and U_{T} is scalar, then T has reducing subspaces by Theorem 1 and Proposition 3.
7. The case $r(T)=1$. If $r(T)=1, T^{n} \rightarrow 0$ strongly, and T^{*} is not an isometry, then V_{T} exists and has the formula (1). Suppose $V_{T} U_{0}$ is scalar for some constant unitary U_{0}. Proposition 2 does not necessarily apply since $\left\{V_{T}(w) U_{0}:|w|=1\right\}$ is only a commuting family of unitary operators for almost all w. However, this difficulty is easily avoided. Suppose $|\alpha|=1$. Then $V_{\alpha T}(w)=V_{T}(\alpha w) \bar{\alpha}$. Thus by replacing T by αT for a suitable α, we get that Proposition 2 holds for αT.

In trying to duplicate the results of $\S 5$ one has to use the series (1) since $(I-w T)$ does not have a bounded inverse for all $|w|=1$. This presents difficulties in calculating U_{T}. The proof of Proposition 5 relies on the fact that $\left(I-T T^{*}\right)^{1 / 2}$ can be factored out of $\sum_{n=0}^{\infty}\left(I-T T^{*}\right)^{1 / 2} T^{* n}$. If α can be chosen so that $|\alpha|=1, \alpha \notin \sigma(T)$, then one can get Proposition 5
to hold for $\bar{\alpha} T$. If $\{w:|w|=1\} \subseteq \sigma(T)$, then the calculations would have to be modified. We will not attempt them here.
8. An application. There is another way to "build" scalar inner functions. It was part of our original reason for undertaking this study. Recall that we let Θ denote $\left\{T:\left[T^{*} T, T+T^{*}\right]=0\right\}$. If Q is quasinormal $\left(\left[Q, Q^{*} Q\right]=0\right), A$ is self-adjoint, and $[A, Q]=0$, then $A+Q \in \Theta$. Whether there exists other types of operators in Θ is an open question. The defining condition of Θ occurs, for example, in [5]. It would be of interest to characterize the operators in Θ.

Suppose that $\|T\|<1$ and form the inner function $V=$ $V_{T} V_{T^{*}} \quad V \in(A I)$ since $V_{T}, V_{T^{*}} \in(A I)$. From (3) we have that

$$
\begin{aligned}
& V(w)=\left(I-T^{*} T\right)^{-1 / 2}\left(w I-T^{*}\right)(I-w T)^{-1}(w I-T) \\
& \times\left(I-w T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \\
&=\left(I-T^{*} T\right)^{-1 / 2}\left(w I-T^{*}\right)(w I-T) \\
& \times(I-w T)^{-1}\left(I-w T^{*}\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} \\
&=\left(I-T^{*} T\right)^{-1 / 2}\left(T^{*} T-w\left(T^{*}+T\right)+w^{2} I\right) \\
& \times\left(I-w\left(T^{*}+T\right)+w^{2} T^{*} T\right)^{-1}\left(I-T^{*} T\right)^{1 / 2} .
\end{aligned}
$$

If $T \in \Theta$, then V would be scalar. Now $H_{\hbar}^{2} \ominus V_{T} H_{\hbar}^{2} \subseteq H_{\hbar}^{2} \ominus V H_{\hbar}^{2}$ since $V=V_{T} V_{T^{*}}$. We have then that T is unitarily equivalent to the restriction of an operator with scalar inner function to an invariant subspace. Thus information about operators associated with scalar inner functions might prove useful in analyzing the operators in θ. Conversely, finding additional operators in Θ allows us to construct additional examples of scalar inner functions.

We will not go into a detailed study of $T \in \Theta$, but will make a few basic observations. The proofs of the first two are trivial, but the propositions are often useful when working with operators in Θ.

Proposition 9. $T \in \Theta$ if and only if $T^{*}\left[T^{*}, T\right]=\left[T^{*}, T\right] T$.
Proposition 10. If $T \in \Theta$, then $N(T)$ is reducing.
Theorem 3. If $T \in \Theta$ and T is a trace class compact operator, then T is normal.

Proof. Suppose that $T \in \Theta$ and T is a trace class compact operator. Then

$$
\left[T^{*}, T\right]^{2}=T^{*} T T^{*} T-T^{*} T^{2} T^{*}-T T^{* 2} T+T T^{*} T T^{*}
$$

Thus,

$$
\begin{aligned}
\frac{1}{2} \operatorname{trace}\left(\left[T^{*}, T\right]^{2}\right) & =\operatorname{trace}\left(\left(T^{*} T\right)^{2}\right)-\operatorname{trace}\left(T^{* 2} T^{2}\right) \\
& =\operatorname{trace}\left(\left(T^{*} T\right)^{2}-T^{* 2} T^{2}\right) \\
& =-\operatorname{trace}\left(T^{*}\left[T^{*}, T\right] T\right) \\
& =-\operatorname{trace}\left(\left[T^{*}, T\right] T^{2}\right) \\
& =-\operatorname{trace}\left(T^{*} T^{3}-T T^{*} T^{2}\right) \\
& =-\operatorname{trace}\left(T^{*} T^{3}\right)+\operatorname{trace}\left(T^{*} T^{3}\right)=0 .
\end{aligned}
$$

But $\left[T^{*} T\right]^{2} \geqq 0$, thus $\left[T^{*} T\right]=0$ and T is normal.
A discussion of trace class operators may be found in [4, pp. 1088-1119].

Note that if $\operatorname{dim} h<\infty$, then Theorem 3 says that $T \in \Theta$ if and only if T is normal.

We shall now examine the relationship between V and T more closely. Our first two results, while dealing with basic uniqueness properties of Potapov inner functions, are apparently new.

Assume for the remainder of this paper that $T \in \Theta$ and $\|T\|<$ 1. Then $V=V_{T} V_{T^{*}}$ is scalar. Let \tilde{T} denote S^{*} restricted to $H_{h}^{2} \ominus V H_{h}^{2}$. Then $\|\tilde{T}\| \leqq 1, r(\tilde{T})<1$ since $V \in(A I) . \quad V$ is scalar so that $V(w)=\int b(w, \lambda) E(d \lambda)$. If $c(w, \lambda),|w|=1$, is an inner function that divides $b(w, \lambda)$ almost everywhere and $c(\cdot, \cdot)$ is a borel measurable function, then $V_{1}(w)=\int c(w, \lambda) E(d \lambda)$ defines a scalar inner function that divides V [9]. Inner functions like V_{1} are the obvious factors for a scalar V. Note that $\left[V, V_{1}\right]=0 . \quad V_{T}$ is also a factor of V but neither V_{T} nor U_{T} are scalar if T is nonnormal. Thus V_{T} is a nontrivial example of a nonscalar factor of a scalar inner function.

Now if $\|\tilde{T} f\|<\|f\|$ for all nonzero $f \in H_{\hbar}^{2} \Theta V H_{\hbar}^{2}$, then $V=V_{\tilde{T}} U_{0}$ for some \tilde{T}_{0} acting in h and a unitary $U_{0}[1] . \quad \tilde{T}_{0}$ is unitarily equivalent to \tilde{T}. $\quad \tilde{T}_{0}$ would be normal since V is scalar [3], and T would have to be subnormal. Since it is unknown if all the operators in Θ are subnormal, it becomes important to determine if $\|\tilde{T} f\|<\|f\|$ for all nonzero f.

It follows from a result of Virot [11] about Rota inner functions that:
Theorem 4. If T_{1}, T_{2} are operators of norm less than one, and $V_{T_{1}} H_{\hbar}^{2} \subseteq V_{T_{2}} H_{\hbar}^{2}$, then $T_{1}=T_{2}$.

Proof. Since $\left\|T_{1}\right\|<1,\left\|T_{2}\right\|<1$, there exists T_{3}, T_{4} such that $r\left(T_{3}\right)$, $r\left(T_{4}\right)<1$ and $V_{T_{1}}=R_{T_{3}} U_{1}, V_{T_{2}}=R_{T_{4}} U_{2}$ where $R_{T_{i}}$ is the Rota inner
function of T_{i} and U_{i} is a constant unitary operator [8, p. 29]. But Virot has shown that $T_{3}=T_{4}$ if $R_{T_{3}} H_{\hbar}^{2} \subseteq R_{T_{4}} H_{\hbar}^{2}$. Hence $V_{T_{1}} H_{\hbar}^{2}=$ $V_{T_{2}} H_{\hbar}^{2}$. Thus $V_{T_{1}}=V_{T_{2}} U_{0}$ for some constant unitary U_{0}. Evaluation at $w=0$ gives $T_{1}^{*}=T_{2}^{*} U_{0}$, so that $\left(I-T_{1}^{*} T_{1}\right)=\left(I-T_{2}^{*} T_{2}\right)$, and $\left(I-T_{1} T_{1}^{*}\right)=U_{0}^{*}\left(I-T_{2} T_{2}^{*}\right) U_{0}$. But the w terms of $V_{T_{1}}$ and $V_{T_{2}} U_{0}$ must be equal. That is,

$$
\left(I-T_{1}^{*} T_{1}\right)^{1 / 2}\left(I-T_{1} T_{1}^{*}\right)^{1 / 2}=\left(I-T_{2}^{*} T_{2}\right)^{1 / 2}\left(I-T_{2} T_{2}^{*}\right)^{1 / 2} U_{0}
$$

But $\left(I-T_{i}^{*} T_{i}\right)^{1 / 2},\left(I-T_{i} T_{i}^{*}\right)^{1 / 2}$ are one-to-one. Thus

$$
U_{0}^{*}\left(I-T_{2} T_{2}^{*}\right)^{1 / 2} U_{0}=\left(I-T_{1} T_{1}^{*}\right)^{1 / 2}=\left(I-T_{2} T_{2}^{*}\right)^{1 / 2} U_{0}
$$

and $U_{0}=I$. Hence $T_{1}=T_{2}$.
The last half of the proof of Theorem 4 is of some interest in its own right. It shows that:

Proposition 11. If $\left\|T_{1} \phi\right\|<\|\phi\|$ for all nonzero $\phi \in h$ and if $V_{T_{1}} H_{h}^{2}=V_{T_{2}} H_{h}^{2}$, then $T_{1}=T_{2}$.

The assumption on T_{1} in Proposition 11 is needed.
Example 2. Let

$$
T_{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad T_{2}=\left[\begin{array}{ll}
0 & \alpha \\
0 & 0
\end{array}\right], \quad \text { and } \quad U_{0}=\left[\begin{array}{cc}
\bar{\alpha} & 0 \\
0 & \alpha
\end{array}\right]
$$

where $|\alpha|=1, \alpha \neq 1$. Then

$$
V_{T_{1}}(w)=\left[\begin{array}{rr}
0 & w^{2} \\
-1 & 0
\end{array}\right] \quad \text { and } \quad V_{T_{2}}(w)=\left[\begin{array}{cc}
0 & \alpha w^{2} \\
-\bar{\alpha} & 0
\end{array}\right]
$$

Thus $V_{T_{1}} U_{0}=V_{T_{2}}$ so that $V_{T_{1}} H_{h}^{2}=V_{T_{2}} H_{h}^{2}$ but $T_{1} \neq T_{2} . \quad T_{1}$, of course, is unitarily equivalent to T_{2}. Note that in this example $r\left(T_{i}\right)<1,\left\|T_{i}^{2}\right\|<1$ also.

Example 2 also shows that the hypothesis of Theorem 4 cannot be weakened to $r\left(T_{i}\right)<1$.

Since $V H_{\hbar}^{2} \subseteq V_{T} H_{\hbar}^{2}$, we have $\|\tilde{T}\|=1$ otherwise Theorem 4 would give us that $V H_{h}^{2}=V_{T} H_{h}^{2}$ which is a contradiction. We shall now show that there is an f such that $\|\tilde{T} f\|=\|f\|$. The proof will depend on the fact that if $\|X\| \leqq 1, r(X)<1$, then

$$
\begin{equation*}
H_{\hbar}^{2} \ominus V_{X} H_{\hbar}^{2}=\left\{\left(I-X^{*} X\right)^{1 / 2}(I-w X)^{-1} \phi: \phi \in h\right\} \tag{9}
\end{equation*}
$$

Proposition 12. Supposé that $T \in \Theta,\|T\|<1$. Let $V=V_{T} V_{T}$. and \tilde{T} be S^{*} acting in $H_{\hbar}^{2} \ominus V H_{\hbar}^{2}$. Then $\|\tilde{T} f\|=\|f\|$ for some $f \in H_{\hbar}^{2} \ominus V H_{\hbar}^{2}$.

Proof. Since $V H_{\hbar}^{2} \subseteq V_{T} H_{\hbar}^{2}$ we have

$$
\begin{equation*}
H_{\hbar}^{2} \ominus V H_{h}^{2}=\left(H_{h}^{2} \ominus V_{T} H_{\hbar}^{2}\right) \bigoplus\left(V_{T} H_{\hbar}^{2} \ominus V_{T} V_{T} \cdot H_{\hbar}^{2}\right) . \tag{10}
\end{equation*}
$$

Suppose that $f \in H_{\hbar}^{2} \ominus V H_{\hbar}^{2}$. Then from (10) we have $f=f_{1} \oplus V_{T} f_{2}$ where $f_{1} \in H_{\hbar}^{2} \Theta V_{T} H_{\hbar}^{2}$ and $f_{2} \in H_{\hbar}^{2} \Theta V_{T} . H_{h}^{2}$. Thus there are $\phi, \psi \in h$ such that $f_{1}=\left(I-T^{*} T\right)^{1 / 2}(I-w T)^{-1} \phi$ and

$$
f_{2}=\left(I-T T^{*}\right)^{1 / 2}\left(I-w T^{*}\right)^{-1} \psi
$$

$\|\tilde{T} f\|=\|f\|$ if and only if $f(0)=0$. But

$$
f(0)=\left(I-T^{*} T\right)^{1 / 2} \phi-T^{*}\left(I-T T^{*}\right)^{1 / 2} \psi=\left(I-T^{*} T\right)^{1 / 2}\left(\phi-T^{*} \psi\right)
$$

Hence $\|\tilde{T} f\|=\|f\|$ whenever $\phi=T^{*} \psi$.
Thus V is the scalar type of operator discussed in the earlier sections of this paper.

We shall conclude by calculating explicitly the relationship between \tilde{T} and T. This will enable us to write down a nonnormal T^{\prime} such that $U_{T^{\prime}}$ is scalar for any $T \in \Theta,\|T\|<1$. If $T \in \Theta$ is normal, T^{\prime} will be a nonnormal 2-normal operator.

By Theorem 3 we may assume $\operatorname{dim} h$ is infinite. Let $h=h_{1} \bigoplus h_{2}$ where $\operatorname{dim} h=\operatorname{dim} h_{1}=\operatorname{dim} h_{2}$. Let E_{i} be an isometry from h onto h_{1}. Thus if $\phi \in h$, we have

$$
\begin{equation*}
\phi=E_{1} \phi_{1} \bigoplus E_{2} \phi_{2} \quad \text { for unique } \quad \phi_{1}, \phi_{2} \in h . \tag{11}
\end{equation*}
$$

Define B sending h onto $H_{h}^{2} \Theta V H_{h}^{2}$ by

$$
\begin{equation*}
B \phi=\left(I-T^{*} T\right)^{1 / 2}(I-w T)^{-1} \phi_{1} \oplus V_{T}(w)\left(I-T T^{*}\right)^{1 / 2}\left(I-w T^{*}\right)^{-1} \phi_{2} \tag{12}
\end{equation*}
$$

where ϕ_{1}, ϕ_{2} are defined by (11). The sum in (12) is the same orthogonal sum as in (10). It is clear from (11) and (12) that B is a one-to-one continuous linear transformation. From (10) we get that B is an isometry. Following [8] we define \hat{T} as follows. If $\phi \in h$, then $B \phi \in H_{h}^{2} \ominus V H_{\hbar}^{2}$. Thus $S^{*} B \phi=\tilde{T} B \phi \in H_{k}^{2} \ominus V H_{h}^{2}$. Hence there is a $\psi \in h$ such that $\tilde{T} B \phi=B \psi$. Define $\hat{T} \phi=\psi$. We have then that $\tilde{T} B=B \hat{T}$ and \hat{T} is unitarily equivalent to \tilde{T}. Recall that $D=$
$\left(I-T^{*} T\right)^{1 / 2}$. Let $D_{*}=\left(I-T T^{*}\right)^{1 / 2}$. Take $\phi=E_{1} \phi_{1}$ so that $B \phi=$ $D(I-w T)^{-1} \phi_{1}$. Then $\quad \tilde{T} B \phi=D(I-w T)^{-1} T \phi_{1}=B \psi \quad$ where $\quad \psi=$ $E_{1} T \phi_{1}$. Thus $\hat{T} E_{1} \phi=E_{1} T \phi_{1}$. That is, h_{1} is an invariant subspace for \hat{T} and \tilde{T} restricted to h_{1} is unitarily equivalent to T on h.

Relative to the decomposition $h=h_{1} \oplus h_{2}$ we have

$$
\hat{T}=\left[\begin{array}{cc}
E_{1} T E_{1}^{*} & X \\
0 & Y
\end{array}\right]
$$

We now determine the two terms X, Y. Take $\phi=E_{2} \phi_{2}$ so that

$$
B \phi=V_{T}(w) D_{*}\left(I-w T^{*}\right)^{-1} \phi_{2}
$$

Then

$$
\begin{aligned}
\tilde{T} B \phi & =S^{*}\left\{V_{T}(w) D_{*}\left(w T^{*}\left(I-w T^{*}\right)^{-1}+I\right)\right\} \phi_{2} \\
& =S^{*}\left\{V_{T}(w) D_{*} \phi_{2}\right\}+V_{T}(w) D_{*}\left(I-w T^{*}\right)^{-1} T^{*} \phi_{2} .
\end{aligned}
$$

Notice that $V_{T}(w) D_{*}\left(I-w T^{*}\right)^{-1} T^{*} \phi_{2} \in V_{T} H_{\hbar}^{2} \Theta V H_{\hbar}^{2}$. We shall show that $S^{*}\left\{V_{T}(w) D_{*} \phi_{2}\right\} \in H_{\hbar}^{2} \ominus V_{T} H_{\hbar}^{2}$. Since $\|T\|<1$, we have

$$
\begin{aligned}
S^{*}\left\{V_{T}(w) D_{*} \phi_{2}\right\} & =S^{*}\left\{D^{-1}\left(w I-T^{*}\right)(I-w T)^{-1} D_{*} D_{*} \phi_{2}\right\} \\
& =S^{*}\left\{D^{-1}\left[w(I-w T)^{-1}-T^{*}(I-w T)^{-1}\right] D_{*}^{2} \phi_{2}\right\} \\
& =D^{-1}\left[(I-w T)^{-1}-T^{*} T(I-w T)^{-1}\right] D_{*}^{2} \phi_{2} \\
& =D^{-1}\left(I-T^{*} T\right)(I-w T)^{-1} D_{*}^{2} \phi_{2} \\
& =D(I-w T)^{-1} D_{*}^{2} \phi_{2}
\end{aligned}
$$

which is in $H_{\hbar}^{2} \ominus V_{T} H_{\hbar}^{2}$. Thus

$$
\hat{T} E_{2} \phi_{2}=E_{1}\left(I-T T^{*}\right) \phi_{2}+E_{2} T^{*} \phi_{2}
$$

or

$$
\hat{T}=\left[\begin{array}{cc}
E_{1} T E_{1}^{*} & E_{1}\left(I-T T^{*}\right) E_{2}^{*} \\
0 & E_{2} T^{*} E_{2}^{*}
\end{array}\right] .
$$

We have the following theorem.
Theorem 5. Suppose that $\left[T^{*} T, T+T^{*}\right]=0,\|T\|<1$, and let $V=V_{T} V_{T}$. . Then V is scalar. Furthermore S^{*} restricted to $H_{\hbar}^{2} \ominus V H_{\hbar}^{2}$ is unitarily equivalent to

$$
T^{\prime}=\left[\begin{array}{cc}
T & \left(I-T T^{*}\right) \\
0 & T^{*}
\end{array}\right]
$$

acting in $\AA \oplus h$. The operator T^{\prime} is such that $\left\|T^{\prime}\right\|=1,1 \in \sigma_{p}\left(T^{*} T^{\prime}\right)$, $r\left(T^{\prime}\right)<1$, and $U_{T^{\prime}}$ is scalar.

Proof. The only part of the theorem that needs to be verified is that U_{T} is scalar. But from the proof of Theorem 2 of [1] it is clear that if we write $V=c V_{X} \tau U_{1}$ as in (5), then X is unitarily equivalent to T^{\prime}. Thus U_{T} is scalar by Corollary 1 .

Unfortunately T^{\prime} does not help answer the question of whether $T \in \Theta$ implies T is subnormal. Neither T^{\prime} nor $T^{\prime *}$ are even hyponormal since $\left\|T^{\prime}\right\|>r\left(T^{\prime}\right)$.

Acknowledgement. The author would like to thank Carl D. Meyer, Jr. for the proof of Theorem 3 that appears here.

References

1. Stephen L. Campbell, Operator valued inner functions analytic on the closed disc, Pacific J. Math., 41 (1972), 57-62.
2. -, Inner functions analytic at a point, Ill. J. Math., 16 (1972), 651-652.
3. -_, Commutation properties of the coefficient matrix in the differential equation of an inner function, Proc. Amer. Math. Soc., 42 (1974), 507-512.
4. N. Dunford and J. Schwartz, Linear Operators, Part II, Interscience, New York, 1963.
5. Mary R. Embry, Conditions implying normality in Hilbert space, Pacific J. Math., 18 (1966), 457-460.
6. Henry Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
7. -_, The differential equation of an inner function, Studia Math., 35 (1970), 311-321.
8. S. Lynn Jackson, Jr., Operators and Inner Functions, Dissertation at Univ. of California, Berkeley, 1967.
9. Malcolm J. Sherman, A spectral theory for inner functions, Trans. Amer. Math. Soc., 135 (1969), 387-398.
10. Sheldon O. Sickler, The invariant subspaces of almost unitary operators, preprint.
11. Bernard Virot, Sur le modèle de Rota d'une contraction stricte d'un espace de Hilbert complexe séparable, C. R. Acad. Sc. Paris, Série A, t., 269 (1969), 130-133.

Received May 16, 1974.
North Carolina State University
Raleigh, North Carolina, 27607

