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ABELIAN GROUPS IN WHICH EVERY
ENDOMORPHISM IS A LEFT

MULTIPLICATION

W. J. WlCKLESS

Let <G+> be an abelian group. With each multiplication
on G (binary operation * such that <G + *> is a ring) and
each g e G is associated the endomorphism gf of left multi-
plication by g. Let L(G) = {gt\geG, * ε Mult G}. Abelian
groups G such that L(G) = E{G) are studied. Such groups
G are characterized if G is torsion, reduced algebraically
compact, completely decomposable, or almost completely
decomposable of rank two. A partial results is obtained for
mixed groups.

Let <G + > be an abelian group. With each multiplication on G
(binary operation * such that (G + *> is a ring) and each geG is
associated the endomorphism gf of left multiplication by g given by
gf (x) = g * χf x e G. Let L(G) be the set of all such endomorphisms,
i.e., L(G) — {gf \ g e G, *ε Mult(G)}. In general all one can say is
that L(G) is a subset of the endomorphism ring E(G). In this paper
we consider abelian groups G such that every endomorphism is a left
multiplication.

DEFINITION 1. An abelian group G is multiplicatively faithful
iff L{G) = E(G).

We mostly follow the notations in [2]. Specifically: all groups
are abelian, rings are not necessarily associative, ® denotes the tensor
product over Z and g ®_ the natural map x ~»g (x) x from G into
C?ΘG, o(x) is the order of an element x, Z(d) is the cyclic group
of order d and Z{d)* is the multiplicative group of units in Z(d).
For a prime p, we write Zv for the localization of Z at p and Zp

for the ring (or group) of p-adic integers. We use t(A)[t{x)] for the
type of a rank one torsion free group A [element x] and h(x) for the
height sequence. Finally, (S)[(S)* ]is the subgroup [pure subgroup]
generated by S.

We begin by listing some simple results.
A. Let θg: Horn(G(x)G, G)-»E(G) be given by θa(Δ) = Jo(g®_),

Δ e Horn (G (x) G, G), 0 e G. Then G is multiplicatively faithful iff
\JgQG Imaged = #(G).

Proof. Mult G, the group of all multiplications on G, is isomorphic
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to Hom(G(x) G, G). Under this identification ^°(#®_) = gt.
B. G is multiplicatively faithful iff for each θ e ̂ (G), there

exists ueG, σ e Mult G such that the following diagram commutes:

G

Proof. Obvious.

C. A divisible group is multiplicatively faithful iff it is torsion
free. More generally, if G = D®R, D the maximal divisible subgroup
of G with D torsion free, then L{G) = E(G) iff L{R) = E(R).

Proof. This follows directly from (B) and elementary properties
of the tensor product.

D. If Z is a direct summand of G, then L(G) = E(G). More
generally, if A is a ring, l e i , and H is a unital A module, then
A 0 H is multiplicatively faithful.

Proof. Let θ e E(A 0 H). Set u = leA, and define <7 e Mult G

Then

A 0 H1^ (AφH)®(A® H)

commutes.

E. Let iϋ((τ) be the set of all right multiplications by elements
of G for all rings on G. Then L(G) - E(G) iff R(G) = E(G).

Proof. This follows from considering opposite rings.

Multiplicatively faithful torsion groups are easily characterized.

THEOREM 1. Let G be a torsion group. Then G is multiplica-
tively faithful iff G is bounded.

Proof. If L(G) = E(G), then there exists u e G, σe Mult G such
that (To(u®_) = lσ, where 1G is the identity endomorphism. It follows
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that nG = (0), where n — o(u). If nG = (0), n e Z+, we can write
G = Z(n) 0 H. (D) applies to give L(G) =

We next consider mixed groups, and characterize the multipli-
catively faithful ones in one special case.

THEOREM 2. Let G be mixed with maximal torsion subgroup
T — 0 P Tp. Suppose that Tp Φ (0) for only a finite number of primes
p, and also that G/T is homogeneous completely decomposable. Then
L(G) = E(G) iff (1) G = T φ F, (2) each rank 1 summand of G/T
has idempotent type, (3) p(G/T) = G/T implies Tv is bounded.

Proof Suppose (1), (2) and (3) hold for G as above. Let T =
?\ Θ T2, where 2\ is the sum of the bounded and T2 the sum of the
unbounded p components of T. Since Tγ is bounded, write Tί = Z(n)φX
with X a unital Z(n) module. F = G/T is homogeneous, completely
decomposable and nonzero. Say F = Aφ B where A is torsion free
of rank one and B = ®aei(A)a. (1=0 is allowed.) Since t(A) is
idempotent, A is (may be regarded as) a subring with identity of
Q ([2], Th. 121.1). Moreover, since pA = A only when (T2)p = (0),
ΰ © Γ 2 may be made into a unital A module in the natural way.
Thus, I © ΰ © Γ 2 is a unital Z(n)@A module and (D) applies to
show G is multiplicatively faithful.

Conversely, let L(G) = E(G) for G satisfying the conditions of our
theorem. Let u e G be such that u* = 1G9 * some multiplication on
G. If ue pG, clearly Tp = (0).

Now consider a prime p such that % + Γ e p(G/T). Since (w + T)z

induces the identity endomorphism on G/T, it follows immediately
that u + Te pn(G/T) for all n e Z+. Write u = pg + t = pg + t, + t2,
where o{Q = p*, (o(£2), p) = 1. If tx = 0, then w 6 pG and ϊ7, = (0).
If tx Φ 0, then, for all x e Tp,

x = u*x = (pg + tt + t2)*x = p(g*x) + U*x .

(Since (o(ί2), p) = 1 and sc 6 Tp, t2*x = 0.) But o[p(^ * x)] < o(^),
o(ί!*a;) ^ o(ίc), so o(ίc) = o(tt * x) ^ o{Q. Thus Γ^ is bounded.

Thus, for each p such that u + TepiG/T), we have u + Tepn(G/T)
for all w G J?+, and Γp is bounded. Since t(u + Γ) is the type of each
rank 1 summand of G/T—(recall G/T is homogeneous)-—(2) and (3)
hold. Let Tu T2 be as before. Since T1 is bounded, G = TX@H with
T2QH.

To establish (1), we must show that T2 is a direct summand of
H. Write H/T2 as a direct sum of isomorphic rank one groups,
H/T2 = 0A, , and let At = (a, + Ta>* where Λ(αf + Γ2) = (mfi), m^ = 0
or oo for all i, i. Since p(H/T2) = H/T2^(T2\ = (0), the following
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implication holds: a{ + T2 e p(H/T2) —• α, e pif. From this one easily
obtains H = T2 φ F, where F = <{αj>*.

REMARK. The condition Tp ̂  (0) for only finitely many p is
necessary for the theorem. Let G = Π ^ ( P ) . Then T(G) = φpZ(2>)
is not a direct summand of G. However, G/T(G) is homogeneous
completely decomposable (torsion free divisible) and—as we shall see
in Theorem 3 - L(G) = E(G).

We next characterize reduced algebraically compact multipli-
catively faithful groups. If G is reduced algebraically compact, then
G = TlpGp> where each Gp is a complete module over Zp. Since
each Gp is fully invariant in G (qGp = Gp for all q Φ p) and since
Horn (Gp (x) G,, Gr) = (0) unless p = g = r, it follows that L(G) = J£(G)
iff L(Gj,) = E(GP) for all p. Each Gp may be written as a completion:
Gp = ( - B ; 0 5 P Γ , where BJ - θ«ei (£,)«, 5 , = φ ^ ^ ) , 0 < kβ < <*>.
(See [2], § 40 for details.)

THEOREM 3. Let G be reduced algebraically compact. Then G
is multiplicatively faithful iff, for each p, either B°p Φ (0) or Gp is
bounded.

Proof. If Gp is bounded, then L(GP) = E{GP) by Theorem 1. If
Bl Φ (0), write B°p = Zpφ B'. Then Gp - (Z9 0 £ ' φ 5 , Γ . Since Zp

is algebraically compact and pure in Gp ([2], Th. 41.7, 41.9), we have
Gp = Zp® G'. Since Gp is a unital Zp module, (D) gives L(GP) = ^(G,,).

Conversely, suppose G is reduced, algebraically compact and
multiplicatively faithful. Then L(GP) = £7(GP) for all p. If for some
p Bl - (0), then £ , - @βeJ Z(pkβ) S Γ £ Gp £ Π^e/ Z(pfc/»), where Γ
is the torsion subgroup of the direct product. (T Q Bp = Gp.) Now,
GpfT is torsion free divisible, thus homogeneous completely decom-
posable. Moreover, T is a p-group, and L(GP) — E(GP). Theorem 2
applies to give a splitting Gp = T 0 F. Since Gp= f, F= (0). Thus,
Gp is a reduced algebraically compact torsion group, and is, therefore,
bounded ([2], Cor. 40.3).

For the rest of the paper, we consider torsion free groups. First,
we do the completely decomposable case.

THEOREM 4. Let G = ®λeΛAλ, where each Aλ is torsion free
rank one. Then L(G) — E(G) iff there exist subsets Λ, - , Λn of the
index set A and rank one groups Aλl, •••, Aλn, λ^e^, with (1) A =
(J?=i A, and (2) t(Aλ.) + t{Aλ) ^ t(AΓ) for all X'eAif i = 1, . , n.

Proof. Suppose Λlf , An; Aiίf , Aλn exist satisfying the above
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conditions. Without loss of generality, assume Λu , Λn are disjoint.
Put λ' = λ4 in (2) to see that each t(Ax.) is idempotent. Thus, each
A .̂ can be made into a rank one ring with identity. Let Gt = φ ; β ^ Gχ
Due to (2), each G* can be regarded (in the natural way) as a unital
Aλi module. So we have G = (&7=ι Gt is a unital A module with
A = φ?= 1 A .̂ (ring direct sum). Since A is a (group) direct summand
of G, (D) applies.

Now suppose G =. Φ UΛ Â  with L(G) =_ £7(G). Choose % e G,
σ e Mult G such that σ o (u ®_) = lσ. Write w = Σ?=I0J,> α ^ e . 4 ^
Then, for all λ e Λ, TΓ σ (φ?=1 A;. (g) Aλ) = A; when π is the projec-
tion from G onto A .̂ Thus, for each λ, there exists at least one
i, 1 ^ i £ n, with ί(A;ί (g) Aλ) - t(A,.) + t(A )̂ ^ t{Aλ). The desired
partition of A now easily can be constructed.

Let G be an almost completely decomposable rank two torsion
free group, i.e., G 2 A φ 5 2 ί(ϊ for some deZ+ and rank one
subgroups A, B of (?. We will obtain a numerical condition to show
when such a G is multiplicatively faithful. We may assume t(A)
and £(£) are incomparable. (If t(A) and t(B) are comparable, then
G = A 0 £ by Theorem 9.6 of [1]. If G ^ A ® 5, Theorem 4 gives
a complete description of when G is multiplicatively faithful.)

Let A = <α>*, 5 = (6)^ and let d be the minimalpositive integer
with dG Q A © £. It is easy to show that G = < A © J5, α + nb/d) Q
Q φ Q where n is an integer with (n, d) = 1. (G/A φ j β = ^(d).)

Let A ί̂u) be the ^-component of the height sequence of x and
let Γh = {P I fej.(α) = °°}, Πΰ = {P I ^p(6) = °°} It is also easy to show
that p 6 ΠΛ• U Π^ —• (p, d) = 1. Let S be the multiplicative subgroup
of ^(df generated by ΠA U Πs

THEOREM 5. Let G = <AφJS, α + nb/d) be as above. Then L(G) =
ijf έ(A) and t(B) are idempotent and neS.

Proof. Suppose L(G) = E(G). If either A or B— A say—had
nil type, then AG = GA = (0) for any multiplication on G. (Recall
that £(A), t(B) are incomparable.) Thus, 1G could not be represented
as a left multiplication for any ring on G. Since L(G) — E(G) we
must have t(A), t(B) idempotent.

Since ί(A), t(B) are idempotent we can assume, without loss of
generality, that hp(a) = 0, P$UA, K(b) = 0, p$ T[B. Choose tfeMult(G),
x = aa + βb G G, a, β eQ, such that the following is a commutative
diagram:

(JΓ > Cr (X) Cr

\ /

G
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Let ΠΛ = {meZ\m = p? pe

k*, pt e UA} and define i L similarly.
Since t(A), t(B) are incomparable, we have σ(a (x) b) = <7(6 (g) α) = 0;

ff(α <g) α) = (c/λ)α, Λ e ΓL; ff(δ ® b) = (β/A?)6, A? e Πa Let # = α + %6/d.
Then

Since d is relatively prime both to n2 and to anything in Π* U
we must have c = c'ώ, β = e'c£

l | c
-7 — α

But l/d[α + ^6] e G. A short computation yields: n2e'/k — nc'/h = 0 (d).
Since (n, d) = 1, we have ne'h — c'k = 0 (cί).

Now σ [#(g)α] = σ[(αα + /36)® α] = ασ(α (g) α) = a(c'd/h)a =
lG(α) = α, so α = A/c'd. Similarly, β = ft/β'cί. Since aa + βbe G, we
must have c 'eΠi , e 'eΠs. But then w = c'kje'h (d), so neS. This
shows the two conditions of our theorem are necessary for L(G) — E{G).

Conversely, suppose t(A), t(B) are idempotent and neS. Let
a, b be as before. Let λ e E(G). Since t(A), t(B) are incomparable,
X(a) = (m/h)a, λ(δ) = (t/fc)6; h e ΠA, *? e Π*. Now λ(») = l/d[(m/h)a +
(nt/k)b] e G, so we must have m& — th = 0 (ώ).

Since neS, it is easy to choose c, ^ e Π i , β ^ e Π * such that

Let σ be defined by σ(a®a) = (dc/cja, σ(b(g)b) = (de/ejb, σ(a®b) =
σ(b (x) α) = 0. To show σ[G ® G] £ G, it is enough to check that
σ(y (g) α), σ(α (g) y), σ(i/ ® 6), cτ(6 <g) 1/) and <τ(?/ (g) y) are all in G. All
of these elements are obviously in G except the last one, and

This is in G iff wίc/d) Ξ nXe/e^d), which is true by choice c, cί9 e9

Thus, (jeMultG.
Now let

he ke

It follows directly that σo(g ®_) = λ. (One need only check this
identity on the independent set {α, 6}.) It remains to show that g e G.
Now g e G iff wfom/ftc] = ej/ke (d). This congruence is easy to derive
from necγ == c^ (d) and mk = th (d), both of which are given. Thus,
geG, g°ι = λ, and G is multiplicatively faithful.
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The above theorem can be used to construct an example which
shows that multiplicative faithfulness is not a quasi-isomorphism
invariant for torsion free groups. Let A — {(m/3*)α | m, k e Z},
B = {(m/(ll)&)6 \m,ke Z), and let G = (A © B, a + 26/61). Then
ΓL = {3}, Π* = {H} and 2£ <IL U Π*> C £(61)*. G is not multi-
plicatively faithful by Theorem 5. A ® B is multiplicatively faithful
by Theorem 4. G is quasi-isomorphic to 4 φ £ , since G 2 A 0 B 2
61G.

We give a name to a common occurence for torsion free groups.

DEFINITION 2. Let p be a prime and A a rank one subgroup
of a torsion free group G. A is called p-dense in G iff p(G/A) = G/A
and G is p-reduced.

THEOREM 6. Lei A be p-dense in G for some prime p. Let
0 Φ aeA and let Δ, Γ e M u l t G 6β swcfo £frα£ a{ = αf. ΓA-e^ Δ = Γ.

Proof. Since A is p-dense, Horn (G/A <g) G, G) = (0). But then
also Horn (G/<α> ® G, G) = (0), since A/<α> ® G is the torsion subgroup
of G/(a) ® G and G is torsion free.

The exact sequence: 0-+G—^ G(x) G-> G/<α>® G->0 yields:
0^Hom(G/<α>(g)G, G) — Mult G-1 ̂ (G), where 0 is given by 0(J) -
i o (a ®_) = αf e JS'(G). Since Horn (G/<α> (g) G, G) = (0), θ is 1 - 1.
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