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FIXED POINTS OF AUTOMORPHISMS OF
COMPACT LIE GROUPS

ROBERT F. BROWN

Hopf’s proof that the real Cech cohomology H*(G) of a
compact, connected Lie group G is an exterior algebra with
odd-dimensional generators was followed by a demonstration
that the number of such generators is equal to the rank of
the group, that is, to the dimension of a maximal torus.
We show that the latter result is a special case of a relation-
ship between an automorphism of such a greup and the
automorphism it induces on the cohomology.

1. Introduction. For a set X and a function f: X— X, let
@(f) denote the set of fixed points of f: those x € X for which f(z) = .
If X is a topological group and f is a homomorphism, we use the
symbol @,f) for the component of the group @(f) which contains
the identity element of X. By a graded wvector space V we mean
a sequence {V,, V, V, ---} of (real) vector spaces. The dimension
of V is the sum of the dimensions of the V,. A subspace of V is a
graded vector space V' = {V’} such that V| is a subspace of V,; for
all 1.

Now let G be a compact, connected Lie group and let & be an
automorphism of G. Denote by PH*(G) the graded vector subspace
of primitives' in the Hopf algebra H*(G) and let Ph* be the restriction
to PH*(G) of the automorphism hi*: H¥(G)— H*(@) induced by h.

The main result of this paper is

THEOREM 1.1. Let G be a compact connected Lie group and let
h be an automorphism of G. Then the rank of the Lie group P,(h)
1s equal to the dimension of the graded wvector space @(Ph*).

If h is the identity automorphism, then @(h) = G while @(Ph*) =
PH*(G). Since H*(@) may be generated by primitives, the number
of generators is the dimension of PH*(G). Thus Hopf’s result in
[4] on the rank of a compact Lie group is this case of Theorem 1.1.

The next section presents a digression concerning the kernel of
an endomorphism of a compact, connected abelian topological group.
The setting is more general than is necessary for the later sections
because some readers may find this material of independent interest.
The proof of Theorem 1.1 is accomplished in §3. The remaining

1 A primitive in H¥G) is an element z for which m*(z) =1&® 2z +2&®1; where
m*:. H¥(G) - H¥G) ® H*¥G) is induced by the multiplication m: G X G — G of the group.
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sections discuss consequences of the main result. Section 4 demons-
trates that the existence of an automorphism % on a compact, con-
nected Lie group G such that the fixed point group of % is of low
rank implies that G has a very restricted type of infinitesimal structure.
In §5, we obtain necessary and sufficient conditions for the power
map p.(x) = x* on a Lie group with compact components to map a
component onto another. This theorem extends the main result of
[2] which established the conditions only for compact Lie groups.
The results contained in this paper were announced in [1]%

2. Endomorphisms of abelian topological groups. The kernel
of a homomorphism % will be denoted by Ker (k). For a homo-
morphism % on a topological group, the symbol Ker, (k) will represent
the component of the kernel of % that contains the identity element
of the group.

Let G be a compact, connected abelian topological group and let
h be an endomorphism of G. Denote the character group of G by
G~ and write the endomorphism of G~ induced by % as h".

For a subgroup H of G, let : H — G be inclusion and let Ann (H)
denote the subgroup of G~ consisting of all elements which vanish
on H. By [6, p. 253], there is an exact sequence

PN
(2

0 — Ann (H) G~ H" 0.

In particular, letting Im () be the image of h, we have the
exact sequence
0 — Ann (Im (b)) — G~ —— Tm (k)" — 0 .

Since Im (k)" is free, there exists a homomorphism e:Im ()" — G~
such that 77e¢ is the identity function.

LEMMA 2.1. Let h: G/Ker (h) — G be the homomorphism induced
by h, then h™ takes G~ onto (G/Ker (h))".

Proof. Let B: G/Ker (k) — S* (the circle) be any element of
(G/Ker (h))". Consider the diagram.

G/Ker (h) - G
N
AL

Im(h)

which defines 7. Now define o’ = gh:Im (k) — S' and set a =

2 In [1] and [2], PH*(G) and Ph* are denoted by H*(G) and h*, respectively.
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ela’)eG", then i (a) = S.

PROPOSITION 2.2. Let G be a compact, connected abelian topological
group, and let h be an endomorphism of G. Then the dimension
of the topological group Ker,(h) is equal to the rank of the abelian
group Ker (17).

Proof. By the lemma, we have an exact sequence

00— Ker (") — G~ —ib; (G/Ker (h))" — 0.
Since G is connected, (G/Ker (k)" is free so
G~ = Ker (1") @ (G/Ker (R))" .
The sequence
0 — Ann (Ker, (h)) — G~ — (Ker, (R))" — 0
also splits, that is,
G~ = (Ker, (k)" @ Ann (Ker, (k)) .

By [6, p. 243], Ann (Ker, (k)) is the character group of G/Ker, (k).
Since Ker (h)/Ker,(h) is finite, G/Ker (k) and G/Ker, (7) have the same
dimension, so the abelian groups (G/Ker (k))” and Ann (Xer, (7)) have
the same rank [6, p. 34 and p. 259]. We conclude that (Ker, (k))”
and Ker (%”) have the same rank and the result is proved.

Let h** denote the restriction of A* to H'G).

PROPOSITION 2.3. Let G be a compact, connected abelian topolo-
gical group, and let h be an endomorphism of G. Then the rank
of Ker (™) is equal to the dimension of the wector space Ker (h**).

Proof. There is a natural isomorphism from G~ to HYG; J)
(integer Cech cohomology) [9; Appendix 1], so we may identify A~
with the endomorphism h¥* of HYG; J) induced by £. The Universal
Coefficient Theorem implies the existence of a natural isomorphism
between HY(G; J) Q R(R = the reals) and HYG) so that 2} ' (identity)
corresponds to h*'. Consequently, Ker (2") and Ker (k}') are iso-
morphic free groups and their rank is equal to the dimension of the
vector space Ker (h*).

3. Proof of the main theorem. We will use the symbol Aut(G)
to denote the group of automorphisms of a Lie group G and Inn(G)
for the inner automorphisms.
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LEMMA 3.1, Let G be a compact, connected Lie group and suppose
h € Aut (@) has the property that h™eInn (G) for some m = 1. Then
the rank of the Lie group @, h) 1s equal to the dimension of the
graded vector space O(Ph*).

Proof. By [8, p. 46], there is a subgroup U of Aut(G) which
intersects each coset of Aut (G)/Inn(G) in a single automorphism.
Thus there exists C,, defined by C,(x) = axa™ for all x € G, such that
hC,e U. Let J, denote the cyclic group of order m, then since h™ e
Inn (G) implies that (RC,)™ is the identity, we can define X: J,, — Aut (G)
by X{g) = (rC,)?. Let C} denote conjugation by » in (G x J,),, the
semi-direct product of G and .J, induced by X. For b = h(a™), we
compute that C%.,(x, 0) = (A(x), 0), so @,(k) is isomorphic to the
identity component of the centralizer of (b, 1) in (G x J,),- By [7;
1.2] and [2; 4.3], the rank of @,(h) is equal to the multiplicity of
+1 as an eigenvalue of Ph*. Finally, (Ph*)™ is the identity trans-
formation FE, so that multiplicity is equal to the dimension of the
kernel of Ph* — E, which is @(Ph*).

Now we turn to the proof of Theorem 1.1, that is, we obtain
the conclusion of Lemma 3.1 without the hypothesis “A™ ¢ Inn (G)”.
Let Z be the identity component of the center of G and let S be
the maximal connected semisimple normal subgroup of G, then G =
ZS and ZN S is finite. Since Z and S are characteristic subgroups
of G, an automorphism % of G restricts to automorphisms £, and
hs of Z and S respectively. Then

rank (@,(h)) = rank (@, (h,)) + rank (&,(ks))

because the equation is true of the corresponding Lie algebras. By
DeRham’s theorem and the Kiinneth theorem, there are natural
isomorphisms of algebras

H*G) = HX®) = H*Z x S) = H*Z) ® H*S)

where & denotes the Lie algebra of G. The isomorphisms permit
us to identify PH*(G) with PH*(Z) @ PH*(S) (direct sum). Further-
more, naturality permits us to identify Phr* with Ph} @ Ph¥, so it
must be that

dim (@(Ph*)) = dim (@(Ph3)) + dim (G(Ph?))

where “dim” means dimension. Thus we have reduced the theorem
to the corresponding statement for ki, and for hs. Since Z is a
torus, Phi = h}'. Write the group operation on Z additively and
define f (x) = hy(x) — 2 for zecZ, then @ (h,) = Ker,(k,). By 2.2
and 2.3, the dimension of the topological group Ker, (%,) is equal to
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the dimension of the vector space Ker (2%!) and therefore to the
dimension of @(h}*). Since S is semisimple, Aut (S)/Inn (S) is a finite
group so 3.1 establishes the result for hg and completes the proof
of Theorem 1.1.

The fact that the rank of @ (k) is equal to the dimension of
PH*(®,(h)) might lead one to suspect that Theorem 1.1 is a conse-
quence of some more elaborate relationship between H*(@,(h)) and
@(h*). However, let g € G be such that the closure of the subgroup
it generates is a maximal torus and let & be conjugation by g, then
h* is the identity isomorphism, but @(k) is just the maximal torus.

4. A bound on the rank. Let ¥ be a simple Lie algebra and
let o() denote the number of algebra generators of H*() which
are fixed under 7* for all automorphisms 7 of .

ProrosITION 4.1. Let G be a compact, connected Lie group with
Lie algebra &. Write

C=3PNP - - PUYP--- PUD --- P AW

where B is abelian, A=A = A, for each s=1,2, ---,u and all
4,5 =1, -+, k(s), where A, is simple, and W 2 Wi if s~ t. Then

S5 p(,) = rank 0,(h)

for all automorphisms h of G.

Proof. By Theorem 1.1, the rank of @,(h) is equal to the dimen-
sion of @(Ph*). Let PH*(®) denote the image of PH*(G) under the
deRham isomorphism. By [3; p. 257], Ph* can be identified with
the restriction of %* to PH*(®), for an automorphism 7 of ®.
Consequently, it is sufficient to consider each type of simple Lie
algebra in ® by itself. That is, it is enough to prove that if G is
a Lie group such that @ = A P --- P U (k factors) where A is simple,
and % is an automorphism of G, then the rank of @,(%) is at least
o(2). In this case, the matrix M of the restriction of 7* to PH*(®)
contains k& rows corresponding to each generator of PH*(). If the
generator is one which contributes to o(), then those same rows of
M — E (FE the identity matrix) are linearly dependent. Thus the
multiplicity of +1 as an eigenvalue of M is at least o() and we
conclude that the dimension of @(Ph*) for any automorphism A of
such a group G is indeed at least o().

If G is a simply-connected compact Lie group with its Lie algebra
@ as in the proposition, then there is an automorphism # of G for
which the rank of @(h) is precisely %, 0(2,), so Proposition 4.1
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cannot be improved in general.

By [3, p. 258], which is just a restatement of pp. 81-82 of [10],
we have the following table:

type of 2 o(2)
A, r even /2
A, r=3 odd (r +1)/2
D, 2
D, r=5 r—1
E; 4
all others rank ()

Observing that o() = 1, we have the following known result.

COROLLARY 4.2 (de Siebenthal [8]). If G s a compact, connected
Lie group and there is an automorphism of G with a finite set of
fixed points, then G is abelian.

More generally, we see that knowledge of the rank of @,(k) for
an automorphism 2 of G implies restrictions on the Lie algebra of
G by means of the table above. For example, since o(2) =1 only
if 9 is of type A4, or type A,, then

COROLLARY 4.3. If there is an automorphism h of a compact,
connected Lie group G such that @(h) is a sphere, then either G is
abelian or its Lie algebra ®& is of the form @ =3HAP:---PA
where 3 1s abelian and W is a simple Lie algebra, either of type
A, or of type A,.

5. The power map. Let G be a Lie group whose components
are compact. In other words, G is an extension of a compact, con-
nected Lie group G, by a discrete, but not necessarily finite, group.
We define the rank of a component K of G to be the rank of the
identity component of the centralizer of ¢ in G, for some element g
of K. To see that the definition is independent of the choice of the
element, let C,: G,— G, be conjugation by g and notice that the
identity component of the centralizer of g is @,C,). A path in K
from g to any other point ¢’ induces a homotopy from C, to C,, so
C*¥ = C¥%. Since Theorem 1.1 states that the rank of @,(C,) can be
computed from C}, the theorem implies that the rank of a component
is independent of the choice of element used to define it.

When G is compact, the definition of the rank of a component



FIXED POINTS OF AUTOMORPHISMS OF COMPACT LIE GROUPS 85

which we have just given agrees with the definition we used in [2]
because, by [7; 1.2], a maximal torus of the centralizer of gec K is
the identity component of a Cartan subgroup generated from K.
The “power map” p,: G— G, k = 2, is defined by p,(9) = ¢*. The
component of G containing an element g is gG,, so »,(9G,) S ¢*G,.
We will establish necessary and sufficient conditions for p,(9G,) = ¢*G,.

PROPOSITION 5.1. The degree of the map p,: 9G,— ¢*G, 1s nonzero
if and only if rank (¢9G,) = rank (g*G,).

Proof. Let A = PC}, then by Theorem 1.1 the rank of ¢G, is
the dimension of @(A). Define A® = A*™ 4 A*2 4 ... + 4 + E,
then A® is nonsingular if and only if @(4) = @(4*). Thus rank (¢9G,) =
rank (¢*G,) if and only if A" is nonsingular. By [2; 2.3] (note the
remark following that theorem), the determinant of A is the degree
of p.: 9G,— 9*G..

Following a suggestion of K. H. Hofmann, we define, for ge G
and & = 2, a map ®§: G,— G, by ®i(x) = g *(gx)*. Observe that the
degree of @f is equal to the degree of p,: 9G,— g*G,. We next wish
to prove that if the degree of @] is zero, then the dimension of
?4(G,) is less than the dimension of G,. We establish the usual special
cases first.

LEMMA 5.2. Let G be a Lie group in which the identity component
G, 1s @ torus. If the degree of @i is zero, then dim(p{(G,)) < dim(G,).

Proof. Abbreviate @7 as ® and let G; be the character group
of G,. Just as we did in the proof of Proposition 2.3, we may identify
@~ with @F: H(Gy J)— HYG,; J). Again let C, denote conjugation
by ¢ and set A = PC}. Noting that

P(z) = Cy7(2)-Cy7%(x) - - - Cyolw)-2

an induction argument shows that ®F may be identified with A® =
At A2 4 oo + A + FE so the hypothesis implies that @~ has a
nontrivial kernel. We have an exact sequence

0 — Ann (P(Gy)) — G —— PG — 0

where Ann (¢(G,)) # 0 since it contains the kernel of @~. Thus ¢(G,)
is a proper subtorus of G, and consequently it is of lower dimension.

Let G be a Lie group with compact components and suppose
9 € G has the property that g™ is in the centralizer of G, for some
m =1, Let I' = U} "G, and define operation “°” on I" by

(gsx)o (gt,y) — gw(s-)-t)z
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where (9°x)(g'y) = 9°7z in G (x, ¥, 2€ G,) and + is reduction modulo
m. Consider the subgroup G° = J,9'G, of G and define ¥:G*— I
by ¥(g°x) = g¥*“x. Since we can compute that

T((g°x)9'y)) = ¥(g'x) ¥ (9'Y) »

we conclude that I" is a group and ¥ is a homomorphism.

LEMMA 5.3. Let G be a Lie group im which G, 1s compact and
semistmple. If the degree of P} is zero, then dim (@i(G,)) < dim (G,).

Proof. Since G, is semisimple, we may assume that g™ is in the
centralizer of G,, for some m = 1. The computation above proves
the commutativity of the diagram

"G,

/
pk/ v
/ l

9G, ———g? "G,
Px

where 7, denotes the power map in I'. The hypothesis thus implies
that the degree of p, is zero so, since I' is a compact Lie group,
the proof of Theorem 5.2 of [2] establishes that dim (7,(9G,)) < dim (G,).
Observing that p,(9G,) = g*®i(G,) completes the argument.

ProPOSITION 5.4. Let G be a Lie group with compact components.
If the degree of Pi is zero, then dim (PYG,)) < dim (G,).

Proof. Returning to the notation of §3, we write G, = ZS where
Z is abelian and S is semisimple, and for @ = @, we let @, and @,
be the restrictions (note that ® is a product of automorphisms). Since
Pp* = Pp} P Ppt, the degree of @ is the product of the degrees
of @, and @, so at least one must vanish by the hypothesis. Thus
by 5.2 applied to the subgroup of G generated by ¢ and Z, if the
degree of @, is zero then dim (¢,(Z)) < dim(Z). Similarly, if the de-
gree of @y is zero, then dim(®4(S)) < dim(S) by 5.83. Let #1: Z x S— G,
be defined by (z, s) = zs, then since Z is central, p¢ = (P, X Pg)
and we have

dim ((G,)) = dim (9(2)) + dim ($(S)) < dim (G,) .

Proposition 5.1 and 5.4 together imply the following extension
of the main result, Theorem 5.2, of [2].

THEOREM 5.5. Let G be o Lie group with compact components.
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The statements below are equivalent:
( i ) pk(gGo) = ngo-
(i) The degree of p: 9G,— 9"G, s not zero.
(iii) rank(¢9G,) = rank (¢*G,).

REFERENCES

1. R. Brown, Fixzed points of endomorphisms of compact groups, Bull. Amer. Math.
Soc., 80 (1974), 293-96.

2. , On the power map in compact groups, Quart. J. Math., 22 (1971), 395-400.
3. , The real cohomology of compact discommected Lie groups, Proc. Amer.
Math. Soc., 37 (1973), 255-59.

4. H. Hopf. Uber den Rang geschlossener Liescher Gruppen, Comment. Math. Helv.,
13 (1940), 119-43.

5. , Uber die Topologie der Gruppen-Manwigfaltigheiten wnd ihre Verallge-
meinerung, Ann. Math., 42 (1941), 22-52.

6. L. Pontryagin, Topological Groups, second edition, Gordon and Breach, 1966,

7. G. Segal, The representation-ring of a compact Lie group, Publ. Math. I. H. E. S.,
34 (1968), 113-28.

8. J. de Siebenthal, Sur les groupes de Lie compactes non connexes, Comment. Math.
Helv., 31 (1956), 41-89.

9. N. Steenrod, Universal homology groups, Amer. J. Math., 58 (1936), 661-701.

10. R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc.,
80 (1968).

Received April 30, 1975. This research was partially supported by NSF Grant
MPS 75-04914.

UNIVERSITY OF CALIFORNIA, LoS ANGELES, CALIFORNIA








