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LEVEL SETS OF POLYNOMIALS

IN n REAL VARIABLES

MORRIS MARDEN AND PETER A. MCCOY

The methods used in studying the zeros of a polynomial in a
single complex variable are here adapted to investigating the
level surfaces of a real polynomial in En, with respect to their
intersection and finite or asymptotic tangency with certain
cones. Special attention is given to the equipotential surfaces
generated by an axisymmetric harmonic polynomial in E\

A principal interest is the application of reasoning used by Cauchy
[2, p. 123] in obtaining bounds on the zeros of polynomials in one
complex variable. We thereby seek the level sets

generated from the real polynomials

(1) H(X)-a= Σ «,. ,.*{•*?• x{τ,

X = (xu x2, • , *„), r = | * l = [*? + *?+ + x2

n)
ι/\

It is convenient to introduce direction numbers Λy = x}r~\ 1 ̂  j ^ n,

connected byΛ^+ + Λ ^ = l and cones Λ,: λ; = constant, about the/th

axis. On the intersection of the cones Λy, these polynomials become

rkAk(A,)
k=0

where

k — f\k V*-y / ~~ Z-i ^71 7 " Λ 1 Λ " ' U = AC = Π .

At the origin the level set La(H) has î th order contact with An if
Ak(Aj) = 0 for 0 ̂  AC ^ Ϊ̂  — 1 but AU(A})/- 0 and An(A})/- 0. For such
sets we introduce the ratios

MV = MV(A,)= max \AJAn\

491



492 M. MARDEN AND P. A. McCOY

= min

= μv (Λy) = max Ak/Av\.
+isfcί

Then, by considering points common to the level set La(H) and the cone
Λ; exterior to the unit ball r > 1 (about the origin), we deduce an
inequality

(2) |H(rΛ,)- a I A n \ rn- § \Ak \ rk ^ \ An \ rn Γl - Mv % r k ] =
k=v L k=\ J

(2a) I An I r-[l - (Af,(l - r "-)( r - I)"1] > | Λ j rΛ(r - 1 - M,)/(r - 1)

from which it is clear that, if r ^ 1 + M n La(H) does not intersect
Λr Likewise, if we consider the reciprocal polynomial associated with
(1), derived by setting 1/r = ζ > 1, the inequalities

(3)

ζ"~k\Ak

(3a)

imply that Hiζ'A,)/ oc for ^ g 1 + μ,. Thus we infer that H(rA,)έ a
for

which brings us to

THEOREM 1. // the level set La(H) has vth order contact with the
cone A; at the origin and if it intersects the cone at any additional finite
points, then it does so at a distance r from the origin where

(4) mv(A])<r<l + Mv(Aj).

By use of inequalities (3a) and (2a), we replace inequality (4) in
Theorem 1 by
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(4)' r, =i r ^ r2

where rλ is the larger positive root of the equation

l - ( l + /x,)r + μ / - + I = 0

and r2 the larger positive root of the equation

r = 1 being a root of both equations.
A natural question arising from this theorem is that of determining

the point of tangency of the level sets with the cones Λr Let us consider
the fcth term in the polynomial (1),

rkAk(ΓλX) = Σ. <*n jM"-x]n.

As this sum is composed of homogeneous polynomials of degree /c, we
may apply Euler's Identity [1, p. 141] to find that

(5) X V[rkΛk (r'X)] = krkAk (rιX),

where the left side is the scalar product of vector X and the gradient of
the bracket. On account of this relation, the orthogonality condition

X VH(X) = 0

becomes

(6) 2 krkAk(AJ) = 0.
k = v

Let us define

m*(Λ,)= min [(kAL + AV)I(AV)\

M*(Λ,)= max (kAk/nAn).

Theorem 1 and equation 6 lead to

COROLLARY 1.1. If the level set La (H) has vth order contact with the



494 M. MARDEN AND P. A. McCOY

cone Aj at its vertex and is tangent to the cone at a positive distance r from
the origin, then

(7) m ΐ ( Λ , ) < r < l + Mΐ(Λ ;).

As equation (6) may be viewed as

(8) d[H(X)-a]/dr = 0,

we may use Rolle's Theorem to conclude

COROLLARY 1.2. // the ray (λ b , λπ) E Π"=1 Λ7, the level surface
La(H) has a finite tangental contact point between successive pairs of
intersections of La(H) with the ray.

The influence of the coefficient An = An(X) on the structure of
La(H) near infinity is found by selecting a sequence of points {Xfc},
rk = I Xk I —> oo, such that H(Xk) = a. Each of these points is located on a
cone Af\ This leads to the bound rk < 1 + M,(ΛJfc)) and the limit
An (A]k)) —> 0 due to rk —> oo. From the continuity of Am the sequence ΛJk)

converges to the cone Λy, where AΠ(Λ7) = 0. We conclude that La(H) is
asymptotic to a set imbedded in the null cones of An. Level sets which
are asymptotic to these cones are unbounded. Hence

THEOREM 2. The level set La(H) is unbounded if and only if it is
asymptotic to a set imbedded in a cone Λ, such that An(A))=zO.

Let us turn our attention to the influence of the algebraic sign of the
coefficients of these polynomials on their level sets. It is of course clear
that, if a level set La(H) has contact with a cone Λ7 on p spheres, then
La(H) has contact with these same spheres on each cone Λ/ for which the
coefficients Ak agree term wise. A more explicit conclusion is obtained
thru the use of Descartes' rule of signs in

THEOREM 3. // the number of variations in sign of the terms in the
sequence of coefficients

(9) A0(Λ,), ,An(Λ ;)

generated from the polynomial H(X) — a on the cone A} is p, then the
number of intersections of surface La(H) and cone Λ, is p or is less than p
by an even positive integer. If the number of permanences in sign for (9) is
q, then surface La(H) and cone Λ* = ( —Λ; ) have at most of q intersec-
tions.
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A sufficient condition for such an intersection is found in

COROLLARY 3.1. // Λ; is a cone for which the signs of the coefficients
A0(Λy) and An(Λ,) are opposite, then the level set La(H) has positive
contact with Ar

Additional connections between these level sets and the coefficients
Ak are found in the equation

H(rλΛ,)-α = £ Ak(Λ,)λkrk = S Ak(A})rk = H{rA,)-a
fc=0 fc=0

which hold on cones Λ, and Λ, for which λfcAfc(Λ,) = Ak(A,), Ak(A}),
0 ^ fc ^ n, for some real constant λ. This equation establishes a relation
between the intersections of level sets with cones about yth and /th axes,
as stated in

THEOREM 4. Let the level set La(H) meet the cone Λ, at the positive
distances r{, - , rp. Then La (H) meets each cone Aifor which there exists
a positive constant λ such that

at the distances λru λr2, , λrp.

Let us now focus our attention upon equipotential surfaces gener-
ated by axisymmetric harmonic polynomials in E\ These surfaces arise
when the coefficients Afc(Λy) reduce to Pk(cosθ), the Legendre polyno-
mial of degree k in cos θ = xr~x and the polynomial H(X)- a becomes
the real harmonic polynomial of degree n

(10) H(r,θ)-a = Σ akr
kPk(cosθl anϊ0.

k=0

Elementary reasoning based on the fact that on the cone θ = θ0,
H(r, θ)— a is a polynomial of degree n in the variable r leads us to
geometrical properties of these surfaces which are summarized in

THEOREM 5. For each axisymmetric harmonic polynomial H, every
finite point of E3 belongs to some equipotential of H. In particular, if the
equipotential surfaces La (H) and Lβ (H) have contact with a cone on the
spheres r = r0 and r = JR0, respectively, then for each choice of λ between a
and β the equipotential surface Lk{H) has contact with this cone between
these spheres.
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Although equipotential surfaces generated from distinct harmonic
polynomials of degree n with common zeroth order contact at the origin
have no more than n - 1 common circles of intersection on any fixed
cone, near infinity these surfaces have nearly identical structure. To
bring forth this asymptotic property, we apply Theorem 2 to equation
(10) to conclude

THEOREM 6. An equipotential surface generated from an axisym-
metric harmonic polynomial of degree n is unbounded if and only if it is
asymptotic to at least one of the cones θ = θ} for which Pn(cos 0,) = 0,

Having established these properties of equipotentials, let us now
estimate the growth of these surfaces in a neighborhood of infinity. To
accomplish this, consider an unbounded equipotential surface generated
from an nth degree harmonic polynomial with *>th order contact at the
origin.

At large distances from the origin this surface either coincides with
or approaches some cone 0 = 0y, Pn(cos0y) = O. In the latter case
assuming the equipotential meets the cone 0 = 0O for 0O > θ, we select
β(e >0) sufficiently small so that Pή(cos 0)Prt(cos 0 ) ^ 0 for O ^ 0 ; <
0 4- e < 7r. Let us now apply the Mean Value Theorem on the interval
JΘ = [θj7 0], θj < θ < θj + € to find η Efθ so that

P:(cos η) = [Pπ(cos 0 ) - Pn(cos 0,)]/(cos 0 - cos Θj).

We then use the relations

- cos 0 + cos θj = 2sin ((0 + 0,)/2) sin ((0 - 0;)/2)

>(sin07)(0-0y)sin(6/2)/6

to deduce that

Pk(cosθ)
Pn(cosθ)

Pk(cos 0) (cos 0 - cos θ})

(cos 0 - cos θj) (Pn(cos Θ)-Pn(cos θ,)

K(e)
-(θ-θj)\P'n(cosη)\

From this estimate we find that on the equipotential surface Lα(Jί),

αfcPfc(cos0)
max anPn (cos 0)

Me/(0-07)

for θj < θ < θj + e and v + 1< n establishing
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THEOREM 7. If an equipotential surface generated by an axisym-
metric harmonic polynomial in E3 is unbounded and in neighborhood of
infinity meets the cone θ = 0O at a distance r = r(0o), then

r(0o) = O{max (1/| 0O-0J)}

w h e r e P n ( c o s 0 7 ) = 0 , l^j^n for ΘQ/ θh

We now turn to some analytic results on the zeros ru , rn-v of the
function

H(r, 0O) - a = Σ akr
kPk (cos 0O), r > 0,

k = v

from which we infer that

H(r, 0 O )- a = anPn(cos θQ)rv{rn~v + sn-1r
n-'-1 + + sv+ιr + 5,)

where sk = akPk(cos θ0)/anPn(cos 0O), v ^ k ^ n - 1. The coefficients
of the equation

«.« — ̂  _ι_ c n — u — ί _ ι_ i _ _, i Γ l

are symmetric functions of its roots rk. Thus,

sr+1 = ( - lΓ"" ' ( r 2 r 3 rB_, + r,r3 • τn.v + • • • + r,r2 r π ^ M )

From these symmetric functions we find

r, + + rB_, = - (α^P.-^cos θ0)/anPn(cos θ0))

(11)
1/ri + + \\τn-v = - (av+ιPv+ι(cos θ0)lavPv{cos θ0)).

which bring us to

THEOREM 8. Let the equipotential surface generated by the harmonic
polynomial

H(r, θ)-a = Σ akr
kPk(cos θ)

k = θ
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having vth order contact with the cone θ = θ0 at the origin meet this cone in
n - v additional finite circles at the distances ru , rn-v. Let Mm Mg and
Mh be respectively the arithmetic, geometric and harmonic means of
r, rn-v and let bk =\ak/an\ and τ k ( 0 o ) = |Pfc(cos0o)/Pn(cos0o)|. If

Pn(cos 0o)Pv +i(cos θo) ̂  0 and anavU /• 0, then

Mh=(n- v)(bjbv+ι)[τv(θo)/τv+ι(θo)].

Bounds on the circles of intersection having maximum and minimum
radii are found in

COROLLARY 8.1. The maximum circle of intersection of the equipo-
tential surface La(H) and the cone θ = 0O lies exterior to the sphere about
the origin with a radius max {Ma,Mh} and the minimum circle of
intersection not on the origin lies interior to the sphere about the origin with a
radius min {Ma, Mh}.

When contact at the origin is zeroth order, from the facts that the
distances ru- -9rn-v are positive, P o ( c o s 0 ) = l , Pi(cos θ) = cos θ and
equations (11) we deduce

COROLLARY 8.2. For an equipotential surface La(H) having zeroth
order contact with the cone θ — 0() at the origin to intersect this cone in n
finite circles, it is necessary that 0 ^ 0O < π/2 if ajao < 0 and π/2 < θo< π
if aJaQ>0.
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