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AUTOMORPHISM GROUPS OF UNIPOTENT
GROUPS OF CHEVALLEY TYPE

A. FAUNTLEROY

Let G be a quasi-simple algebraic group defined and split
over the field k. Let V be a maximal k -split unipotent sub-
group of G and Aut(V) the group of k -automorphism of
V. The structure of Aut (V) is determined and the obstructions
to making Aut(V) algebraic when char/c>3 are made
explicit. If G is not of type Λ2, then Aut(V) is solvable.

Introduction. In [5] Hochschild and Mostow showed that the
automorphism group of a unipotent algebraic group defined over a field k
of characteristic zero carries the structure of an algebraic k-group. For
example if V is a vector group over C, then Autc( V) = GL(n, C). For
more complicated unipotent groups — even over C — little seems to be
known about the actual structure of the automorphism group. On the
other hand, it was shown by Sullivan in [8] and again by this author in [3]
that the Hochschild-Mostow result never holds in positive characteristics
when the dimension of the given unipotent group is greater than one.

In [4] Gibbs determined generators for the (abstract) automorphism
group of V(k) — the k-rational points of a maximal k-split unipotent
subgroup V of any k -split simple algebraic group. The characteristic of
the field k was assumed distinct from 2 or 3, but no other assumptions on
the field k were made. We refer to such groups V as unipotent groups
of Chevalley type. The purpose of this paper is two-fold:

1. To determine the automorphism groups in characteristic zero of
unipotent groups of Chevalley type; and

2. To exhibit the obstructions to making these groups algebraic in
positive characteristics.

Let Autv(k) denote the group of k-automorphisms of the unipotent
k -group of Chevalley type V. We show (2.9) that there is an exact
sequence

such that
(i) H(k) is the group of k-rational points of an algebraic k-group

H.
(ii) N(k) = 0 if char fc = 0, and N(k) = u:=i Ga (k) if char k > 3.
(iii) The above sequence splits and Autv(k) is the semi-direct

product of N(k) and H(k).
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Moreover, if the quasi-simple group containing V is not isogenous to
PGL2, then Autv(k) is solvable.

Our treatment of this problem is slightly more general than required
to prove the desired results over fields. In fact if A = Z[l/2,1/3], then
all schemes (no separation property is implied here) are assumed to be
A-schemes and the problem we discuss is that of representing the functor
S -> Autv(S): = Auts.gr( VxAS) for 5 a reduced A-scheme. The results
for fields then follow by base change.

After setting up some notation and discussing preliminaries in §0, we
proceed in §1 to give a functorial description of the generators described
by Gibbs. Section 2 is devoted to the computation of Autv and §3 to the
special case of groups of type A2.

The author's debt to Gibbs' work will become clear soon. It is also
a pleasure to thank J. Tits for several useful comments on an earlier
version of this paper.

0. Preliminaries.

0.1. Let 5£ be a simple complex Lie algebra with root system X and
fundamental roots ΦcX. There is a unique (up to isomorphism)
smooth algebraic group scheme ch(Φ, X), defined over the integers,
corresponding to SB called the Chevalley group of type X [2: Vol III, Exp.
XXV]. If the set of positive roots relative to Φ is denoted X+, then X+

determines a unique Borel subgroup B = B(X+) of ch(Φ, X). Let V =
V(Φ, X) be the unipotent radical of B. We call V a unipotent group
scheme of Chevalley type.

0.2. A unipotent group scheme of Chevalley type, say V, is
completely determined by the group valued functor it represents. We
recall the definition here. Let 5 be a scheme. Then V(S) as an
abstract group is generated by symbols xr(t), r€ΞΣ+, ί EΓ(S, θs): =
Ga(S) subject to the relations

R.I: xr(t)xr(u)= xr(t + u)

(R)
r l r + s£V

R.2: [*,("),

where the product in R.2 is taken over all pairs of positive integers (/,/)
such that ir + js E X+. We use the conventions: [α, b] = a~ιb~λab and
(mia)b = a~ιba.

0.3. With respect to a given ordering of X+, every element of V(S)
can be written uniquely in the form
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where N = |Σ+1 and rx<r2< < rN. Moreover, the constants Qhn are
integers and | Qhrs \ < 4. Recall that Nrs = Cn>rs, and also that Cι2,rs =
ι

2NsrNSJ+s, C2hrs = {NrsNr,r+s, Ks = - Nsr and Nrs = ± 1 all r, s in Σ.

0.4. The subgroups Xn r E Σ+ given by XΓ(S) = {JCΓ(/): * e Gα(S)}
are called root subgroups and each Xr — Gfl. The uniqueness assertion of
0.3 says that the product morphism Xnx - x XrN-> V is an
isomorphism.

0.5. Put Vm=Πh ( Γ ) g mX r for \<m%h = h(rN) where h(r) is the
height function (c.f. [4; §0]).

PROPOSITION. [4: 5.4] The series

V=Vί>V2>">Vh>l

is both the upper and lower central series for V.
Moreover, for each i, VJVι+ί has a canonical structure of a vector

group (i.e. is isomorphic to G" for some integer n).

0.6. In the following we exclude the trivial case X = Λi.

PROPOSITION. Let (X, Φ, Σ+) be a system of roots, fundamental roots
and positive roots in a complex simple Lie algebra. Then

(i) There exist a unique root rN E X+ of maximal height h.
(ii) // rEl,+ and h(r)^2 then there exist r , 6 Φ such that

r-rtE T.
(iii) If rξΞ?,+ and r^ rN, r g : Φ then there exist r, E Φ such that

r + ηG Σ \
(iv) // the combination ir + js for i > 0, / > 0, r, 5 E Σ+ lies in Σ+ then

r + 5 E V.
(v) There exist r, E Φ such that rN - r, E Σ+.

We make some remarks concerning (v). It is easy to see by
examining the root systems that, if Σ is not of type A,, then there is a
unique fundamental root r , G Φ with rN - rx E Σ+. If X is of type C, and
rN - rx E X+, then rN - 2r, is also in X+. In particular, if X is not of type
A/, then there is a unique root of height h - 1. For if h(r) = h -1,
Γ G Γ , then h(r + r})= h some r7 E Σ+ by (iii) so that r + η = rN by
(i). Thus rN - r, = r E Σ+, so r; = r,.

If Σ is of type Q and h(s)=h-2, then X5 and XrN.2rk

commute. For h(s + rN - 2rf) = 2/ι - 4 . But in this case h = h(rN)^5
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so that 2h - 4 > h and, hence, s + rN - 2r, fέ Σ+. So by (iv) and R.2, Xs

and XrN-2n commute. It follows that we can assume that, in case Ch the
roots are ordered so that rN — 2rh rN — r, and rN are the last three
roots. We keep this assumption throughout.

If Σ is of type A, with / > 2, then there are just two roots r b r , E Φ
such that rN - η E Σ+, i = 1, /. In this case, since h(rN) >2,
rN - T\ + rN - Γ/ is not a root so that XrN-n and XrN-n commute. This fails
of course if Σ = A2 for then Σ+ = {r, s, r + 5}.

In what follows we set A: = Z[l/2,1/3]. All schemes are A-
schemes. We assume no separation property for A-schemes.

1. The Gibbs subfunctors In [4] Gibbs listed six types of
automorphisms of the abstract group V(k) for any field and showed that
every automorphism was a product of these six types. We shall give
here five of those six types — described functorially — which will in fact
generate Autv(S) for any reduced A-scheme S.

1.1. Diagonal automorphisms. Let M be the free abelian group
generated by the set of roots Φ CΣ determining V = V(Φ, Σ). Let D be
the A -torus representing DA (M). Recall DA (M) is the functor defined
by

DA(M)(S) = HomAalg(A[M],Γ(S, Os))

where A[M] is the group algebra of M over A.
We define a homomorphism of group valued functors

wD: hD = D(M)-*Autv

as follows: For any A-scheme S and λ G hD(S) let wD(λ) be the map
which sends xr(t) to xr(λ(r)t) all r E Σ+. As in [4: §4], it is easily verified
that this determines an automorphism of V(S).

Since A(r)EΓ(S, Os)*, it is also easy to see that wD(λ) is in fact an
automorphism of VxAS over 5. Indeed, if B is the standard Borel
subgroup of Ch(Φ, Σ) determined by Σ+ and T is its maximal torus, then
(cf. [2: Vol. Ill, Exp. XXII, 1.13]) D = T and w is just the map induced
by T acting on V = Bu via conjugation. In particular, vvD is a
homomorphism of group valued functors which (since Ch(Φ, Σ) is of
adjoint type) is in fact a monomorphism.

1.2. Inner automorphisms. Let / = V/Z(V) where Z(V) is the
center of V. Then we have the natural functorial monomorphism of
group valued functors / -» Autv.
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1.3. Central automorphisms. Let Λ be the functor from Sch/A to
abelian groups given by Λ(5) = Homs_gr(Gα x 5, Ga x 5) and let / =
| Φ | . Put C = Λx " xΛ (/ copies). We define a monomorphism
wc: C-+Autv of group valued functors as follows:

For 5 G Sch/A and c = (cu , C/) G C(S) we define wc(c) by

wc(c)[xr i(ί1) xrN(ίiv)]

+ Σ

for all ί, G Γ(5, Os), l^i^N and c, G End s . g r (G α x Λ S) where c,(0 is
given by the canonical action of c, on Γ(5, Os) = Ga(S). Since the
subgroup XrN is central, it follows immediately that wc(c) is an au-
tomorphism of V(S) and it is equally clear that wc(c) yields an element
of Autv(S).

Finally, recall that the abelian group structure on A(S) is given by
(ci + c2)(t)= Ci(ί)+ c2(t) all t G Gα(S); so wc is in fact a monomorphism
of group valued functors.

1.4. Graph automorphisms. Let Π be a finite group of automor-
phisms of M which stabilize Φ and hence Σ+. Then an element g G Π
determines a graph automorphism wπ(g) of V x Λ 5 over S for an
A-scheme S via the assignments xr(t)-*xg(r)(t) all r£l,+ and ί G
Γ(5, O s ). Such automorphisms arise as certain graph automorphisms of
Ch(Φ,Σ) determined by Steinberg [1: 12.2] which stabilize Φ.

If Σ is of type A, (/ > 1), D, (/ > 4) or E6 then Π = Z 2 . If Σ is of type
D4, then Π = S3. These are the only graph automorphisms which
occur. We identify Π with the constant functor and see immediately
that wπ is a monomorphism of group valued functors.

1.5. Extremal automorphisms. Let rN be the unique root in Σ+ of
maximal height (cf. 0.6). Then there is a root r, G Φ such that rN - r, G
Σ+. Suppose temporarily that Σ is not of type A/ or Q. Put E = Ga

and define a map wE: E->Awί v as follows: For any A-scheme S and
u G E{S) = Γ(S, Os) let wE(w) be the map which acts trivially on xr(t),
r^r, and which sends jcr,(ί) to

Xr, (φr^r. {ut)X

for all t G Γ(S, Os). As in [4: §4] one verifies that w£(w) determines an
automorphism of V(S). It is also seen that this induces a (unique)
automorphism of VxAS over S. The following lemma is immediate.

LEMMA 1.6. The map wE: E —> Autv is a monomorphism of group
valued functors.
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Suppose now that X is of type A, (/ > 1). Then there are two
fundamental roots, say rλ and rh such that rN - r, E X+. The lemma
shows that for each rh i = 1, / we have a monomorphism
wt: Ga—> Autv. If / > 2 then ^-r^η and rN - r^ rλ. Since X ^
and Xrn_r, commute if / >2, for all w, t> E Gα(S) we have w1(w)w/(ι;) =
^/(UJW^M). We thus obtain a monomorphism W£:JE =

Gα x Ga —> Awίv When / = 2 we have two monomorphisms HΊ and vv2

(recall in this case Σ = {r, s, r + s}) and we denote by E the subfunctor of
Autv which the images of these two homomorphisms generate. We will
see in §3 that this case gives rise to the only exception to the solvability of
Autv.

Now suppose X is of type C,. Then if rN - r, E X+, we also have
rN -2r f E X+. We have just as above wλ: Ga —• Autv; but we can also
define another map w2: Ga-+Autv by w2(u)[xr(t)] = xr(t), r/ r,, and

w2(u)[xr,(t)] = xΓi(0AC^2r,(w0^N

As above, the following lemma follows from straight fofward computa-
tions.

LEMMA 1.7. 77ιe morphism w2 is a monomorphism of group valued
functors and w2(u)wί(v) = wλ(v)w2(u) for all u,v€ίGa(S), S E
Sch/k. In particular there exist a monomorphism of group valued functors

wE: E = Gax Ga-> Auty

such that wE(u,0)= wλ(u) and wE(0, v)= w2(v).

2. The structure of Λutv. The purpose of this section is to
describe the functor Autv in terms of the Gibbs subgroups and prove that
these generate when Autv is restricted to the category (Sch/Λ)red of
reduced A -schemes. Let Av be the subgroup of Autv generated by
77, D, E, I and C. We assume throughout this section that
Xτ^Λ2, B2. We let V be a unipotent group of Chevalley type over A
and S an A -scheme.

PROPOSITION 2.1. The subgroup C is normal in Autv.

Proof Recall that if U is any abstract group, U' its commutator
subgroup and Z its center then there is a well-known homomorphism of
monoids a: Hom(l//l/',Z)-»End(t/) defined by a(h)(u) =
uh(uU'). Since Aut(U) operates on all objects involved and clearly
preserves α, the intersection Imα Π Aut(l/) is a normal subgroup of
Aut(U).
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Applying this to our case set U = V(S), U' = V2(S) Z = Vh(S) (c.f.
0.5). Then U/U' — Ga(S)1 and the map a is just the map wc defined in
2.3. Since Z C U' it follows that Imα Π Aut U = C(S) is normal in
AuttΛ

PROPOSITION 2.2. Let W be the subfunctor of Av generated by E, I
and C. Then D normalizes W and DW is a semidirect product.

Proof. Since D normalizes C and / is normal in Autv it suffices to
show D normalizes E.

Let A E Φ and rN - rx^ Σ+. Let eEE(S) be the extremal au-
tomorphism determined by xr,(t)—>xrι(t)xrf^rι(ut)xrr,(Kut2), K an approp-
riate constant and suppose d E D(S) corresponds to the character a.

Now ded'ι[xrχt)] = de[xrχa(r>)-χt)\. Put s = a^Y't. Then

de[xrχs)] = d[xrXs)xrιsΓ.rXus)xrN(Kus2)]

= xri(a(r£)5)xr^-r<(a(rN - rι)us)xrN(Ka(rN)us2).

Since a is a character a(rN - rf) = α(rN)α(rI)"1. Thus

ded~ι[xrχt)] = xrχt)xr^rXu't)xrN{Ku't2)

where u' = (a(rN)/[a(rt)]2) u.
Now suppose Σ is of type C, (/ ̂  3) and e is given by

xrχt)<-*xrχt)xrir2rXut)XrN-rXKut2)' xr»(Lut3) — ύgain for appropriate K
and L. Then computing as above we find ded'1 is the extremal
automorphism

Xn (t) -> Xr, (0XrN-2r, (M '0**™ ( # " ' ^ ) ^ (^« ' ί 2 )

where u' = (α(rN)/α(rί)
3) u. Hence, in any case, D(S) normalizes E(S)

and hence W(S).
The last assertion of the proposition will follow if we can show that

DΠW = {1}. Let wEW(S) and deD(S) corresponding to the
character a. Write w = eic with eEE(S), c E C(S) and /G
/(5). Then if rf = w we have c = Γ'eιd. Let r, E Φ. Then for all
ίEΓ(5, Os) we have

c[Xr.(01 = xΛOXrΛcXO) = rιe'ιd[xFχt)]

with r, < 5.
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Thus α(r,) = 1 for all r , E Φ hence d = 1.

Let G = DW. We call G the connected component of Av. The
next proposition justifies this terminology.

PROPOSITION 2.3. The subgroup Π normalizes G and A v is the
semi-direct product of Π and G.

Proof. We have seen in 2.1 that Π normalizes C and it clearly
normalizes /, so it remains to show that Π normalizes D and E.

Let dED(S) correspond to the character a. Then if p E Π,
pdρ~][xr(t)] = xr(a(p~\r))t). Hence Π normalizes D.

Now if r; E Φ and rN - r, E Σ+, then p(rN - r,) = rN - p(r,)EX+, for
p E Π. Thus p(r ) = r, if Σ is not of type A, and p(rj) = rz if Σ is of type
A, and rN - r, E Σ+, i = 1, /. A straightforward computation now shows
that, if eEE(R) and e[xr,(t)] = xrι(t)xrN-rι(ut) xrN(Kut2), then ρeρ~λ =
e'E. E(R). In fact, if Σ is not of type A,, then pep"1 = e. If Σ is of type
C, (/ ^ 3), then π = 1 and there is nothing to prove.

Now suppose p E Π and p = diec, d E D(S), / E /(S), e E E(S) and
c E C(5). Then d~ιρ maps XΓ|(S) onto Xp(ri)(S). But iec acts trivially
on V(S)/V2(S), since Σ 7̂  A2 or B 2 Hence p(rι)=rι and p is
trivial. This completes the proof.

We need the following well known lemma.

LEMMA 2.4. Let v = xsXt{) xj^t?) xsκ{tκ) be an element of
V(S) with 5, < 52 < "<sκ. Then for all r E Σ+ and all t E Γ(S, Os)

(intu)jcΓ(O = Xr(t)xr+sXCnrSι(- ttt)) -

where i ^ K is the least integer such that r + s, E Σ+.

Proof If K = 1 the result follows from Chevalley's commutator
formula [1: 5.2.2]. The general case follows by a straight forward
induction argument.

PROPOSITION 2.5. An element c E C(S) lies in E(S) I(S) if and
only if it lies in I(S) and is conjugation by an element of Vh-χ(S), where
h = h(rN).

Proof Suppose c = e y/ 1. Let r , G Φ with rN - r, £ Σ + . Then

= xr,(t)xrN(cι(t))

= ey[xrXt)]

= xrι(t)xrι+Sι(NrιSι(-ttJ)'"
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where γ = int jcsi(ίi) 'Xsκ(tκ) and / is the least integer such that rt + s} E
Σ+. Equating terms, we see that rx + sy = rN; i.e., s; = rN - rx E Σ+. This
is a contradiction unless γ acts trivially on xn(t) and c,(ί) = 0. Hence
c[xr,(t)] = xrι(t) unless rN - r, E Σ+.

Now suppose rN - r, E Σ+, r, E Φ and Σ is not of type C,.
Then

φr.(0] = ^(0^(

We must have r, + 5, = rN - rt. But then s; = rN - 2r, E Σ+ a contradic-
tion, thus we conclude e = 1.

If Σ is of type C/, then we have

= e[xri(t)xn+Sj(Nmi(-tt})) "

^ ( Λ (0)

Now if / is not identically zero, we have r, -\- s} = rN - 2rx so that
Sj = rN - 3r, E Σ+. But this is impossible since the Cartan matrix for Q
shows that the r, chain of roots through rN has length 2. Thus / is
identically zero. It must happen, then, that r, + s} = rN - rt so that
s, = rN- 2r, and g(t) = N^^lty).

We have shown that e is given by

xrι (t)-+Xr, (t)xrN-ri (ut)xrNQ,Nr^nut2)

where u = NΓirN_2riίy = - NrN_2rιjj. (Recall Nrs = - Nsr all r, 5 E
Σ+.) Consider now the effect of intx r j^2 r i(ί ;). Recall r N - 2 r i + r E Σ +

only if r = r;. Thus we need only consider int jcr̂ 2r, (t}) acting on xri (t):

But

21,r, ,ΓN-2r,// = 2
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Thus intxrN-2ri(t}) = e ι and, hence, if c E C(S)Π E(S)I(S\ then c

It follows that for η E Φ, r* - r, E Σ+

= xΓl (ί)x,+S](Nr iS](-tt} ))•••.

Equating terms we see that r, + s; = rN so Sj = rN - rx. If Σ is not of type
Ah then we could only have y = int jc r^ r i(α), since there is just one root of
height h — 1. In this case, we have

int JC^Γ|(α)[jcΓl(O] = ^ ( 0 ^ ( N r i , r N _ r , ( - at)).

Again equating terms we see JVrjv_Γl,Γlαί = c, (ί).
If Σ is of type Ah then there are two roots ru r , E Φ with rN - r, E

Σ+. Just as above, we see that conjugation by a suitable element of
XrN_Γi(5), i = 1, /, has the same effect as a central automorphism on XΓ|.(5),
i = 1, /. In particular, these two types of automorphisms commute with
each other since Σ is not of type A2 and thus their product gives an
element of C(S). Since the xΓι(t\ r, E Φ, t E Γ(5, O s ) generate V(5) as
a group, the proof is complete.

PROPOSITION 2.6. The subfunctor W = El is representable.

Proof. We shall show that W is the semi-direct product of two
representable functors. Suppose first that X is not of type Q. We claim
that, in this case, W is the semi-direct product of E and /.

Let e E £ ( 5 ) Π /(S), say e = y with y = i n t x ^ ) xsκ(tκ). Then
if rN - r, E Σ+, r, E Φ, using Lemma 2.4 we have

Equating terms we see that r, + 5y = rN - r, hence 5; - rN - 2r, E Σ+,
contradiction. Hence e = y = 1.

Now suppose Σ is of type C/. Then

Thus r, + Sj = rN - 2r, so s, = rN - 3r, E Σ+, a contradiction. Hence e
must be of the type considered in the first part of the proof. Equating
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terms again, we find that s, = rN — 2η. As in the proof of Proposition 2.5,
we can find a G Γ(5, Os) such that int xrN-2rι(a) = e. Now put

Eί = {e G E(S)\ e[xn(t)] = xr,(t)xrN-2r,(ut) ,

e[xr(t)] = xr(t), r^rt}.

Then Eι Π I(S) = 1 so W is the semi-direct product of Ex and I(S).

Finally, since E, Ex and / are representable, so is W.

Let S be a reduced A-algebra and c an element of Λ(S) =
HomS g r(G f lxΛS, GaxAS). Then, since GaxAS = Spec OS[T], the ele-
ment c is completely determined by a polynomial c(T) in OS[Γ]. We
can write c(Γ)= d(Γ)+c 2 (Γ), where cx{T) has degree ^ 1 and c2{T)
contains no terms of degree less than 2. It follows that C(S) =
Cλ(S)xC2{S\ where d ( 5 ) = {c G C(S): degree d ^ 1} and C2(S) =
{c G C(5): c has no terms of degree less than 2}. It is also clear that if
c G Ci(S), then c has no constant term. Thus C = C\ x C2 where
C\— Gι

a. An entirely straight forward computation shows that CΊ and
C2 are both normal subfunctors of Av. In fact, E and / centralize C so
one need only check conjugation by elements of D and π and the result
for these subgroups follows essentially from the definitions.

We define H to be the subfunctor of Av generated by TΓ, D, E, I and
d and set JV = C2.

PROPOSITION 2.7. For any A-scheme S, AV(S) is ίfte semi-direct
product ofH(S) and N(S).

Proof. Clearly <H(S),ΛΓ(S)> = AV(S) and it suffices to show that
H(S) Π N(S) = 1. This follows from 2.2, 2.3 and 2.5.

COROLLARY 2.8. The subgroup H is represented by a smooth solva-
ble A-group scheme and Av is a sheaf on the Zariski site Sch/A.

Proof Let Ho = (D, £, /, d>. Then

is exact. But π is solvable by 1.4 and the solvability of Ho follows from
2.2 and 2.5. That H is representable is a consequence of the semi-direct
product decompositions H = ΊT ίf0, Ho= D - EICU Proposition 2.6 and
the representability of D, E, /, d and TΓ.

The second assertion will follow if we show N is a sheaf since
Av = H N. But JV = Π;=1 Ga which is clearly a a sheaf on Sch/A.
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THEOREM 2.8. Let S be a reduced A -scheme. Then the canonical
map j : Av(S)^>Autv(S) is an isomorphism. Consequently Av — Autv

on (Sch/A)red.

Proof. Let S E (Sch/A)red be given and {5,} an open affine covering
of S. Since A v and Autv are sheaves we have the following commuta-
tive diagram

Autv(S)-+l\ AMίv(S,)=sΠ Λutv(St ΠSt)

where the rows are exact. It follows that the theorem holds if and only if
it holds for affine schemes 5. Moreover, since connected components
are open, we may also assume each St is also connected so it is enough to
establish the result when S = Spec/? is reduced and connected.

The theorem holds when R is a field by [4: Theorem 6.2]. We
indicate now how each step used in the proof of the case for fields can be
carried out over R. The proof proceeds through seven steps. We write
Autv(R) for Autv(SpecR).

I. Let tu , U be arbitrary nonzero elements of R and suppose
θ G Auty(R). If 0[JCΓ I(O]

 = π ; = i *r,(O m o d V2(R)> then the matrix T =
[tη] is monomial; i.e., T has just one entry in each row and each
column. Consequently, θ(Xr,) = XrpU) (mod V2), where p is some permu-
tation of 1, , /.

Proof. Let yu ---,yι be indetermiϊiants and put A ' =
β [ y i > " >y/] Let ΘA be the image of θ under the homomorphism
Autv(R)-+Autv(A'). We confuse ΘA. with ΘA(A')E.
AutG r(V(A)). Suppose 0Λ,(jcΓί(y,))^π;=1 xη(yii) mod V2(A') with
yηEAf, l^i^l. Let p E Spec R. Then y .^0 in R/p[yu '' , Yι] =
A'lp and we have 0A/P[y«] = Π'=1 xΓ;(y/y). The automorphism θAΊP ex-
tends uniquely to an automorphism of V(K) where K is the quotient
field of A/P. Then by [4:6.3] the matrix TA/P = [yίy] is
monomial. Since this holds for all p ESpeci?, R is reduced and 5 is
connected we have shown that TA — [yi;] is monomial.

Now let φ: A'-^R be the R -algebra homomorphism determined
by φ( Y) = tn 1 ̂  i: ̂  ί This induces a group homomorphism
φ: V(A')—> V(R) and moreover

i - 1 i
V(A') >V(R)
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commutes. It follows that T = [ttj] = φ[TA] = [φ(y«,)] is monomial and
that θ[Xn] = Xrp0) mod V2 for some permutation p of 1,2, , /.

II. Let θ G Auty(R). Then there exist a graph automorphism
g G Π such that gλθ(Xrι(R)) = Xrι(R) mod V2(R) for each fundamental
root subgroup Xr(R), rt G Φ.

Proof. B y s t e p I , θ ( X r ι ( R ) ) = X r p 0 ) ( R ) m o d V 2 ( R ) f o r l^i^l,
where p is some permutation of 1,2, , /. Then it follows as in [4:6.4]
that p induces a symmetry of Σ — the set of all roots. The correspond-
ing graph automorphism g G Π does the trick.

III. Let g and θ be as in II. Then there is a diagonal automor-
phism dED(R) such that d^g^θ acts trivially on V(R) mod V2(i?)

Proof By II, g~*0 induces an automorphism of V(R)/V2(R) which
sends Xrι(R) mod V2(/?) into itself. Let g ^[JC Γ I (1)] = xTι(Ui) mod
V2(i?). Then g" !0 acts on V(R)/V2(R) = Aι(R) via the matrix T =
diag(Ml5 , W/). Since g'ιθ is an automorphism, it follows that w, is a
unit in R all /. Let d G D(i?) be the diagonal automorphism determined
by the homomorphism a : M —» i? * given by a(rt) = uh 1 ̂  i ^ /. Then
d-χg-λθ acts trivially on V(l?)/V2(i?).

IV. Let θ G Auty(R) and suppose θ acts trivially on V mod
V2. Then there is an inner automorphism i E I such that i~ιθ acts
trivially on V mod Vm where m = h - 1 if Σ is not of type C, and
m = /ι - 2 if Σ is of type C, and where to = h(rN) is the height of the
highest root.

Proof. It clearly suffices to show that i f 2 ^ n ^ m - l and θ acts
trivially on V mod Vπ, then there exist an inner automorphism iE.1 such
that i~λθ acts trivially on V mod Vn+].

Let s G Γ have height n and suppose that for some fundamental
root r,GΦ

all / G i? with / G R [x] not identically zero. Then by arguments similar
to those in [4:6.7], s - rx G Σ+. For the remainder of the argument we
r e p l a c e 5 - η by s so h(s)= n - 1 a n d

We claim there is an element is G / such that the element is =
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is(R)El(R) acts trivially on V(R) mod VΠ(R) and i,[xn(l)] =
x r,(lK+ r,(/(l)) .

To see this, suppose /s = int JCS (α) with aGR to be
determined. Then ί, acts trivially on V(R) mod Vn(R) by the Chevalley
commutator formula [1:5.2.2]. Moreover

xs(- a)xrι(l)xs(a) = xri(ί)xs+n(Clu,rι- a 1) .

Since Cu,s,ri 7̂  0 is an integer whose absolute value is less than 4, C 1 U r , is a
unit in R and we take a = ± Cnsrf(ί).

We now have i;ιθ[xn(t)] = Xrt(t)xs+r,(g(t))- where g(l) = 0. We
claim that g is identically zero and moreover if there is an η E Φ, i/ j ,
such that s + η E Σ+ and i?θ[xη(t)] = xη(t)xs+η(g'(t)) , then g' is also
identically zero. But all of the above relations hold after reduction to
RIP for any p E SpecR. If K is the quotient field of R/P, the above
relations hold for the image of i~ιθ in AutG r( V(K)). Then by arguments
similar to those given in [4:6.7] g and g' are identically zero.

Now we can find such an inner automorphism is for each root s such
that h(s) = n - 1. If we put / equal to the product of all these inner
automorphisms, then i~ιθ acts trivially on V(R)/Vn+ι(R) and the lemma
is proved.

The last three stages of the argument consist in showing the
following:

V. If V is of type Q and θ G Autv(R) acts trivially on V(R) mod
\4_2(jR) then there are extremal and inner automorphisms / and e in
Autv{R) such that e~Ί'ιθ acts trivially on V(JR) mod Vi,_i(i?).

VI. If θ<ΞAutv(R) acts trivially on V(R) mod Vh.λ then there
exist an inner automorphism / E I(R) such that i~ιθ acts trivially on
V(R) mod VH-^R) and on V2(R).

VII. If θ GAuty(R) acts trivially on V(R) mod K_i(i?) and on
V2(l?) then θ = iec where / E /(/?), e E £ ( U ) and c E C(i?).

The proofs of these assertions follow from adaptations of the proofs
of Lemmas 6.8, 6.9 and 6.10 of [4] similar to the arguments we have given
above.

We have shown that the subfunctors Π, D, /, E and C generate Autv

when these functors are restricted to (Sch/A )red and V is not of type B2 or
Λ2. These two special groups can be treated directly just as in
[4:6.11]. We discuss them in §3.
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Now let k be a field whose characteristic is different from 2 and
3. Applying the base change functor - xAk we obtain Vk a unipotent
k -group of Chevalley type. In this case we can summarize the above
results as follows:

COROLLARY 2.9. Let V = V ( Φ , Σ ) be a unipotent k-group of
Chevalley type. Assume that char k / 2,3 and that Σ is not of type A2 or
B2. Let Auty{S) = Aut s . g r (Vx k S) for all S in (Sch/fc)red. Then

(i) There exists an exact sequence of group valued functors on
(Sch//c)red

making Autv*the semi-direct product of H and N.
(ii) The functor H is representable by a smooth solvable algebraic

k-group scheme.
(iii) // char k ^ 0 then N - [i:= 1 Ga.
(iv) // charfc = 0 then N = 0 and Autv =* H.

3. The cases X = A 2 or B2. Let Σ = A2, V = V(Φ,Σ) and
A v be the subgroup of Autv generated by U,D,E,I and C. Let
Σ = {r, s, r + s}. An easy computation shows that / C C in this case.

THEOREM 3.1. Lei S be an A-scheme and p : Av(S)-> Auts.gr
(V/X r + ixΛS) &e the canonical homomorphism induced by passage to the
quotient. Then the image of p is isomorphic to GL2(S), the kernel of p is
C(S) and the exact sequence

has a section making AV(S) the semi-direct product of GL2(S) and
C(S). In particular A v ^ GL2 C.

Proof. Let θ GA V (S) and suppose θ acts trivially on V/X r + sxΛS.
Then θ(xr(t)) = xr(t)xr+s(fr(t)) and θ(xs(t)) = xs(t)xr+s(fs(t)) for all
t E Γ(S, O s). It is easy to see that fr and fs give rise to a unique c G C(S)
and that θ = c. This shows that C(5) is the kernel of p.

Since AV(S) is generated by Π,D(5), E(S) and C(5), and since
/(S)CC(S) = Kerp, to show that Imp = GL2(5) it suffices to show that
the images of Π, D(S) and E(S) under p lie in GL2(S). For Π and D(S)
this is clear. Recall that E(S) is generated by two types of extremal
automorphism eλ and e2. eλ fixes XS(S) and Xr+s(S) and maps xr(t) to
xr{t)xs(at)xr+s{\at2), α, ί G Ga(S) and e2 = cr eλσ where σ is the
generator of Π. Then ρ{ex) is represented by the matrix [i?] in GL2(S)
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and it follows that p(JE(S))CGL2(S) so Imp = GL2(S). For any matrix
Λf = I? 5| in GL2(S) define S'(M): V(S)-» V(S) as follows

xr(t)-+ xr(at)xs(bt)xr+s(abt2)

S'(M): xs(t)-+xr(ct)xs(dt)xr+s(\cdt2)

xr+s(t)->xr+s((ad-bc)t).

It is an easy matter to verify that S'(M) induces an automorphism of
V(S) hence also VxAS. It follows that p is surjective and as one sees
easily S' is a homomorphism so that the remaining assertions of the
theorem follow.

COROLLARY 3.2. The group valued functors Av and Autv are
isomorphic on (Sch/A)red.

Proof. The corollary follows from a straight forward adaptation of
Gibbs result [4:6.11] similar to the proof of Theorem 2.9 using the fact
that Av — GL2 C is a sheaf.

COROLLARY 3.3. Let X = A2 and k be a field with
char k / 2,3. Let V = V(Φ, Σ)fc and Autv the functor on (Sch//c)red given
by S—» AutS-gr(VxfcS). Then there exists an exact sequence of group
valued functors

on (Sch//c)red such that
(i) H is representable by an affine algebraic k-group.
(ϋ) Autv -HN.
(iii) There is a split exact sequence

(iv) // char/c^O, N^lTn=ιGa and if char/c = 0, N = 0.

Proof Everything has been established except (iii) which follows
from the fact that (using the notation of 2.7) Ex = I.

When Σ = B2, Π = 1 and Av is generated by D, EJ and C. By
methods entirely analogous to those above, we obtain the following
result:

THEOREM 3.4. Let V = V(Φ, Σ) be a unipotent A -group of Cheval-
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ley type with Σ = B2. Then there exists an exact sequence of group valued
functors on (Sch/Λ)red.

such that
(i) Autv = H - N (semi-direct product).
(ii) H is representable by a connected solvable affine k-group.

The analogous results to 3.3 hold for k a field, charfc^ 2,3.

REMARKS. 1. At present we do not know whether the group
functors Av and Autv are isomorphic as functors on Sch/Λ. Even over
an algebraically closed field of characteristic zero the situation is not
clear.

We have excluded the trivial case V — Ga throughout. However,
in this case, we can see that Av and Autv are distinct on Sch/k. In fact,
Av — Gm in any characteristic. On the other hand, if R is a nonreduced
k-algebra and u E Λ , u/0, w2 = 0, then the map jR[x]—>ί?[x] deter-
mined by x-> x + u /(JC), f(x) any additive polynomial gives an au-
tomorphism of Ga which is not necessarily in AV(R).

2. If k is a field with char k^ 2,3, then using Gibbs results one
obtains immediately that the automorphism group of V(k) (considered
now as the k-rational points of V(k), k an algebraic closure of k) is the
semi-direct product of the group Autv(k) and Aut(/c). In particular, if
char/c=0, one obtains the expected result that Aut(V(/c)) is the
semi-direct product of a group of matrices over k and the group of
automorphisms of the field k.

3. Again, let t be a field with appropriate characteristic
restrictions. Then it follows from what we have developed above that
any finite set of automorphisms of VxAk is contained in a subgroup of
Autv(k) which is represented by an algebraic k-group. This follows
from an examination of the 'central components' of the given
automorphisms — for if a E N(k) then the degrees of the polynomials in
k[x] (c.f. 2.6 ff) determining a are bounded. This bound determines a
certain representable subfunctor.
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