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INCLUSION RELATIONS BETWEEN POWER
METHODS OF LIMITATION

ABRAHAM ZIV

Let p(x) = Σ Pkχk be a power series with pk(k — 0,1, •)
complex numbers and 0 < pp g oo its radius of convergence,
and assume that P(x) Φ 0 for 0 ̂  ap ^ x < pp. The power
method of limitation, P, is defined by

oo

lim p s = lim Σ PkSjcXk/P(x) (% real)
χ-^pp- fc=o

(provided the series converges in [ap, pp) and the limit exists
and is finite). Abel and Borel methods are the best known
power methods. In this article inclusion relations between
two power methods are investigated. Several theorems are
proved, which lead to necessary and sufficient conditions, for
inclusion, that are correct under some fairly moderate
restrictions.

!• Introduction* Let P(x) = X, pkx
k be a power series with

pk(k = 0, 1, ) complex numbers and 0 < ρp ^ oo its radius of con-
vergence, and assume that P(x) Φ 0 for 0 ^ ap <̂  x < pp. The power
method of limitation, P (see Wlodarski [19] and Birkholc [2]), is
defined by

liπip s = Km J£ pkskx
k/P(x) (x real)

(provided the series convergences in [ap, pp) and the limit exists and
is finite).

The power method Q is defined analogously by Q(x) — X qkx
k and

parameters aq, pq.
The best known power methods are the Abel method and the

Borel exponential method. Other power methods which appear in the
literature are Aλ, L and (B, α, b) (for more details see next section).

We are concerned here with inclusion relations of the form
P Q Q. There are several results in the literature in this direc-

tion. Thus, Borwein proved (see [4], [5] and [8]) that Aλ £ Aμ,
Aμ g Aλ provided — 1 < μ < λ, that Aλ Q L, L §£ Aλ provided λ > — 1
and that (B, a, β) £ (B, a, b) provided α > 0 , - o o < / 3 ^ 6 < + o o .

Other results, obtained by Borwein [4], [8] and Hoischen [12],
are of a more general nature. Both authors investigated inclusion
relations between power methods whose coefficients, {pk}, {qk}, are as-
sumed, a priori, to be related by some particular cases of the relation
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0 < r < oo, i e {0, 1, •}, k = n, n + 1,

\dψ(τ)\ < - .

Assuming some more restrictive conditions (like pk ^ 0 or pk Φ 0 or
others) Borwein gets sufficient conditions and Hoischen necessary and
sufficient conditions for inclusion.

In this article we are able to discuss the problem in greater
generality. The single essential restriction which still remains
necessary is:

(1.1) VΣ
£0

The main tools which make this discussion possible are taken from
[21].

It seems that the problem is not simple enough to be solved by
one or two theorems. A broader kind of investigation is needed.
Actually it comes out that the case of power methods with finite
radius of convergence should be separated from the case of infinite
radius of convergence. The discussion of the first case provides
results which are simpler to formulate and are more satisfactory.

The forthcoming results include, in particulr, necessary condi-
tions, for inclusion, some combinations of which turn out to be also
sufficient. So, necessary and sufficient conditions can be formulated,
with (1.1) being the only pre-assumed restriction. Those conditions
seem to be slightly complicated if pp = oo; so they are simplified
for some restricted cases, where all the additional restrictions are
sufficiently general to be automatically satisfied if P and Q are both
regular power methods.

Few of the theorems are applied later to the above mentioned
examples of power methods (all of which are regular) yielding some
results of interest. Necessary and sufficient conditions for each of
the inclusions P Q A, AQQ, P Q B, B^Q (where A, B are the
Abel and Borel methods and P, Q are some other power methods)
are obtained as corollaries.

2* Definitions and statement of results*

2.1. A definition and a convention.

2.1.1. Power methods of limitation. Let P(x) = Σ Vk%k, with
complex coefficients, pk(k = 0, 1, •)> and radius of convergence
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0 < pp S °°, be some power series such that P(x) Φ 0, for ap <̂  x < pp,
where 0 ^ ap < pp is some real constant. A sequence of complex
numbers s = {sk} is said to be P-convergent to σ if Σ PkSk%k is con-
vergent for all x e [ap, ρp) and

lim Tp(8, x) = σ , Tp(s, x) = Σ PkSkx
k/P(x) (x real) .

T^s, #) is called the P-transform of s and σ its P-limit. σ is denoted
also by lim^s. By cp we denote the field of the method P, i.e. the
set of all complex sequences which are P-convergent to a finite
limit. cp

0) denotes the set of complex sequences which are P-limitable
to zero, and mp the set of all complex sequences whose P-transform
exists and is bounded in [ap, pp).

In analogy with P the power method Q is defined by the series
Q(x) = Σ Qk%k and parameters aq, pq. The Q-transform of a sequence
s and its Q-limit are denoted by Tq(s, x), \imq s. The field of Q and
the other related sets are denoted by cq, c{

g

0)

f mq.

We say that P £ Q (i.e. P is included in Q) if cp £ cq and P, Q
are consistent (i.e. limff s = limp s for all s 6 cp).

In many of the results of this paper, P is required to satisfy
the additional condition

(2.1.1)

The following are examples of well known power methods:

A-AbeΓs method: P(x) = 1/(1 — x), ap = 0, ρp = 1.
B-BoreΓs exponential method: P{x) = βx, α p = 0, pp = <*>.
Aλ-Abel-type methods: P(x) = (1 — x)~ι~λ, λ > — 1, ap = 0, pp = 1

(see Jakimovski [1] and Borwein [5]).
L or A^-Logarithmic method: P(x) = log [1/(1 — x)], <xp > 0,

pp = 1 (see Borwein [6]).
(β, a, b)-Borel-type methods: P(x) = Σ?=i,x

fc/Γ(α/b + 6)-α-1x(1-δ)/αβa;1/ί l

(a; -* + oo), α > 0 , - c o < 6 < +oo, aN + 6 > 0, ap > 0, ^^ = oo (see
Borwein [8]).

2.1.2. A convention about functions of bounded variation.
Every complex valued function whose variation is bounded in some
finite or infinite interval is assumed throughout to be continuous to
the right at all points of this interval, with the possible exception
of the interval's ends.

2.2. Theory which is restricted only by condition (2.1.1).
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REMARK 2.2.1. It should be observed that if P(x) is a poly-
nomial then every sequence is P-convergent. This is, then, a trivial
case. For this reason it is assumed throughout that both P(x) and
Q(x) are not polynomials.

REMARK 2.2.2. If c(

p

0) £ mq then the set J = [k \ pk = 0, qk Φ 0}
is finite.

2.2.3. DEFINITION OF rpq. We define

rpq = fim I qk/pk \1/k ,

where k is considered, in the limiting process, only if pk Φ 0.

THEOREM 2.2.4. Let (2.1.1) be satisfied. If c{

p

0) Q mq then each
of the following must he satisfied:

( i ) 0 < rpq < oo

(iii) The limit

Km qk/(pkr
k

pq) (k is considered only if pk φ 0)

exists and is finite.

COROLLARY 2.2.5. Let (2.1.1) be satisfied. If cp

0) £ mq then
either pp < oo and pq < oo or pp = pq = oo.

THEOREM 2.2.6. Lβ£ (2.1.1) 6e satisfied and assume that pp < oo.
// c5,0) £ mq then a function φ of hounded variation and constants
0 < K l , m e { 0 , l , • •} exist, which satisfy:

(2.2.1) qk - PΛ\\ τkdφ{τ) + O(θk)) (k — oo, k = m, m + 1, •)

(2.2.2) Γ I P(a;rwτ) | | dφ(τ) \ = O(Q(x)) (x -> pqf x real) .
Jo

THEOREM 2.2.7. Let (2.1.1) he satisfied and assume that ρp < oo.
If cp Q cq then the limit 1/Q(pq — 0) must exist and be finite, unless
Q(x) = tcP(xrpq), tc Φ 0 (in which case P and Q are trivially equivalent).
If, further, P £ Q (and Q(x) Ξ£ tcP(xrpq)) then the said limit must he
zero.

REMARK 2.2.8. Theorem 2.2.7 cannot be extended to the case
pp=°°. In fact an example is given in Section 3.1.15 of two
essentially different power methods, P, Q, with pp = ρq = oo which
satisfy Pζ^Q, while the limit l/Q(+°°) does not exist.
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THEOREM 2.2.9. Let (2.1.1) be satisfied and assume that pp = oo.
If cp

] Q mq then there exist: a function φ, whose variation is bounded
in [ε, 1], for every ε > 0, constants 0 ^ R < + oo, u(ccq < u < +°°9

urpq > a9), m e {0, 1, •} and a matrix (exk) (u ^ x < + °°, fc = 0, 1, •)
such that

( i ) Qk = Pkrk

pq j ^ τkdφ{τ) + Q{x)ejx\

(uSx < +oo, & = 0,

(ii) Γ I P(xrpqτ) \ | d^(τ) | - O(Q(a?)), (x — + oo, α real).
Jtt/α;

|βχfcl ^R\Pk\ ukK<i> (u ^x < + o o , A; = m , m + 1, •
{ } \\e

Λ further, cp Q cq and we denote

m addition,
(iv) T%e limits

(u ^ x < + oo, k = 0, 1, •)

eί = lira ef

xh (x real, A: = 0, 1, •)

all exist and are finite.
(v) The limit

Ί{T) = lim P(xrMr)T(xr)d^(τ-)/Q(x) (a? real)
u\x

exists and is finite, for every function T(t), which is continuous in
the interval [u, +°o), vanishes at its left end and has a finite limit
Γ(+=o).

Iff further, P C Q then, in addition,
(iv)' eί = 0 (fc = 0,l..-)
(v)' 7(Γ)= T(+oo).

REMARK 2.2.10. It is of interest to note that φ is not constant
in [1 — δ, 1] for any δ > 0. This is true in Theorem 2.2.6 as well as
in Theorem 2.2.9. In Theorem 2.2.6 φ is uniquely determined (up
to an additive constant) in [θ, 1] and in Theorem 2.2.9 it is uniquely
determined in (0, 1].

THEOREM 2.2.11. Assume that ρp < oo. If 0 <rpg < oo, pqrpq =
PP, VQ(pq - 0) = 0 and (2.2.1), (2.2.2) are satisfied, with φ of
bounded variation and some constants 0 < θ < 1, m e {0, 1, •} then
PQQ.

COROLLARY 2.2.12. Assume that (2.1.1) is satisfied, pp < oo and
1/Q(ρq - 0) - 0. If cp

0) c mq then PQQ.
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THEOREM 2.2.13. Assume that ρp-= oo, if o < rpq < °o and
conditions (i), (iii), (iv), (v) of Theorem 2.2.9 are satisfied, then
cp Q cq. If conditions (iv)', (v)' of Theorem 2.2.9 are satisfied also
then PQQ.

REMARK 2.2.14. In Theorems 2.2.11 and 2.2.13 it need not be
pre-assumed that rpq satisfies Definition 2.2.3. The rest of the
requirements mentioned in the theorems suffice.

2.3. Restricted results. Power methods P with pk ^ 0 (k = 0,
1, •••) were investigated more than others in the past. Therefore
they are of special interest, and an attempt to speciallize some
theorems for them is worthwhile. It happens that the results of
this attempt gave rise to theorems which are applicable to conserva-
tive and regular power methods in general, and therefore we begin
with the characterization of these kinds of methods:

2.3.1. DEFINITION OF P(X). Given P(x) = Σ pkx
k, we define

P(x) = Σ I 2>* I &* , {ocp^x< pp) .
k = 0

Obviously | P(x) | <; P(x), ap <: x < ρp.

THEOREM 2.3.2. P is conservative if and only if
( i ) A constant L > 0 exists such that

(2.3.1) LP(x) ^ I P(x) I ̂  P(x) (ap ^ x < pp)

and
(ii) The limit 1/P(pp — 0) exists and is finite.

P is regular if and only if, in addition
(ii)' 1/P(ρp- 0) = 0 and
(iii) P(x) is not a polynomial.

REMARK 2.3.3. It should be observed that (iii) of Theorem 2.3.2
is automatically satisfied if pp < oo and that (i) => (ii)' in case pp = oo
(unless P(x) = const.).

THEOREM 2.3.4. Let P be conservative and satisfy (2.1.1). //
c(

p

0) Q mq then the limit

lim Q(x)/P(xrpq) (x real)
X^Pq-

exists and is finite. If, further, P is regular and pp = °° then in
addition
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lim I Q(x)/P(xr) \ = j ̂  °°' ° < r < r<" , {x r e a l ) .
+ (0 , rpq < r < + oo

THEOREM 2.3.5. Le£ (2.1.1) δe satisfied and assume that pP < °°
and that the limit 1/P(pp — 0) exists and is finite. If 0 < rpq < °°,
i°Λα — Λ» ^ e Zimίέ 1/Q(pq — 0) ecuίsίs α^ώ is ,/ϊnitβ α^ώ (2.2.1), (2.2.2)
are satisfied, with some φ of bounded variation, 0 < θ < 1 <md some
me{0,l, •} then cp £ cg.

2.3.6. DEFINITION OF e, e(ϊ), £7. We denote e = (1,1,1, •) and
eα) = (0, •••, 0,1, 0, •••), where the single 1 is at the ϊth place.
Also U={e}{J{ea) | ϊ = 0, 1, •••}.

Conditions under which U forms a fundamental set in cp are to
be found in [21] (see also Wiodarski [19] and Birkholc [2], [3]). In
particular U is foundamental in the fields of the Abel and Borel
methods (see Zeller [20] and Ryll-Nardzewski [15]).

THEOREM 2.3.7. Assume that pP = °° and that either U is
fundamental in cv or Q(εx)/Q(x) —> 0 (x —> + oo, x real) for every
sufficiently small ε > 0. If 0 < rpq < °° and conditions (i), (ii), (iii)
of Theorem 2.2.9 are satisfied then P £ Q.

REMARK 2.3.8. Theorem 2.3.7 is applicable to the case that Q is
regular for in this case Q(ex)/Q(x) —• 0 for every 0 < ε < 1.

ooCOROLLARY 2.3.9. Let (2.1.1) be satisfied and assume that pp =
and that either U is fundamental in cp or Q(εx) /Q(x) —• 0 (x —-• + °°,
x real) for every sufficiently small ε > 0. If c{

p

] £ mq then P Q Q.

The following theorem provides an easy means of producing
examples of inclusions between non-regular power methods, with

THEOREM 2.3.10. Assume that pp = oo and that the limit P(+ oo)
exists and is finite. If

(2.3.2) qk = pkr
k [ τkdφ(τ) (fc = 0, 1, - •) ,

Jo

where 0 < r < oo and ψ is of bounded variation, then pq = °° and
the limit Q(+oo) exists and is finite. If, further, ζ>(+oo) ψ 0 then
cp Q cq. If, in addition, P(0)[φ(0 + ) - φ(0)] = 0 then P Q Q.

2.4. Examples. In this section we present some results of
applying the general theorems of the previous sections to particular
power methods.
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2.4.1. A simple test of inclusion. Let us investigate among
the particular power methods defined at the end of § 2.1.1, which
pairs may satisfy an inclusion relation. An easy preliminary check
can be performed by application of Theorem 2.2.4 and its Corollaries
2.2.5 and 2.3.4.

Thus, calculation of rpq for the relevant pairs of methods im-
mediately excludes, by (i) of Theorem 2.2.4, the possibility of inclusion
between Aλ or L and (B, a, b). It also proves the impossibility of
inclusion between (B, a, b) and (B, a, β) in case a Φ a. (In fact no
direct calculation of rpq is needed. One can use Corollary 2.2.5 and
Theorem 2.3.4 instead.)

No further conclusions can be drawn by (i) of Theorem 2.2.4.
However (iii) of this theorem or, its corollary, the first part of
Theorem 2.3.4, provides a finer test and its application shows that
L^Aμ^Aλ if λ > μ>-l and that (B, a, b) £ (J5, α, β) if a > 0,
— ° o < / 3 < 6 < + o o . So after a complete check with Theorem 2.2.4
it seems that the only possible inclusions are Aλ £ Aμ £ L (λ ^ μ >
-1) and (B, a, β) Q (B, a,b) (a > 0, - oo < β <; b < + <*>). Those
inclusions are, in fact, known to be valid and were proved by D.
Borwein (see [4] and [8]) using methods which could be interpreted
as applications of Theorems 2.2.11 and 2.3.7.

The results of the previous sections make it possible to solve
completely certain inclusion problems. As examples we formulate
necessary and sufficient conditions for the inclusions A £ Q, P Q A,
BQQ, PQB where A, B are Abel and Borel methods and P, Q
are any power methods (not restricted in any sense).

In the following ca9 cf\ mb denote, respectively, the field of the
Abel method and the appropriate sets which are related to Borel
method.

COROLLARY 2.4.2. In order that ca £ cq it is necessary and
sufficient that the following is satisfied: ρq < °°, the limit
1/Q(pq — 0) exists and is finite and

qkp\= [ τkdφ(τ) + 0{θk) (fc-oo)
Jo

where

I dφ(τ) | < co , 0 < θ < 1 , £ [pq/(Pq - xτ)] I dφ(τ) I = O(Q(x))

(x —* p~, x real) .

The same, with the additional condition 1/Q(pq — 0) = 0, is necessary
and sufficient for A Q Q.
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COROLLARY 2.4.3. In order that cp £ ca it is necessary and
sufficient that the following is satisfied: pp<ε°, pk Φ 0, for all
sufficiently large k} and

ViPkPΪ) = [ τhdφ{τ) + O(θk) (fc-oo)
Jo

where

Γ I dφ(τ) I < ^ , 0 < 0 < 1 , Γ I P(xppτ) \ \ dφ(τ) | = O[l/(1 - x)] ,
Jo Jo

(α; —• 1 —, x r e a l ) .

The same is necessary and sufficient for P £ A.

COROLLARY 2.4.4. In order that c(

b

0) £ mq it is necessary and
sufficient that

0 < rbq = lim | qkk\ \1/k < + oo
fc->oo

and that

Qk = (rtjkϊ) [ τkdφ(τ) + Q{x)ejxk , (u ^ x < + oo, k = 0, 1, .)
Julx

where

I dφ(τ) I < oo , (u ^ X < + oo)

exr^τ I dφ(τ) I = O(Q(x)) , (x — + oo, x real)
x

exk I ^ Brk

bqu
k/k\ (u <Ξ, x < +oof k — m, m + 1, •)

\ e x k \ £ R , (u ^ x < + 0 0 , fc = 0 , 1 , •••)

α : g < ^ 6 < + o o , 0 ^ i 2 < + o o , m e { 0 , 1 , •••}.

same is necessary and sufficient for B £ Q.

COROLLARY 2.4.5. In order that c{

p

0) £ mb it is necessary and
sufficient that the following is satisfied: pk Φ 0 for all sufficiently
large k,

0 < rpb = ί ϊ ϊ ή | p ^ ! | - l A < 00

and

1/fc! - Pkr
k

Pb [ τkdφ(τ) + exexk/xk , (u ^ a? < + 00, k = 0, 1, .)
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[ I dφ{τ) I < oo

I exk I ^ R I p f e I M V * 6 , (u ^ a? < + oo, k = m, m + 1, ••)

\exk\^R, ( w ^ a ? < + o o , f c = 0, 1, •••)

I P(xrpbτ) I | rf^(r) | = O(β ) (a? — + oo, x r e a l )

0 <u < +CX3 , 0 ^ i ? < + o o , m e { 0 , 1 , •••}.

same is necessary and sufficient for P £ B.

3* Proof s*

3.1. Proofs of the results in § 2.2.

3.1.1. Proof of Remark 2.2.2. Define

(0 , ke J

(l/(qka
k) , fceJ

Obviously secj,o). However, ^qkska
k would not converge if J is

infinite. Hence s g mff, in such a case, which means that c(

p

0) Q mq

cannot hold.

In the forthcoming proofs we use several results, which are
cited below. The first is a generalization, due to R. Trautner [16]
of a well known theorem of J. G. Mikusinski [14]:

TRAUTNER'S THEOREM 3.1.2 (R. Trautner [16]). Let

μk = (Vdχ(r) , Γ I dχ(τ) | < - (fc = 0, 1, - •)
Jo Jo

be Hausdorff moments. If

Vhi = 0{rkί) (i —> oo, 0 < r < 1, kt ] °°, kt natural numbers)

then either χ = const, in [r, 1] or X^ 1/ki < oo.

An immediate corollary of Trautner's theorem is:

LEMMA 3.1.3. Let (2.1.1) be satisfied and assume that g is a
function of bounded variation in [ap, pp), which is constant in [r\ pv),
for some rf < pp. If

[tk!P(t)]dg(t) ap<r<pp

(k — m, m + 1, •)
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then g = const, in [r, pp).

The rest of the cited results are taken from A. Ziv [21]:

LEMMA 3.1.4 (A. Ziv [21]). Let (2.1.1) be satisfied and let
n e {0,1, •}, ε > 0, ap<L r < ppj S09 Slf -Sn_1 be given. Assume
that T(x) is any function, continuous in [r, ρp), having a finite
limit T(pp — 0) and satisfying

T(r) = ΣpkSkr
k/P(r)

k=0

and let 3(x) > 0 be continuous in [r, ρp). There exists a sequence
s βcp which satisfies

(o.l.l)
>' = SJ O' = 0 , l , . . - , % - 1 ) ; Σ

Tp(s, x) - T(x) I < δ(x) (r^x<pp), limps = T(pp - 0) .

THEOREM 3.1.5 (A. Ziv [21]). Let (2.1.1) be satisfied. If Σ £*«*
converges for all s e cp

0) then

(3.1.2) \βk\ ^R\pk\r\ r<pp, k - m, m + 1, , m 6{0, 1, - -} .

3.1.6. Matrix methods of limitation (see Lazic [13] and Ziv [21]).
Let W — {wxk}(x e I, k = 0, 1, •) be an infinite matrix of complex
numbers with I a subset of some topological space. Let xo£ I be
a point of accumulation of I, which has a denumerable basis of
neighborhoods. A sequence s = {sk} of complex numbers is said to
be W-ocnvergent to σ if its W-transform,

Tw{s, x) = Σ w*fcSΛ >
fc=o

exists for all xel and lim;c_>a.o Γw(s, cc) = σ (x e / ) . We denote by mw

the set of all sequences whose ΐf-transforms exist and are bounded
in /.

THEOREM 3.1.7 (A. Ziv [21]). Let (2.1.1) be satisfied. If

cp

0) £ mw then the matrix W may be decomposed in the form

W = C + D, where the matrices C = (cxk), D = (dxk) (x e J, k = 0, 1, •)

satisfy

( i ) cxk = Pk[
X[tk/P(t)]dgx(t), [* I dgx(t) \ ^ R < ™, aP < rx < pp,

Jap Jap

(xel,k = θ, 1, •••)•
( i i ) I dxk I <; R I p A I rk , α p < r < ^ , (a? e 7, fc = m , m + 1, ,

m G {0 ,1 , . . . } ) ; I <2βfc | ^ R < oo (α? e 7, fc = 0 , 1 , •)•
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Vxi Qx Q>re independent of k and R, r, m are independent of both k
and x.

3.1.8. Proof of (i) and (ii) of Theorem 2.2.4. If cp

0) Q mq then
Σ qjcSk%k converges for all s e c(

p

0). Therefore it follows, from Theorem
3.1.5, that

(3.1.3) xrpq < ρp for all x e [aqj ρq)

which implies that

(3.1.4) rpq < oo , p q T p q ^ p p .

Considering only values of k such that pk Φ 0 we get

Pp'rPQ = (ί^\pk\
1/k)(ψΆ\qk/pk\

1/k) ^ ψn\qk\
1/k

so by Remark 2.2.2

(3.1.5) rjpp ^ l/pq .

Now we divide the discussion into two cases. First the case pq < oo:
In this case (3.1.5) implies—since rpq < oo-that pp < oo and that
rpq > 0. This by (3.1.4) and (3.1.5) completes the proof.

Next assume that pq = oo. Had we shown that rpq > 0 we
would get from (3.1.3) that ρp = oo which completes the proof. So
let us try to reach a contradiction while assuming that rpq = 0.

The method Q is a matrix method (see § 3.1.6) with wxk =
qk%k/Q(%), (# € [<xg, + oo), k = 0, 1, •)• The assumption rpg = 0 means
that

Km \wxk/pk\
1/k = 0 (& is considered only if p& ̂  0) .

Hence from Theorem 3.1.7 we get

[tk/P(t)]dgx(t) =PkO(rk), (k->oo)

which implies, by Lemma 3.1.3, that rx need not exceed r. Esti-
mating wxk by Theorem 3.1.7, we get, therefore,

(3.1.6) I q k x k I Q ( x ) \ ^ M \ p k \ r k , r < p9 ,

(aq <^ x < + oo, & = m, m + 1, •)

where, M and r are independent of both x and k. Let £ e{0,1, •}
be larger than both m and k and such that qι Φ 0 (see Remark 2.2.1).
We get
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which leads to the following absurdity:

1 = lim Σ <lk%k/Q(%) = Σ ϋ m qkx
kIQ{x) = 0 .

j k0 k 0 +

The summation-limitation exchange is permitted because the series
is majorized by ^M\pk\rh (see (3.1.6)).

REMARK 3.1.9. In view of (i), (ii) of Theorem 2.2.4, it is clear
that the variable x of Q(x) may, in cases of inclusion, be scaled to
yield rpq = 1, pq = pp = p. We may also increase either ap or aq to
get aq — ap = a. It enables us to simplify later proofs by assuming
those "normalizing conditions".

THE FUNDAMENTAL LEMMA 3.1.10. Let (2.1.1) be satisfied and
assume that rpq = 1, pq — pp = p, aq~ ap — a. If cp

0) £ mq then
there exist a function χ(t), a matrix ezk and constants R < oo,
oc < u < p, me{0,1, •} such that:

(3.1.7) Γ fdχ(r)|< oo, (u£x<p)
julx

(3.1.8) qk = pk [ τkdχ(τ) + Q(x)ejxk , (u g x < p, k = 0, 1, •)

(3.1.9) IQίaOH1 \P(xτ)\\dχ{τ)\ S R , (u £ x < p)
Jujx

exk I ^ B I Vk I ̂  y (u <^x < p, k = m, m + 1, )
(3.1.10)

[\exk\ ^R , (u^x< p, k = 0 , 1 ,

Proof. Using Theorem 3.1.7 we see that

(3.1.11) qkx
k/Q(x) = cxk + dxk (a£x<p, Ic = 0,l, - )

where cxk, dxk satisfy (i), (ii) of that theorem.
Define u — r (hence a < u < p). Since rpq = 1 we have from

(3.1.11), for all r = u ^ x < p, ε > 0 and for k —> oo,

c,fc - Pfc Γ* [ίVPί*)]^^) = ?fc»*/Q(») - dxk = pk0[(l + e)kxk] .
Ja

Hence, defining gx = const, in [rx, p), we get, from Lemma 3.1.3,
that gx = const, in [x> p), so

Cχk = Pk [ [tk/P(t)]dgx(t) , (u ^ x < p9 k - 0, 1, . •) .
Ja

And if we define
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XJiτ) = -Q(x) [ [l/P(t))dgM , (a/x ^ τ £ 1, u ^ x < p)

we get from (3.1.11)

( 3 . 1 . 1 2 ) q k = p k [ τ k d χ x ( τ ) + Q ( x ) d j x k , ( u £ x < p , k = 0 , 1 , -••).
Jalx

Let u <^x <,y < p. From (3.1.12) we get

Qu = Pk Γ τkdχy{τ) + Q(y)dyk/yk .
Jaly

Comparing this with (3.1.12) and using (ii) of Theorem 3.1.7 we get
f o r k —• oo

alx
τkd[χx{τ) - χy(τ)\ = pk0(uk/xk) , (u ^ x ^ y < p).

From Trautner's theorem (see 3.1.2), and because χ^l) = χ^l) = 0,
we deduce that χy(τ) = χx(τ) whenever u <^ x <^ y < p and
u/x ^ τ ^ 1. This enables us to, uniquely, define a function χ(τ) in
(ulp, 1] by:

X(τ) = %*(?") f τ e [%/», 1] , (u ^ x < p) .

(3.1.7) follows now immediately from the definition of χx. Obviously

\Q(x) r Γ I Pfrτ) I I ώχ(τ) | = | Q(x) I"1 Γ | P(OT) | | dχx(τ) \
Jujx Julx

= \'\dg,{t)\ £ R .

So (3.1.9) is satisfied.
exk is defined now by (3.1.8). From (3.1.11) and (3.1.8) we get

qkx
kIQ(x) - vάQix)]-' \ (xτfdχx{τ)

t) ^ I dxk I + I pk I ukR sup

which implies (3.1.10), by (ii) of Theorem 3.1.7.

3.1.11. Proof of (iii) of Theorem 2.2.4. By Remark 3.1.9 we
may restrict the discussion to the case rpq = 1. In this case (iii)
follows immediately from Lemma 3.1.10. In fact we get \imk^qk/pk =

χ(l - 0).

3.1.12. Proof of Theorem 2.2.6. We insert in Lemma 3.1.10
u < y < pq in place of x and define
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φ{τ) = ( χ ( τ ) '
(const. , 0 <; τ ^ w/y .

Then (2.2.1), with Θ — u/y, follows immediately from (3.1.8) and
3.1.10). (2.2.2) follows from (3.1.9).

LEMMA 3.1.13.
( a ) If in Lemma 3.1.10 we add the assumption cp £ cq, then

the limit

Ί{T) = lim [Q{x)Yι [ P(xτ)T(xτ)dχ(τ) , (x real)

must exist and be finite for every function T(t) which is continuous
in [u, p), vanishes at its left end and has a finite limit T{ρ — 0).

(b) If in addition P Q Q then Ύ(T) = T(p — 0) for every such
a function.

Proof. Substituting r = u in Lemma 3.1.4 we infer the existence
of a sequence of sequences s{l) e cp(l = 1, 2, •) which satisfy lim^ sil) =
T(p - 0) and

3 ( l ) —

(3.1.13)

By (3.1.8)

Tp(sU), x) - T(x)\ < l/l , (u ^ x < p, I = 1, 2, •) .

, x) = [Q(x)Γ Γ
Jtt/

', xr)ώχ(r) + ±

We denote limgs
U) = Tg(sa\ p — 0) = βi (the limit exists since s{l) e

cp C cff). From (3.1.9) and (3.1.10) we have, then,

lim [Q(χ)Γ \

^ ίίϊn \Q
X->p~

P(xτ)T(xτ)ώχ(τ) - βt
ulx

(x)Γ\ \P(xτ)\l-ι\dχ(τ)\-
Julx

Σ -^IPfcS^ ^& ^ 2JB/Ϊ .

{- l i m Σ
x—*p~ k=0

\ g, Q ( O

From this it is easily deduced that {/SJ is a Cauchy sequence-hence
convergent. Denoting its limit by β we have

lim
ulx

P(xτ)T(xτ)dχ(τ) - β £ 2R/1 + \βι-β

which yields, with I—> ©o, 7(Γ) = /S.
This completes the proof of part (a). Part (b) is proved in a
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very similar way. Only this time, since sa) ecp, P C Q, we have

β% = lim, s{l) = lim, sa) = T(<o - 0) so τ(Γ) = β = T(p - 0).

3.1.14. Proo/ o/ Theorem 2.2.7. By Remark 3.1.9 we may
consider the case r p g = 1, pg = pP = p, aq = ap = a only. Assume,
first, that cp £ cff and that the limit 1/Q{pq — 0) does not exist. We
have to show that Q(x) = κP(x):

Let u < t0 < tλ < p and let /&(£) be some continuous function in
[u, p), which vanishes in [u, t0] and in [tlf p). Denote T(t) = h(t)/P(t).
From Lemma 3.1.13 (a) we infer the existence and finiteness of the
limit

7(Γ) = lim [Q(x)Γ \ P(t)T(t)dχ(t!x) - lim [Q(x)Γ Γ1 h(t)dχ(tlx) .

Denoting

χ.(*) = z(t/»)» (*o ̂  * ^ », *i < « < /t>)

we get

(3.1.14) 7(Γ) = lim [Q(x)Γ Γ Λ(t)dχ.(*)

The functions %a.(i) {tx^ x < p) have uniformly bounded variation in
[tQ, ί j . This is because denoting w^/^ = y we have u < y < p and

(t^X < p) .

Therefore the following limit exists (see Widder [17] Theorem 16.4
Ch. I):

lim \hh(t)dχx(t) = \hh(t)d[lim χ.(t)] - \hh(t)dχ(t/p) .
x^P- J ί 0 J ί 0 X-*P- J ί 0

Since 1/Q(x) does not converge to a finite limit, as x-+p~, we infer
from the existence and finiteness of 7(Γ) (see (3.1.14)) that

The argument which led to this result is correct for every function
h(t), which is continuous in [t0, t j and vanishes at both its ends.
Hence χ(t/p) = const, for t e (ί0, ί j . Since tQ and ^ may be taken as
close as one wishes to u and p, respectively, we actually have
χ(τ) = const, for τe(u/ρ, 1). Hence, by (3.1.8)



INCLUSION RELATIONS BETWEEN POWER METHODS OF LIMITATION 267

qu = KPk + Q(x)exk/xk , tc = χ( l ) — χ ( l — 0)

(u £ x <p, k = 0 , 1 , •••)

which proves that Q(x)exk/xk is independent of x. We may therefore
write

(3.1.15)

= o, l,

where by (3.1.10),

\qίxkIQ(x)\ ̂ R\pk\uk , (u ^ x < p, k = m, m + 1, . •) .

From this it follows immediately that it Φ 0 (otherwise we would
have rpq < 1).

We complete the proof by showing that q[ = 0 (fc = 0,1, •)•
Let i e {0,1, } and choose r = u,

T(x) =

(Pir*/p(r) , x = r

linear , r ^ α? ίg rx r < rt < p

0
x ^ cc <

in Lemma 3.1.4. We infer the existence of a sequence of sequences,

8 ( I )eci0 ) (i = 1,2, . . - ) , such that

(sf = 0, (j Φ i, j < max {£, m}) , sίn = 1

(3.1.16) | ,

From (3.1.15) we have

PAl) \uk<lβ, , a?) I < δ(x)β

q'Al)xk/Q(x)

so, for rx<:X < p we get from (3.1.15) and (3.1.16)

\ x)\ £ \fc[P(x)IQ(x)]Tp(s«\ x)\ + Σ \q'A»\xk/\Q(x)\
k=i+l

Choosing properly δ(x) > 0 (e.g. δ(x) = |Q(x)/P(x)|) we m a y then get,

\qW/Q(x) - Tq(s«\ x)\<M/l, M < - , ( n ^ a; < p, I = 1, 2, •) .

Since sα ) e < ' Q eq the limits βt = l i m x ^ _ T ?(sα >, *) (I = 1,2, •••) all
exist and we get

Mm \q[x'/Q(x) - β,\ £ Mβ = 1,2, •••)•

This implies that /3Z is a Cauchy sequence, thus having a limit β.
Obviously
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ίίϊn Iqtf/Qix) -β\£ Mβ + \βt - β\ ,

so letting I tend to °° we infer the existence of the limit
l i m ^ , q&JQix) = β, which is impossible, since 1/Q(p — 0) does not
exist, unless q\ — 0. This completes the proof for the case cp Q cq.

The proof for the case P Q Q is similar. We just have to use
Lemma 3.1.13 (b) instead of (a) to infer that τ(Γ) = 0, and then
remember that s{l) e cf Q cq

0), so βt = 0 (I — 1, 2, •)> which means
that β = 0 and therefore q[ = 0, unless 1/Q(ρ - 0) = 0.

3.1.15. Proof of Remark 2.2.8. First let us show the existence
of two entire functions P{x) = Σ pkx

k, Q(x) = Σ Qk%k which satisfy
( a ) Q(x) = ( j* P(t)dή/x = Σ?=o Pkx

k/(k + 1), (0 < x < + «,)
(b) P ( x ) ^ 1, ° ( 0 ^ ^ < +oo)
(c) The limit l/Q(+oo) does not exist.

In order to prove this, notice that the function

f{x) = Γ[(l - e-ι)\t\dt = x/l l ! - x2/2 2! + a>8/3-3!
J

is entire and satisfies f(+°°) = + °°. Hence the function Q(x) = 3 +
sin [#/(#)] (where 0 < θ ^ 1 is a constant to be specified later) is also
entire and clearly satisfies (c). The relation (a), then, defines P(x)
to be:

P(x) = [xQ(x)]f = 3 + sin [θf(x)] + 0(1 - e"*) cos [6>/(x)] ,

which is obviously an entire function that satisfies (b). Inserting
the power series expansion of f(x) into the expansion of the sin, in
order to obtain the expansion of Q(x), we see that each of the
coefficients qk is a polynomial in θ which is not the null polynomial.
One may choose θ to differ from all of the roots of these polynomials
and get qk Φ 0 (k = 0, 1, •)• It follows, then, from (a), that (2.1.1)
is satisfied also.

Now, from (a) it follows that

TQ(8, x) = [jV(ί)Γp(s, ί)rfί]/[jo

βP(ί)dί] , (0 < x < + oo) .

Hence, by (b), P £ Q. This is so although (c) is satisfied.
It should be noticed that, by (a) and Theorem 2.2.4 (iii), Q g P

so P and Q are essentially different power methods.
Examples of pairs of power methods, P £ Q for which

) Φ 0, can be easily constructed by Theorem 2.3.10.
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LEMMA 3.1.16.
( a ) // in Lemma 3.1.10 we add the assumption cp £ cq and

denote

(3.1.17) exk = exk - [pku
k/P(u)] g eβi , (u ^ x < p, k = 0, 1, - - •)

then the limits

(3.1.18) ek = l i m e'xk (x real, k = 0, 1, •)

app-

all exist and are finite, (b) If, in addition, P £ Q then for all

ke{0,1, ...} ek = 0.

Proof. First, we notice that by (3.1.10) and (3.1.17)

e'xk\ <: R'\pk\uk , ( u ^ x < p , k = m , m + 1, •••)
(3.1.19)

Next, we see from (3.1.8) that

Q(x) = £ / β P(xτ)dχ(τ) + Q(x)± exk ,

SO,

i—O Ju/x

Substituting this into (3.1.17) and using (3.1.8) we get for every

Tq(8, x) = Tp(s, u) + [Q(x)]'1 I P(xτ)[Tp(s, xτ)
(3.1.20) "/a;

- Tp(s, u)]dχ(τ) + Σ eiΛ

Let now i e {0, 1, •} and choose in Lemma 3.1.4 r = u and
Pi^jPiu). From Lemma 3.1.4 we infer the existence of a sequence
of sequences s{l) ecp (ϊ = 1, 2, •)> that satisfy

s(/} = 0 ( j > i, j> < max {i, m}) , s[n = 1 , Σ \Pkήl) I uk < lβ .

Since s{l) ecp^ cq we infer, from (3.1.20) with the aid of Lemma
3.1.13(a), the existence and ίiniteness of the limits

r« ot O(D (J 1 o
x-*p k = Q

By (3.1.19)
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I e'xi - Σ e'xA
l) I = I - Σ eίksil) I ̂  lί'/i

Therefore

Bm K - & | £R'β .

From this it follows that βι is a Cauchy sequence. Denoting its
limit by β we get then,

which yields, with Z —+ oo, that actually e\ = /3.
Thus (a) is proved. The proof of (b) is similar. We just have

to notice that in case P £ Q we get from (3.1.20) and from Lemma
3.1.13(b) that βι = 0 (I = 1, 2, - •)• Hence β = β = 0.

3.1.17. Proof of Theorem 2.2.9. This is an immediate conse-
quence of Lemmas 3.1.10, 3.1.13, and 3.1.16.

3.1.18. Proof of Remark 2.2.10. The fact that φ is not constant
in [1 — δ, 1] follows immediately from the definition of rpq (see
§ 2.2.3). The uniqueness of φ in certain intervals follows from
Trautner's theorem (see § 3.1.2).

3.1.19. Proof of Theorem 2.2.11. It is sufficient to consider the
case rM = 1, ρq = pp = p, aq = ap = a and to show t h a t cp

0) £ c{

q

0).

By (2.2.1) we may write

Qk = Pk{\[ τkdφ{τ) + θ^j + q'k , \θk\ £ Rθk (fc = 0, 1, •)

where qr

k = 0 for k ^ m. Hence for every s e cp

0)

Tg(s, x) = [Qix)]'1 [ P(xτ)Tp(s, xτ)dφ(τ) + [Qix)]-1 Σ
Jo fe=o

= σx{x) + <72(x) + σ%{x) .

It easily follows that σx{x)—>0, σ2(a;)->0, σ3(x)—>0 (x—>io —) for
every sec{

p

0); so Tq(s, x) —> 0, which completes the proof.

3.1.20. Proo/ o/ Theorem 2.2.13. It is sufficient to consider the
case pq = ρp = oof rpq = 1, tfg = ap = α. The proof is based on (3.1.19)
and (3.1.20), which are deduced here as in section 3.1.16.

It should be observed that (3.1.19) implies:



INCLUSION RELATIONS BETWEEN POWER METHODS OF LIMITATION 271

oo oo oo

lim Σ e*kSk = Σ (lim *4K = Σ e£«* .

3.1.21. Proof of Remark 2.2.14. Follows immediately from the
proofs of Theorems 2.2.11 and 2.2.13.

3.2. Proofs of the results in Section 2.3.

3.2.1. Proof of Theorem 2.3.2. This follows in a straightfor-
ward way from Theorem III of Wiodarski [19].

LEMMA 3.2.2. If P is a regular power method with ρp = oo then
P(εx)/P(x) —»0 (x —* + oo, x real) /or every 0 < ε < 1.

Proof. If 0 < ε < 1 then sk —>0 (&—> oo). Hence the regularity
of P yields

lim P(ex)/P(x) = lim Σ pke
kxk/P(x) = Urn, {ek} = 0 .

3.2.3. Proof of Theorem 2.3.4. Assume first that P is conserva-
tive. We define sd = 0 if j e J (see Remark 2.2.2), sd — qj/(Pjr3

pq) if
P3 Φ 0 and s, = lim qJiVkKo) if Pi = 0, i g J. From Theorem 2.2.4
(iii) we see that the sequence s = {sk} is well defined and convergent.
Now,

Q(x)/P(xrPQ) = [P{xrpq)Γ Σ Qkx
k = [P(xrpq)Γ Σ P Λ W

k=0 ^ = 0

+ [PίxrJ]" 1 Σ Qkx" = T,(β, xrM) + σ(x) .
jfee,/

By Theorem 2.3.2 l i m ^ ^ σ(x) exists, and from Theorem 2.2.4, and
since P is conservative, l i m ^ ^ Tp(sf xrpq) also exists. This establishes
the existence of lim Q(x)/P(xrpq).

Now assume that pp = oo and P is regular. We may write

Q(x)/P(rx) = [Q(x)/P(rpqx)ΠP(rpqx)/P(rx)]

and this, by Lemma 3.2.2, tends to zero in case r > rpq.
If 0 < r < rpq we may choose r0 6 (r/rpq, 1) and have, by Theorems

2.2.9 and 2.3.2, for #->+oo ?

0(1) - I Q(x) r [ I P(xrpgτ) 11 dφ(τ) \>L\ Q(x) r [ P(xrpqτ) \ dφ(τ) \

\dψ{τ)\ .

From Remark 2.2.10 [ \dφ{τ)\ Φ 0; so P(xrpqτ0)/Q(x) = 0(1) (x-> + ~ ) .
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From Lemma 3.2.2 we have then,

P(rx)/Q(x) = [P(xrpqτQ)IQ(x)] [P(rx)/P(xrpqτ0)] - 0 (x — + - )

which completes the proof.

LEMMA 3.2.4. Let E be an FK space and let {/J be a sequence
of continuous linear functionals on E. If lim^oo fn(s) exists for all
terms s of some fundamental set in E and if the sequence {fn(s)} is
bounded for every seE then the limit f(s) — lim^oofn(s) exists for
every s eE and is a continuous linear functional in E.

Proof. For a proof of a more general theorem, see Dunford &
Schwartz [9] II 1.18.

3.2.5. Proof of Theorem 2.3.5 It is known that cp is an FK
space (see [2] and [21]), and it was proved in [21] that under the
conditions of Theorem 2.3.5 U (see § 2.3.6) is fundamental in cp.
From Lemma 3.2.4, it is sufficient then to show that cp Q mq and
that \ivaq s exists for every s e U. But the existence of these limits
follows from the existence of 1/Q(pq — 0). The inclusion cp £ mq

follows from (2.2.2) and from the boundedness of 1/Q{x), after expres-
sing Tq(s, x) in terms of Tp(sf x), via (2.2.1), as it was done at the
beginning of § 3.1.19.

3.2.6. Proof of Theorem 2.3.7. If U is fundamental in cp, then
the proof is based on Lemma 3.2.4 in the same way as Theorem 2.3.5
(see § 3.2.5). This is possible because (i), (ii), (iii) imply cp Q mqj as
is easily seen from the identity

Tq(s, x) = [Q{x)Yι [ P(xrpqτ)Tp(s, xrpqτ)dφ(τ) + Σ **A >

which follows from (i). Also, the boundedness of

Tq(eij+l), x) = qj+ιx
j+ι/Q(x) (aq ^ x < + oo)

implies, when taking I ^ 1, such that qj+ι Φ 0 (see Remark 2.2.1),
that xj/Q(x) ->0 (x ~> + oo) for all j . So limg e

{j) = 0 for i = 0,1, •
(in a similar way lim^ e{j) = 0).

Thus UQcq and Lemma 3.2.4 yields cp £ cq. The consistency
of P and Q follows now because the continuous linear functionals
limp, lim^ coincide on the fundamental set U, hence all over cp.

Consider now the case that Q(εx)/Q(x) —> 0 and assume, for the
sake of simplicity, that rpq = 1. We define exk(v) by

( i )* 9* = P* [ τkdφ(τ) + Q(x)exk(v)/xk ,
Jvlx

( u ^ v ^ x < + o o , Jc = 0 , 1 , •••) .
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From (ii) we infer the existence of an M, independent of both v and
x, such that

(ii)* | Q ( a ? ) r Γ \P(xτ)\\dφ(τ)\^M (u^v^x<+^).
Jvlx

Comparing (i) and (i)* and assuming v/x = u/y we get

Q(x)exk(v)lxk = Q(y)eyjy
k — \eak(v)\ ^ \Q(ux/v)!Q(x)\(v/u)k\eyk\ ,

which implies, by (iii), for every sufficiently large v,

Mv\pk\vk (v <; x < +00, k = m, m + 1, •••)
ι\exk(v)\ ^Mv (v^x< +00, fc- 0, 1,

where Mυ is independent of x. Also, for sufficiently large v

(iv)* lim βxfc(ι;) - 0 (x real, fc = 0, 1, •) .
z->+oo

Now, from (i)* we have

Tq(s, x) = [Q{x)Γ \ P(xτ)Tp(s, xτ)dφ(τ) + Σ exk{v)sk
Jvlx k=0

= ^(v, a?) + σ2(v, x) .

From (ii)* we have

sup Iσ^v, x)\ ^ Msup | Tp(s, #)|

for all X^vy and from (iii)*, (iv)*, for every sufficiently large v
we have

lim I σ2(v, x) \ — 0 .
X-+ + OZ

Hence for each v sufficiently large,

lΊϊn I Tq(s9 x) I ̂  M sup | Γp(β, y) | .
X—> + oo 2/^"y

Thus, if SG4 0 ) , it follows immediately that limg s = 0. Therefore,
cί,0) £ c;o) which implies P Q Q.

3.2.7. Proof of Remark 2.3.8. This follows immediately from
Lemma 3.2.2.

3.2.8. Proof of Theorem 2.3.10. The proof is immediate if we
use the identities
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Q(x) = Γ P(xrτ)dφ(τ)
Jo

Tq(s, x) = IQix)]-1 [ P(xrτ)Tp(s, xrτ)dφ(τ) , (s e c,) ,
JO

which follow from (2.3.2). Actually we infer that

Q(+oo) = P(0M0 + )-^(0)]H
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