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RATIONAL APPROXIMATION TO x»

DONALD J. NEWMAN AND A. R. REDDY

This note is concerned with the approximations of xn on
[0,1] by polynomials and rational functions having only non-
negative coefficients and of degree at most k(l ^ k ^ n — 1).
It is shown that the best approximating polynomial of degree
k on [0,1] to xn is of the form

pk(x) = dxk ,

where d > 0 and satisfies the assumption that

( J. \k/(n-k)

nj

with an error εk = 1 — d, for each fixed k = 1, 2, 3, , n — 1.
It is also shown that dxk is a best approximating rational
function of degree k to xn on [0,1].

More than one hundred years ago Chebyshev showed that xn can
be uniformly approximated on [ — 1, 1] by polynomials of degree at
most (n — 1) with an error of exactly 2~n+1.

Just recently D. J. Newman [1] has shown that xn can be uni-
formly approximated on [ —1, 1] by rational functions of degree at
most (n — 1) with an error roughly V n(ZV Z)~n.

If one looks carefully at the above results, then the following
questions arise naturally.

Q.I: How close can one approximate xn uniformly on [0, 1] by
polynomials of degree (n — 1) having only non-negative coefficients?

Q.2: Is the error obtained by rational functions of degree
(n — 1) having only nonnegative coefficients in approximating xn on
[0, 1] less than the error obtained by polynomials of degree (n — 1)
having only nonnegative coefficients?

We answer these questions in this note.
Let

( 1 ) efc = inf | |α Λ - p(x)\\Looίo^

where π*(l ^ k < n) denotes the class of all algebraic polynomials
of degree at most k having only nonnegative coefficients.

247



248 DONALD J. NEWMAN AND A. R. REDDY

THEOREM 1. // pk(x) = dxk, 1 ^ k < n, where d > 0 and satisfies
the assumption that

( 2 ) n(l - d) = (n - k) (—)
\n /

h \k/(n-k)

— )

n

then pk(x) is a best approximating polynomial to xn in the sense of
(1). In fact, we get

—
n

k/(n-k)

(

Proof. Let

( 4 ) pk(x) = dxk

then it is easy to see by finding a point where | xn — pk(x) \ attains
its maximum on [0, 1], that

( 5 ) e ^ | | a j - Λ (a ? ) |U o o [ 0 f l ] = max j(l - d), ή
n l\n

From (2), it is clear t h a t

( 6 ) e* ^ | | α - 2>fc(a?)IUco[0,i3 = (1 - d) .

So that, again by (2), we obtain

Now we get the lower bound to n εk.
From (1) and the nonnegativity of the coefficients we get

p(x) -xn^ [p(l)]xk -xn = [p(l) - l]xk + xk - xn

^xk(-εk + l - xn~k)

i.e.,

( 8 ) εk^

__ χn~k)χk

f— attains its maximum for values of x satisfying
1 + x*

Hence for this value of x, we obtain
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kίn ~
k ~ n χn~

k

From (9) we get

xn~k ^ (1

i.e.,

(10)

From (9) and (10) we obtain

- )

From (7) and (11) we get

- Λ

n

L % J

n/(n-k) / M

( ^ 1

n
—

Mr

k/(n-k)

£oo[0,l]

Hence, pk(x) — dxk is a best approximating polynomial in the sense
of (1).

THEOREM 2.

(12) εk = θk for all k(l g k < n) .

Proof. By definition, for a p(x) and q(x), we have

(13)

From (13) we get as earlier

(14) θk 2; 4 4 - ••

i.e.,

(15) >

a;*

(8) and (15) being the same in terms of x, n and k, we get

(16) ( 7,

n
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From Theorem 1 and (16), we obtain

(17) (1 - ej-WA

/J.\k/{n-k) /J.\k/(n-k)

2> ( 1 _ a,)./.--*)(A) ^ (i _ e i ) /(-*> (A)

(12) follows easily from (17). Hence the result is proved.
Remarks on Theorems 1 and 2. According to ([2], Theorem 6)

pk of our Theorem 1 is unique. Hence pk is the best approximating
polynomial in the sense of (1). (ii) As a result of Theorems 1 and
2 a best approximation to xn in the sense of (1') is also

pk(x) — dxk ,

where d > 0, satisfies (2). (iii) Let us suppose ek < 1 — d, then from
(2) and (3), we get ek > 1 — d. Similarly, assume ek > 1 — d, then
we get from (2) and (3), ek < 1 — d. Hence we have from (2) and
(3),

εk = 1 — d, for each fixed k = 1, 2, , % — 1 .

(iv) For the case k = n — 1, we get

where c satisfies the equation cec+1 = 1.
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