RATIONAL APPROXIMATION TO x^{n}

Donald J. Newman and A. R. Reddy

This note is concerned with the approximations of x^{n} on [0,1$]$ by polynomials and rational functions having only nonnegative coefficients and of degree at most $k(1 \leqq k \leqq n-1)$. It is shown that the best approximating polynomial of degree k on $[0,1]$ to x^{n} is of the form

$$
p_{k}(x)=d x^{k},
$$

where $d>0$ and satisfies the assumption that

$$
n(1-d)=(n-k)\left(\frac{k}{n}\right)^{k /(n-k)} d^{n /(n-k)},
$$

with an error $\varepsilon_{k}=1-d$, for each fixed $k=1,2,3, \cdots, n-1$. It is also shown that $d x^{k}$ is a best approximating rational function of degree k to x^{n} on $[0,1]$.

More than one hundred years ago Chebyshev showed that x^{n} can be uniformly approximated on $[-1,1]$ by polynomials of degree at most ($n-1$) with an error of exactly 2^{-n+1}.

Just recently D. J. Newman [1] has shown that x^{n} can be uniformly approximated on $[-1,1]$ by rational functions of degree at most ($n-1$) with an error roughly $\sqrt{n}(3 \sqrt{3})^{-n}$.

If one looks carefully at the above results, then the following questions arise naturally.
Q.1: How close can one approximate x^{n} uniformly on [0, 1] by polynomials of degree ($n-1$) having only non-negative coefficients?
Q.2: Is the error obtained by rational functions of degree ($n-1$) having only nonnegative coefficients in approximating x^{n} on $[0,1]$ less than the error obtained by polynomials of degree $(n-1)$ having only nonnegative coefficients?

We answer these questions in this note.
Let

$$
\begin{equation*}
\varepsilon_{k}=\inf _{p \in \pi_{k}^{*}}\left\|x^{n}-p(x)\right\|_{L \infty[0,1]} \tag{1}
\end{equation*}
$$

where $\pi_{k}^{*}(1 \leqq k<n)$ denotes the class of all algebraic polynomials of degree at most k having only nonnegative coefficients.

$$
\theta_{k}=\inf _{p, q \in \pi_{k}^{*}}\left\|x^{n}-\frac{p(x)}{q(x)}\right\|_{L \propto[0,1]} .
$$

Theorem 1. If $p_{k}(x)=d x^{k}, 1 \leqq k<n$, where $d>0$ and satisfies the assumption that

$$
\begin{equation*}
n(1-d)=(n-k)\left(\frac{k}{n}\right)^{k /(n-k)} d^{n /(n-k)} \tag{2}
\end{equation*}
$$

then $p_{k}(x)$ is a best approximating polynomial to x^{n} in the sense of (1). In fact, we get

$$
\begin{equation*}
n \varepsilon_{k}=(n-k)\left(\frac{k}{n}\right)^{k /(n-k)}\left(1-\varepsilon_{k}\right)^{n /(n-k)} . \tag{3}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
p_{k}(x)=d x^{k} \tag{4}
\end{equation*}
$$

then it is easy to see by finding a point where $\left|x^{n}-p_{k}(x)\right|$ attains its maximum on $[0,1]$, that
(5) $\varepsilon_{k} \leqq\left\|x^{n}-p_{k}(x)\right\|_{L \propto[0,1]}=\max \left\{(1-d),\left(\frac{n-k}{n}\right)\left(\frac{k}{n}\right)^{k /(n-k)} d^{n /(n-k)}\right\}$.

From (2), it is clear that

$$
\begin{equation*}
\varepsilon_{k} \leqq\left\|x^{n}-p_{k}(x)\right\|_{L \infty[0,1]}=(1-d) \tag{6}
\end{equation*}
$$

So that, again by (2), we obtain

$$
\begin{equation*}
n \varepsilon_{k} \leqq\left(1-\varepsilon_{k}\right)^{n /(n-k)}(n-k)\left(\frac{k}{n}\right)^{k /(n-k)} \tag{7}
\end{equation*}
$$

Now we get the lower bound to $n \varepsilon_{k}$.
From (1) and the nonnegativity of the coefficients we get

$$
\begin{aligned}
\varepsilon_{k} \geqq p(x)-x^{n} & \geqq[p(1)] x^{k}-x^{n}=[p(1)-1] x^{k}+x^{k}-x^{n} \\
& \geqq x^{k}\left(-\varepsilon_{k}+1-x^{n-k}\right)
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\varepsilon_{k} \geqq \frac{x^{k}\left(1-x^{n-k}\right)}{1+x^{k}} \tag{8}
\end{equation*}
$$

$\frac{\left(1-x^{n-k}\right) x^{k}}{1+x^{k}}$ attains its maximum for values of x satisfying

$$
x^{n-k}=\frac{k}{n}\left(\frac{1+x^{n}}{1+x^{k}}\right) .
$$

Hence for this value of x, we obtain
(9) $\quad \varepsilon_{k} \geqq x^{k}\left(\frac{n-k}{k}\right) x^{n-k}=\frac{x^{n}(n-k)}{k}=\frac{k-n x^{n-k}}{k}=1-\frac{n}{k} x^{n-k}$.

From (9) we get

$$
x^{n-k} \geqq\left(1-\varepsilon_{k}\right) \frac{k}{n}
$$

i.e.,

$$
\begin{equation*}
x \geqq\left[\left(1-\varepsilon_{k}\right) \frac{k}{n}\right]^{1 /(n-k)} . \tag{10}
\end{equation*}
$$

From (9) and (10) we obtain

$$
\begin{equation*}
\varepsilon_{k} \geqq\left(1-\varepsilon_{k}\right)^{n /(n-k)}\left(\frac{k}{n}\right)^{n /(n-k)}\left(\frac{n-k}{k}\right) . \tag{11}
\end{equation*}
$$

From (7) and (11) we get

$$
n \varepsilon_{k}=\left(1-\varepsilon_{k}\right)^{n /(n-k)}(n-k)\left(\frac{k}{n}\right)^{k /(n-k)} .
$$

Hence, $p_{k}(x)=d x^{k}$ is a best approximating polynomial in the sense of (1).

Theorem 2.

$$
\begin{equation*}
\varepsilon_{k}=\theta_{k} \text { for all } k(1 \leqq k<n) \tag{12}
\end{equation*}
$$

Proof. By definition, for a $p(x)$ and $q(x)$, we have

$$
\begin{equation*}
\left\|x^{n}-\frac{p(x)}{q(x)}\right\|_{L \infty[0,1]}=\theta_{k} \tag{13}
\end{equation*}
$$

From (13) we get as earlier

$$
\begin{align*}
\theta_{k} \geqq \frac{p(x)}{q(x)} & -x^{n} \geqq \frac{\mid p(1) x^{k}}{q(1)}-x^{n} \tag{14}\\
& =\left(\frac{p(1)}{q(1)}-1\right) x^{k}+x^{k}-x^{n} \geqq x^{k}\left(1-x^{n-k}-\theta_{k}\right)
\end{align*}
$$

i.e.,

$$
\begin{equation*}
\theta_{k} \geqq \frac{x^{k}\left(1-x^{n-k}\right)}{1+x^{k}} \tag{15}
\end{equation*}
$$

(8) and (15) being the same in terms of x, n and k, we get

$$
\begin{equation*}
n \theta_{k} \geqq(n-k)\left(\frac{k}{n}\right)^{k /(n-k)}\left(1-\theta_{k}\right)^{n /(n-k)} \tag{16}
\end{equation*}
$$

From Theorem 1 and (16), we obtain

$$
\begin{align*}
& \left(1-\varepsilon_{k}\right)^{n /(n-k)}\left(\frac{k}{n}\right)^{k /(n-k)} \geqq \varepsilon_{k}\left(\frac{n}{n-k}\right) \geqq\left(\frac{n}{n-k}\right) \theta_{k} \tag{17}\\
& \quad \geqq\left(1-\theta_{k}\right)^{n /(n-k)}\left(\frac{k}{n}\right)^{k /(n-k)} \geqq\left(1-\varepsilon_{k}\right)^{n /(n-k)}\left(\frac{k}{n}\right)^{k /(n-k)}
\end{align*}
$$

(12) follows easily from (17). Hence the result is proved.

Remarks on Theorems 1 and 2. According to ([2], Theorem 6) p_{k} of our Theorem 1 is unique. Hence p_{k} is the best approximating polynomial in the sense of (1). (ii) As a result of Theorems 1 and 2 a best approximation to x^{n} in the sense of (1^{\prime}) is also

$$
p_{k}(x)-d x^{k},
$$

where $d>0$, satisfies (2). (iii) Let us suppose $\varepsilon_{k}<1-d$, then from (2) and (3), we get $\varepsilon_{k}>1-d$. Similarly, assume $\varepsilon_{k}>1-d$, then we get from (2) and (3), $\varepsilon_{k}<1-d$. Hence we have from (2) and (3),

$$
\varepsilon_{k}=1-d, \text { for each fixed } k=1,2, \cdots, n-1
$$

(iv) For the case $k=n-1$, we get

$$
\theta_{n-1}=\varepsilon_{n-1} \sim \frac{c}{n}
$$

where c satisfies the equation $c e^{c+1}=1$.

References

1. D. J. Newman, Rational approximation to x^{n}, J. Approximation Theory, to appear.
2. J. A. Roulier and G. D. Taylor, Uniform approximation having bounded coefficients, Abhand. aus dem Math. Sem. der Univ. Hamburg band, 36 (1971), 126-135.

Received May 26, 1976 and in revised form July 21, 1976.

Yeshiva University

AND
Institute for Advanced Study

