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REPRESENTING CODIMENS1ON-ONE HOMOLΘGY
CLASSES BY EMBEDDED SUBMANIFOLDS

WILLIAM H. M E E K S III AND J U L I E PATRUSKY

In fills paper we prove a general theorem on representing
codimension-one liomology classes on compact man If olds. Our
theorem gives an elementary proof of the classical result thai a
one-dimensional homology class on a compact orieetable surface
can be represented by an embedded circle precisely when the
class is primitive. We will call a homology class primitive if if is
the zero class or if It Is not a nontiivia! multiple of another class*

Our representation theorem is motivated by our earlier work [2] on
the classical situation. For compact orientable surfaces we developed a
simple algorithm for representing primitive homology classes by embed-
ded circles. This algorithm is also useful for proving other results
related to two and three dimensional topology which are not implied by
the general result here. Recently Mark Meyerson [3] has given another
proof of the two dimensional case by applying Lickorish "twist"
homeomorphisms to a fixed homology class.

The following theorem deals with the decomposition of a n-
dimensional manifold M" by an embedded submanifold Nn~ι which
represents a homology class δ E Hn_i(M, Z). We will say that such a
representation N is minimal if there is no other representation N' of δ
having fewer path components.

REPRESENTATION THEOREM. Suppose M is a compact orientable
piecewise linear n-dimensional manifold and y E Hn-λ(M, Z) is a primi-
tive nonzero class,

1. The class δ ~ KJ has a minimal representation by a submanifold.
2. If N is a minimal representation for δ = KJ then each path

component of M - N has two ends and the number of path components of
| i s #c.

Proof. The Poincare dual to δ = KJ can be represented by a
piecewise linear mapping P(δ): M—> Sι. The standard duality
theorems imply that wherever r E S1 is a regular value for P(δ), then
P " ' ( F ) C M is an embedded submanifold representing δ. Hence any
δ E JFίn_i(M, Z) has a minimal representative.

Suppose now that N is an oriented path-connected submanifold of
M with [N] ^ 0 6 Hn-.Λ(M, Z). Since N is path connected and nontrivial
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on homology then M - N is path connected. Hence there is an
embedded circle σ CM with [σ] Π [N] = + 1, where Π is the intersec-
tion pairing on homology. This implies that [N] is primitive.

DEFINITION. If N CM is an embedded submanifold, and U is a
path component of M — N7 then T = end closure of U is formed by
placing a compact boundary on each end of U.

Let N be an embedded submanifold representing δ E
HΠ_](M, Z). Suppose T is the end closure of an oriented path compo-
nent of M - N with at least three ends, Eu JB2, E3, coming from cuts
along distinct path components Nu N2, N3 of N. Orient the end E x as
the respective component Nt is oriented. Let yλ be a path joining
px E Ex to p2 E £ 2, and let γ2 be a path joining p2 E E2 to p3 E E3 with
γ iΠγ 2 = {/?2}. If sgn(γi Π E i ) ^ s g n ^ Π £2), then we can take the
connected sum of Nλ and N2 in M along γ1? and similarly, if sgn(γ2Π
E2) 7̂  sgn(γ2 (Ί £3), we can connect N2 and N3 in M along γ2. If neither
of these cases hold, form the composite path γ 3 =γi °γ ί 1 . Clearly,
sgn(γ3 Π Ex) φ sgn(γ3 Π E3). Since the normal bundle to E2 is trivial, we
may push γ3 off of E2 and take the connected sum of Nx and N3 in M
along this variation of γ3.

A slight change in the above argument shows that the condition that
Eu E2, E3 come from cuts along distinct path components of N is not
needed. Hence, if N is a minimal representative of δ, then each path
component of M - N has two ends. This implies that [N] = \N\ [NJ,
where Nx is a path component of N. Since Ni is primitive, the theorem is
proved.
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