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MOMENTS OF MEASURES ON CONVEX BODIES

P. H. MASERICK

In this paper the problem of moments is viewed as one of
identifying a class of functions on a semigroup with a class of
measures. We present integral representation theorems for
linear functional on algebras (Theorems 2.1 and 2.2) which
enable us to solve moment problems for a wide class of compact
sets. In particular if K is any compact convex subset of R3 with
nonvoid interior, necessary and sufficient conditions are given
for a triple indexed sequence f(nu n2, n^) to admit an integral

representation of the form f(nun2, n3) = I tn

xH>t
JK

(t = (ίi, t2, h)). Here, of course the semigroup 5 considered is
all triples of nonnegative integers under coordinate
addition. As in the case of HausdorfPs "little moment prob-
lems" the solution depends on certain linear combinations of
shift operators.

We consider the three coordinate shift operators EuE2,Eλ defined
on the functions / on 5, e.g. (E2f)(nu n2, n3) = f(nu n2 + 1, n3). If K is
the octahedron {t E R3\ 1 ± t{ ± t2± t3 ̂  0}. Then / admits a necessarily
unique, nonnegative representing measure if and only if (Δ/) (0,0,0)^ 0,
where Δ is any product of difference operators of the form I ±Eλ±E2±
E3. The octahedron example is typical of all bounded nondegenerate
convex polyhedra in that the difference operators used to describe those
functions which admit representing measures are defined in terms of the
facial functionals of the polyhedron K. Necessary and sufficient condi-
tions for the existence of representing signed measures are also given
in §3.

In §4 we apply Theorems 2.1 and 2.2 to algebras of shift operators on
arbitrary commutative semigroups. This leads to a more general notion
of functions of Bounded Variation than has previously been introduced
on semigroups cf. [6, 11, 12 and 14]. The classical notion of positive
definite function on a group is recast in terms of finite difference. We
conclude by giving necessary and sufficient conditions for a linear
functional on a commutative B *-algebra with identity to be in the span of
the positive linear functional.

2. Positive and BV-functionals on algebras with
involution. Let si be a real or complex commutative algebra with
identity 1 and involution *. If sd is real we assume x* = x for all
x E sέ. Let J be a subset of sέ such that:
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(i) SΓ is hermitian (x* = x for all x E 2Γ)
(ii) 1 - 5" C A l g s p a n ^ (For each x £ j there exist products

xu — -,xk of members of 3~ and positive scalars α b ,α f e such that
x + Σt=ιaιx, = 1)

(iii) Alg span 3~ = sέ (For each x G i there exist scalars au , ak

and products x b , xk of members of SΓ such that x = Σf=1 α,x,).
If we set Algspan+5" = F then the real span, siR, of P is P - P =
{x - y I x, y E P} and the complex span, sic, of F is ^ R + isέR =
{x + iy\x,y E. sέR). It follows that siR = {x S sic\x = x*}- Every real,
positive homogeneous, additive functional on P admits a unique linear
extension to si, this extension necessarily satisfies /*(*) =/(**) for all
x E sic, (we are using * to denote both involution and conjugation). If /
is multiplicative on P then so is its extension which we will also denote by
/. A linear functional / on si will be called ^-positive (or just positive)
if f(x) ^ 0 for all x E P. Let P' denote the set of all ^-positive linear
functionals on si. Our main concern is one of characterizing P'\ the real
span, P'-P\ of P; and the complex span, ( P ' - P ' ) +
i(P' - P'). Throughout we will equip Span(P') with the weak *
topology.

PROPOSITION 2.1.1. 1 -Yl^xx} E P whenever xu ,jck CSΓ.

Proof. The assertion follows from the algebraic identity:

where the left summation is taken over all 0-1 valued functions σ( )
defined on the first k natural numbers such that σ^ 1. That this identity
is valid, follows from induction on k since

+ ( i - χ t + . ) Σ Π *?(i-χ,y-σ' + U χ/(i-χ*+.)
σ - ^ 1 7 = 1 7 = 1

( fc \ fc fc + 1

1 ~~ Π XJ ) + Π xi (1 ~ f̂c + i) = 1 ~ Π x r
7 - 1 / / = 1 7 = 1

For each x G i , define the evaluation function x on Span(P') into
the scalar field by x(f) = f(x). The above proposition implies ί is
strictly positive on the cone P'. For if / E P' and / ^ 0 then there exist
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JC,, , xk E 9~ such that /(π,*/) > 0 so that /(I - τr,Jty) g 0 implies ϊ(/) =
/(I)^/(π y jc ,)>0. It follows that B = {/G P ' | / ( I ) = 1} is a convex base
for P'.

PROPOSITION 2.1.2. The base B is compact.

Proof. Let F denote the set of all products of members of 3f and set
[0, l] x = [0,1]. Then the restriction f\F is a distinct member of the
product space Πx€ΞF[0, l ] x for each f E B. Thus Tychonoff's theorem
establishes the assertion since B' = {f\F\ f E B) is all functions f on F
such that /(I) = 1 and Σ atx, = Σ β,xt (x, E F) implies Σ aιf(xι) = Σ #/(*,)
so that Br is closed relative to the topology of simple convergence.

If we let Γ denote the class of all ^-positive multiplicative function-
als on M then Γ is w*-compact. Note that xy\Γ = (xy)A\Γ and

THEOREM 2.1. A linear functional f on sd is 3~-positive if and only if
there exists (a necessarily unique) regular Borel measure μfon Γ such that

/(*) = Jr £(XW(X).

Proof. The existence of μf follows from Choquet's theorem c.f. [4
or 15], once we've shown that the extreme points of B are contained in
Γ. For this we define the translate fx of a linear functional / by
fx(y) = f(xy) (*, y E si) then fx is linear and ̂ -positive if / is if-positive
and x E P. Since / = fx + /,_x for x E 3~ we have λf = fx whenever / is
an extreme point. Evaluation at 1 shows Λ = / ( x ) so that f(x)f(y)~
f(xy) for all y E sέ and x E ST. It follows that / is multiplicative so that
every extreme point of B is multiplicative. See [1] for a similar
argument. Uniqueness follows from the Stone-Weierstrass theorem
since {x |,-: x E sέ) is a point separating *-subalgebra of the continuous
functions ^(Γ) on Γ which contains constants.

The argument used in [5] shows that every member of Γ is in fact
extreme so that B is a Bauer Simplex, i.e. a simplex whose set of extreme
points is closed. Since the map /'—> μf of P onto the nonnegative
measures is linear it is natural to ask what linear functionals admit a
representing measure with respect to real and complex measures? I.e.,
how can Pf - Pf and {Pr - P')+i{Pr - P') be characterized? The an-
swer to this question relies on the concept of B V-function and the proofs
which we will use depend heavily on compactness arguments with certain
partitions of unity. We begin with some preliminary definitions.

A cycle is a finite subset {x,, , xk) of P such that x,, , x*., E SΓ
and Σf=, x, = 1. Let & be a collection of cycles such that each x E 3~ is



138 P. H. MASERICK

in at least one cycle of 0\ An example of such a 9 is {x, 1 - x \ x E
2Γ}. The cycle {x, 1 - JC} will be called a s/rap/e cyc/e. The motivation
for considering simple cycles comes from considering the algebra si of
shift operators on the additive semigroup S of nonnegative integers in
light of Hausdorff's solution to the "little moment problem" [cf.
16]. These cycles correspond to the collection {{tk(\- t)n~k}k^n}n of
partitions of unity on Γ = [0,1] and this collection is rich enough to
adequately describe the variation of the Borel measures on Γ. When
dealing with more general semigroups we must consider products of
these cycles to obtain rich enough partitions. In this generality Γ =
exp(S) [cf. 11]. In trying to describe the variation of measures sup-
ported by compact subsets of the semicharacters of S other than exp 5, it
becomes necessary to consider other than simple cycles. This becomes
particularly important for many of the applications given later and we
feel justifies the additional complexity. With each finite subcollection
{{*y}ι}; of ^ w e associate the partition of unity of all distinct products
which contain one factor from each cycle. When the cycles in the
subcollection agree for each ; = 1,2, * ,n we get the multinomial
partition

In general we will be considering products of multinomial partitions of
cycles in 3P, i.e. partitions of the form

where {jc/y}z is a cycle for each / = 1, , k. If we set the expression
under the bracket equal to p then the functions p (restricted to Γ) form a
partition of unity in the space of continuous functions ^(Γ). We will
consider these products of multinomial partitions of unity in ^(Γ)
extensively later and without further reference. For each finite subset
&o= {{*v}}y=i,2,. .,* of 9 and each set of integers {nb , nk) define

where summation is taken with respect to all choices of il} such that
Σ/i/y = n} for each / = 1,2, , k.
Note that if Ŝ o is a collection of simple cycles {x!y 1 - JC;}/=U, .,* then

(Άk\ I fΓΠ r '
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Finally we define the total variation of /.by

11/11 =
»,)

and (9%, rtj)^ (&'Q9 n'}) if 3% C Ŝ ό and n; ^ n'; for corresponding /'s. The
class of all functionals of finite variation are called ίf~BV (or just BV)
and it is this class of functionals which we will show admit integral
representations. Our main theorem is as follows.

THEOREM 2.2. The BV-functionals form the linear span of the
positive linear functionals. These are precisely the linear functionals f
which admit a (necessarily unique) representing measure μf. If f is BV
then \\μf\\ = |[/| | and μf is real if and only if f(x*) = /*(*)-

The proof is broken down into a series of lemmas. Lemmas 2.2.1
through 2.23 prove that if / admits a representing measure then / is B V.

LEMMA 2.2.1. Let ε > 0 be given and Kλ and K2 be disjoint compact
subsets of Γ. There exists a product A of multinomial partition of cycles in
& with subpartition Λo such that

pGΛo J

Proof Let χx and χ2 be distinct members of Γ. Then there exists
Xι E Sf such that X\(X\)j^ χ2(x\) These two real numbers can be sepa-
rated by disjoint open subsets Gx and G2 in [0,1] with ^ ( x ^ E G] for
y = l,2. The theory of Bernstein polynomials cf. [8, page 6] implies

that for all sufficiently large n the partition of unity | ί . \tι(\- t)n~x\

( O i ί έ l ) admits a subpartition which is arbitrarily close to zero on G2

and arbitrarily close to unity on Gλ. Inverting, we have the existence of

a subpartition of the partition of unity | ( . ) x\{\ - ί i ) " " ' | which is

arbitrarily close to zero on the preimage xT(G2) and arbitrarily close to
unity on iΓ(Gi). But if {jc/}I =ii2,...,k is a cycle in $P which contains xu then

Thus the partition of unity
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{1- xι

k

k

admits a subpartition which separates the disjoint open sets xΓ{Gλ) and
xΓ(G2) which contain the singleton (compact) sets {̂ 1} and {χ2} as in
Lemma 3.1 of [10]. The compactness argument used there implies the
present lemma.

LEMMA 2.2.2. Let μ be a bounded complex valued measure, f and g
integrable functions and E a measurable set. / / l ^ / ^ l — e and 0 ^ g ^
e on E then

^(l-4e)\μ(E)\ and (ii)

Proof, (i) \μ{E)\- ~j fdu

Similarly (ii) ί gdu ^ ί gdμ\^ί €d\μ\^4e\μ(E)\.

LEMMA 2.2.3. If μ is a complex regular Borel measure on Γ then the
variation is given by

j M

where A is an arbitrary product of multinomial partitions of cycles in $P.

Proof Choose e such that 0 < e < 1. From regularity, there exists
disjoint compact sets {lζ | i = 1,2, , k) such that

(i)
k

ι = l

From Lemma 2.2.1, there exists a collection {Λ1}, of products of
multinomial partitions with subpartitions {Λό}, such that

(ϋ) Σ P(x>
on

on \jκr
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Let Λ = Π.Λ1 = {p\,p2' * Pk |p, £ Λ'}. Then Λ is a product of multino-
mial partitions with subpartitions

Since Vl - β/12fcg Vl - e/12, Lemma 2.2.2 implies

Similarly, since 1 - Vl - e/12k< β/12/c we have

Therefore

Σ
pGΛ

Σ I Pdμ -\\ Pdμ -\\
eΛi L I JK, I J UK, I J r\uκ,

S i n c e | μ | ( Γ ) - e / 3 ^ Σ \ μ \(K,), w e h a v e \ μ \ ( Γ \ U K , ) < e/3 s o that

Σ

The assertion follows since

REMARK 2.2.4. If / admits a representing measure μf then
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Proof. Let SP0 = {{*«/},}« be a collection of cycles in 0>. A typical
member of a product Λ of multinomial partitions of 2P of the form:

- viπ. / \ w / Π ί

so that

II/IU,)=ΣI/(P)I=Σ
p£Λ pGΛ

Lemma 2.2.3 implies the remark.
In order to prove that every BV-functional admits a representing

measure we will define the variation of a BV-functional f by | / | (y) =
||/y || for all y G P. If / G P' - P' then μfy = ydμf since fy(x) = f(yx) =

I yxdμf. Hence | /1 (y) = || fy \\ = \\ μfy \\ = || y dμf || and since y is nonnega-

tive on Γ, \\ydμf\\= I yd\μf\. Therefore | / | (y) = I yd\μf\ for all

y G P. Once we show | / | ( ) is finite, additive and positive homogene-
ous on P we can linearly extend | / | to sέκ whenever / is real on s£R. It
will be shown that / = 1 / 2 ( | / | ± / ) is ^-positive so that / =
/+ - /" G P' - P' whenever / is real on stfR and BV. The complex case
easily follows. We will need to verify some preliminary properties of
the total variation first. We begin with the following elementary
consequence of the triangle inequality and positive homogeneity of the
absolute value.

LEMMA 2.2.5.

(ii) | |α/|U=|α| |l/lk

Thus || || is a positive, homogeneous, subadditive function on the
BV-linear functionals.

Let {{xij}ι}n be a finite subset of cycles. Then since (JCΠ + * * %)nχ{xn +

where 9>λ is the union of ^ 0 with the single cycle {xιh x2h * * *}• By
induction we can eliminate all repetitious cycles by increasing the
order. In summary we present the following.

L E M M A 2.2.6. Let SPQ be a finite collection of cycles and $P'O be the
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collection of all pairwise distinct cycles of 2P0. Then mu m2, , m{ can be
chosen so that

i,- ,m,)

LEMMA 2.2.7. Let 0)

1 = {xυ, x2p }; =i,-,m be a set ofm cycles and let

>Q be the first k-1 of them. Then

l l / l k * ) = Σ ( f

 Hk )••'(; nm ) IIΛ IU*> where x = f t ( x i y ).

Proof.

u , . - Σ ( , *..)•••(, " : . . ) Σ C "'-.)•(. "*-'--) Φ**
and the lemma follows.

If we take m = fc and nm = 1 then the above lemma along with
Lemma 2.2.5 shows Il/Ήĉ  ,.̂ ) = S# il̂ ik/ ||ĉ >.r.,> ̂  11̂ ://̂ ^ || = H/̂ Hĉ ^̂ )- Lemma
2.2.6 now implies the following.

LEMMA 2.2.8. ||/||(^0,Πj) is a nondecreasing function of$P0 and nf. In
particular

LEMMA 2.2.9. // JC ΐ5 a finite product of member of SΓ and f is B V
then fx and /,_x are BV and \\f\\ = ||/x || +!(/,_, ||.

Proof Let Jc=Π/

k

= 1x1 / (xυ E J) and 0>o be a finite subset of
3P. For each /, there exists a cycle Q = {xlj9 x2p , %} contained in 9
which contains xίr Let ^ i be the collection of cycles obtained by
adjoining Cp with multiplicity 1, to ^ 0 for each /. Then from Lemma
2.2.7,

where 17(/) E {1,2, , /J and yη = Π,xη(/)/ . Hence

I/ll * Σ IIΛ, Ik ̂  11/, Ik + Σ IIΛ, I k - IIΛ II +11/.-, II ̂
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The assertion follows.

LEMMA 2.2.10. |/|( ) is additive and positive homogeneous on P.

Proof. Let x - Σ atx{ (at ^ 0, JC, E 3~k) be an arbitrary member of
P. Then

Σ«J Σ «*-,

A second application of the triangle inequality shows ||Σ α/Xl || = Σ a,\\fXι \\
so that

( ) = ll/aJI = |Σ «./,( = Σ «J/J = Σ *l/l(*)

LEMMA 2.2.11. If f is a linear BV-functional on sέ such that
/ * ( * ) = / ( * * ) /or α// x E i ί/ierc / is ί/ie difference of Wo positive

functionals.

Proof Note that / is real on P. Since |g(l) |^ | |g | j for all g, we
have |/(JC)| = | Λ ( 1 ) | S | | Λ | | = | / | ( X ) so that \f\(x)^±f(x) is for all
xEP. Thus / ± = 1 / 2 [ | / | ± / ] is SΓ-positive whenever / is BV. The
assertion follows since f — f+~f~>

Theorem 2.1 now implies that a BV-functional / admits a real
representing measure if and only if /*(*) = /(**) for all x EL sέ. The
proof of Theorem 2.2 will be complete once we've established the
following lemma.

LEMMA 2.2.12. // si is complex then the set BV(d) of BV-
functionals is (Pf - P') + i(P' - P').

Proof For each BV-functional /, set /*(*) =/*(**). Then /* is
linear. Also / = /, + i/2, where /, = (/ + /*)/2 and f2 = (f - ft)/2L Since
JC = x* for all x E 5" we have |/*(njc7)| = |/(ΠJC ;)| for x} E ST. Thus /*
and hence /; (/ = 1,2) are BV-functionals. But since f*(x) = f(x*), we
have / in the complex span of Pf. That is BV(sί)C(P'- P')-h
ί(P' - P') Conversely let / E C-span (P). Then / = /, + if2 where /y is
BV and f*(x) = /,(**) 0 = 1,2). Therefore / admits a complex repre-
senting measure μf whose real and imaginary parts are μf] and μh

respectively. It now follows from Remark 2.2.4 that / is BV and the
proof is complete.
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COROLLARY TO THEOREM 2.2. A linear functional f is BV // and
only if

where σ is a 0-1 function on the first k natural numbers and the limit is
taken over all finite subsets {xu , xk} of SΓ and all integers n. Moreover

Proof. The collection & = {x, 1 - x | x E SΓ} of simple cycles is an
admissible collection of cycles as mentioned above.

3. Application to classical moment problems. The
classical moment problem is one of characterizing functions / which
admit integral representations of the form

= ί
JK

where K is a subset of ^-dimensional space R". Restrictions are put on
μ. Here we apply the results of §2 to solve this moment problem for
compact convex sets K with nonvoid interior and with respect to both
nonnegative and signed μ.

To put this in our setting let sέ{x) be the algebra of all polynomials
in the ^-variables x = JC, -xv. A subset SΓ of polynomials, nonnegative
on K such that

(i) M(x) = AlgspanSΓ
(ii) 1 - p G Algspan+(5r) whenever p E 2Γ
(iii) K = n p e / 7 { ί E R * | p ( 0 ^ 0 }

can be constructed.

3.1. Construction of ST. Let t° be an interior point of K and
B (K) = {p -affine | p (t) ̂  0 for all t E K and p (t°) = 1}.

LEMMA 3.1.1. B(K) is uniformly bounded.

Proof. There exists e > 0 such that the Euclidean disk S€(t°) =
{t E R" I || ί - f°|| < e} is contained in K. If p E B(K) assumes its su-
premum on K at tι(supp(K) = p{tλ)) then t] is an extreme point of K
and thus tι £ S€(t°). Also there exists ί 2£S 6(ί°) such that t° =
at1 + (1 - a)t2 (0<a< 1). Therefore e < \\t2 - t°\\ = a \\tι - t2\\ < a

(diam(X)) so α>e/diam(X) where diamX = sup{||5 - ί|| | s,tEK}.
Since 1 = ap(t]) + (1 - a)p(t2\ we have
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LEMMA 3.1.2. B(K) is a compact base for PA ={p-affine \ p ^ 0 on

K}.

Proof If we norm the finite dimensional space A(K) of affine
functions on K by | | p | | K = sup |p(X) | . Lemma 3.1.1 implies B(K) is
compact the evaluation functional f° defined by ΐ°(ρ) = ρ(t°) is strictly
positive on PA and the assertion follows since B(K) is contained in the
preimage of 1 under ί°.

PROPOSITION 3.1.3. The set 2Γ = {p/\\p\\κ\ p EextB(K)}U{0} of
normalized extreme points of B(K) along with 0 satisfies 3.(i), 3.(ii) and

Proof Since A(K) is finite dimensional, and B(K) is convex and
compact, B(K) = co[ext(B(K))]. Therefore, span+2Γ = PA and since
[p -intp(K)]/[supp(K)-intp(K)]e PA for every pEA(K) we have
span 5" = A(K) so that (i) follows, (ii) is clear since O ^ p ^ 1 for all
p E 3~ and span+ίΓ = PA. The Hahn-Banach Theorem implies
K = ΓϊpepΛt \p(0 = 0} and since PA = span+ SΓ we have Πp e.y{ί \p(t) ^ 0}
is also K and (iii) follows.

In the event that K is a convex polytope, the set SΓ of Proposition
3.1.3 can be more precisely described as the linear functionals which
expose the faces of K. To be explicit there exist a minimal set of linear
functionals {L, | i = 1, 2, , k} such that K = Π7{ί | L y ( ί ) ^
infL,(ίO}. Let Λ ( K ) = [ L ; ( ί ) - inf L

PROPOSITION 3.1.4. ^ = {p; |y = 1, , fc}U{l,0}.

Froo/. Let p G extB(K) and Z(p) = {tEK \p{t) = 0}. If Z(p) =
0 then i n f p ( ί Q > 0 so p is no smaller (with respect to the ordering
induced by PA) than the constant function whose value is
infp(K). Lemma 3.1.2 implies p is a multiple of this function so that
p Ξ= 1. If Z(p)^0 then Z(p) is a subset of a maximal proper extreme
convex subset (face) of K. But the faces of K are precisely the sets
Z(pj) cf. [9]. Since Z(p) is extremal we have extZ(p) CextZ(p y) C
ext(K). But ext(K) is finite. Hence there exists α > 0 such that
p — apj is nonnegative on ext(K), whence p — αp; E PA so that p = apι or
if C{p;}. Conversely if p £ PA and Pj - p E PA then Z ( p ) C
Z(p). But Z ( p ) is a face and hence is a maximal proper extremal
convex subset of K If p ^ l then Z(p) is a proper extremal convex
subset of K so that Z(p) is exactly the face Z(p,). But every face of a
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convex polytope affinely spans a hyperplane if, c.f. [9]. In as much as p
and pj agree on H we must have ap} = p or p} is on an extreme ray of PA.
Thus

3.2. Solution of the moment problem. Let 3~ be any
subset of stf(x) which satisfies 3.(i), 3.(ii) and 3.(iii).

PROPOSITION 3.2.1. A multiplicative linear functional χ is 2Γ-
positiυe if and only if there exist t E K such that χ(p) = p(t). Moreover
the set of positive multiplicative linear functionals Γ on d(x) is
homeomorphic to K under the map χ-*t.

Proof. Let Pi be the polynomial defined by pι(x) = xt (evaluation at
the ith coordinate) and let tι=χ(pi). If p E SΓ such that ρ(x) =
Σaιu.. ^ x l 1 xϊ t h e n χ(p) = Σaiu ..tj\> f;, s o χ{p) = p{tλ •••*„) for al l
p E r and hence all p. The rest of the assertion follows easily.

A linear functional L in M{x) is uniquely determined by its
moments f(nu , nv) = L{tΊι Ό ) .

COROLLARY 3.2.2. Λ real valued function f on the v-tuples of
nonnegative integers admits a real integral representation of the form

JK

if and only if the linear functional Lf determined by the moments
f(nu - , nv) is ίf-BV; μf being nonnegative whenever Lf is SΓ-positive.

In order to more precisely describe those functions which are
solutions to the moment problem let Eι denote the shift operator as
defined by (Ej)(nu , nv) = f(nu , nt + 1, , nv) for each i =
1,2, , v. We define the product of two shift operators by composition
and let d(E) denote the algebraic span of the shift operators. Then
sί(E) is isomorphic to d(x)\ p(Eu- - -,EV) being mapped onto

THEOREM 3.2.2. A function f is a solution to the classical moment
problem (*) with respect to a positive measure μ if and only if

[Pi' * *Pk(E)]f(0) * 0 for all pu ,pk E 2Γ (0 = (0, ,0));

and f is a solution with respect to a signed measure if and only if

M5 ' ' *
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where the limit is taken over all finite subsets of a set of cycles which include
each p E ST.

Proof Let p(x) = Σ anx....njn1 -xϊ Then

Σ anu-,nj(nι," ,n,)

= [p(E)f)(O).

Thus L/(p! pk) = ([(/?! mPk)(E)]f)(O) and the assertion follows.

COROLLARY 3.2.3. The set P = Alg span+ (3~) is uniformly dense in
the nonnegative continuous functions on K.

Proof. Let / be a continuous function which is nonnegative on K
but not in the uniform closure of P. The Hahn-Banach theorem implies
the existence of a linear functional L on C(K) such that L ( / ) < 0 S
inf L(P). But then L admits a nonnegative representing measure μL on K

such that L(p)= I pdμL for all p E si. Since / is nonnegative on K we
JK

reach the contradiction that L(f)= fdμL ^ 0 .
JK

3.3. Specific examples

3.3.1. The Hausdorff (1-dimensional) moment
problem. Take K = [α, fe], then from Proposition 3.1.4,

J
[ ' \ f e - α b-a

so that if (Ef)(n) = /(n + 1), then Theorem 3.2.2 implies:

/ is a solution of the moment problem I tndμ =/(n) if and only if
Jo

(i) I im π ( f c _ 1

α ) .Σ

Moreover μ is nonnegative if and only if

(ii) (E-aiy(-E + biyf(0)^0

for all pairs on nonnegative integers / and /.
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Note that if a = 0 and b = 1 then — E -f b is the difference operator

Δ = / - E and (i) reduces to l i m n 2 ( ) Δπ~ f/(ί)| < °° while (ii) becomes

Δy/(/) ̂  0; Hausdorff's well known solution to the little moment problem,
c.f. [6 or 14]. In this case Corollary 3.2.3 implies that every continuous
function on [0,1] can be uniformly approximate by polynomials of the
form Σ « / ( l - ί ) ; , (α / y >0), an obvious corollary to the theory of
Bernstein polynomials.

3.3.2. T h e 3-dimensional cube . K = {t G J R 3 | 0 ^ r, ̂  1,
i = 1,2,3}. Then SΓ = {1,0,1 - x b 1 - x2,1 - x3, *i, x2, *3} SO that / is a
solution of (*) if and only if

lim

and /i is nonnegative if and only if (/ - Ex)
iι(I - E2)

l2(I - E3)
hf(ju y2, /3) =

0 for all choices of nonnegative integers, iu i2, iiJ\J2J?>.

3.3.3. The 2-dimensional simplex. If K = {t \ 1 - ί, - t2 ̂
0, ί! ̂  0, ί2 = 0}, then SΓ = {1,0,1 - JC, - JC2, *i, ^2}. Thus / is a solution of
(*) if and only if

I i)\{I-Ex-E1ff{iui1)\«»

and the measure μ of determinancy is nonnegative if and only if
(I - E]- E2y*f(iu h) = 0 for all choices of nonnegative integers /,, i2 and
iV Corollary 3.2.3 implies that every continuous function on K can be
uniformly approximated by polynomials of the form

a fact which also follows from [8, page 51.]

4. Applications to semigroups. Let 5 be a commutative
semigroup with identity 1 and involution * c.f.[8]. For each j c E X w e
define the shift operator Ex on the functions on 5 by Exf(y)-
f(xy). The product ExEy of two shift operators is defined by composi-
tion and the linear sum is defined by (aEx + βEy)f(z) =
af{xz)+βf(yz). Note that ExEy = Exy for all x, y G 5. The algebra
sέ{E) spanned by the shift operators is then a commutative algebra with
identity £, which can be made into an involution algebra by defining
(Σa,Ex,)* = Σa*Ex1. The functions on S can be biuniquely identified
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with the linear functionals Lf on sέ(E) by Lf(Σ atEXι) = Σ <*/(*,•). Then
the multiplicative functionals are homeomorphic to the semigroup
semicharacters relative to the topology of simple convergence. Thus the
S^-positive and BV -functionals on $ί(E) correspond to certain classes of
functions on S. Various possibilities exist for ST. In defining 3~ more
generality is obtained by considering a generator set for S, i.e. a subset X
of S such that every element of 3~ is a product of finitely many elements
of XUX*.

4.1. Completely monotonic functions. We assume x* =
x for all x E S and set SΓ = {Ex, 1 - Ex x E X}. Then Lf is positive (or
BV) if and only if / is completely monotonic cf. [5] (or BV in the sense
of [11]). If 5 = ({0,1, •••},+), then these are the solutions to the little
moment problem described in 3.3.1. If S is the set of all triples of
nonnegative integers under coordinate addition, the situation is as
described in §3.3.2.

4.2. M o m e n t problems in RΛ For a given convex body in
Rμ we let S be the semigroups of all ^-tuples of nonnegative integers
under coordinate addition and the identity involution. We define 3~ as
in Theorem 3.2.2. Then the ίΓ-BV functionals can be viewed as those
functions which are solutions of the moment problem of §3.(*). The
situation is clarified by the examples given in §3.

4.3. Positive definite functions on groups and involu-
tion semigroups. If S is a group or inverse semigroup (c.f. [2]), then
x* — x~x provides a natural involution on S. A natural involution on the
semigroup of all order pairs of nonnegative integers which is considered
in [10] is given by (/,/)* — (j, O F°Γ arbitrary involution semigroup with
generator set X we define a difference operator TtTx =
1/2/ + (σ/4)Ex + (σ*/4)Ex , for each x G S and fourth root of unit σ. ?J
is then selected as {Tσx\xEX}. A linear functional Lf on sί(E) is
J'-positive if and only if finite products of the form (Π,Γσ>x/)(l) are
nonnegative for all fourth roots of unity σ, and all choices of x} E X. Such
functions f on S are called (X)-positive definite. Moreover Lf is <f-BV if
and only if

<oc.

The functions f on S for which Lf is ίf-BV are called X-BV functions on
S. These functions are completely discussed in [12] and the results of §2
can be used to recover the theorems there. When S is a group, Γ
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corresponds to the group characters Char(S) and Theorem 2.1 takes the
form of Bochner theorem for discrete groups.

COROLLARY 4.3.1. // 5 is a commutative group, then a complex
valued function f is positive definite if and only if f admits an integral
representation

f(χ)=! X(x)dμ(χ).
JCharS

In particular the classically defined positive definite functions on
groups agree with those defined here. Theorem 2.2 describes those
functions on 5 which are in the span of the positive definite functions.

When S is the semigroup of pairs of nonnegative integers as
described above and X = {(1,0), (1,1)} then the multiplicative linear
functional Lχ EΓ can be identified with the points of the unit disk D and
Theorems 2.1 and 2.2 characterize those functions f on S which are

solutions of the moment problem /(/,/) = I zι(z*)Jdμ(z) for nonnega-
JD

tive and complex μ respectively. The solution to this moment problem
for nonnegative μ leads to a derivation of the spectral theorem for
normal operators [10]. For general involution semigroups, if we select
X = S then Γ corresponds to the bounded semicharacters χ such that
χ(x*) = χ(x) and Theorem 2.1 shows that / is ^"-positive if and only if/
is *-definite as defined in [7].

5. Applications to B*-algebras. Let si be a commutative
B *-algebra with identity 1 such that || x || = || x * || and let 3~ = {xx * 11| x || <
1}. Then each x E sέ can be expressed as JC1 + /JC2 where x* = x}

0-1,2). Thus

ax = [(a - 1) + (α - l)ί]l + [1 - α(l - x,)] + [1 - α(l - x2)]i.

If we choose a > 0 such that | | α ( l - x ; ) | | < 1 0 = 1.2) then the square
root lemma implies the existence of y, E 2Γ such that yt = 1 - a (I - JC7) or

ax = [(a- l) + (α - 1)/]1 + y, + y2.

Thus 3~ generates si. The square root lemma also implies 1 - x E 3~
whenever x G J . If we let Γ be the set of multiplicative linear function-
als χ such that χ*(x) = χ(x*), then Theorems 2.1 and 2.2 establish the
following.

THEOREM 5.1. A linear functional admits an integral representation



152 P. H. MASERICK

f(x)= I x(x)dμ{x) with respect to a necessarily unique regular Borel

measure μ if and only if

Also / admits a nonnegative representing measure if and only if
f(xx *) ^ 0 for all x G i

The second assertion is well known, c.f. [15].
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