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ITERATIONS AND FIXPOINTS

BENNO FUCHSSTEINER

Starting with a decreasing map φ: X —»X on a partially
ordered set X we construct a map It φ which intuitively can be
understood as the iteration (countable or transfinite) of φ. The
main properties which It φ inherits from ψ are investigated. As
application of the main result some fixpoint theorems are
proved. Besides, our method yields constructive proofs for
results which are usually demonstrated with the help of the
axiom of choice.

I. The iteration theorem. We consider a partially ordered
set (X, ̂ ) and a decreasing map φ: X -> X. For Y C X we denote by
min(Y) the set of minimal elements in Y. A totally ordered subset
Y CX is said to be a φ-chain if:

(C1) y ^ φ(x) for all x9 y G Y with x^ y and y g x

( C 2 ) χ γ \ m i n ( Y ) ) C Y .

(X, ̂ ) is assumed to be φ -complete, which means that every nonempty
φ -chain has an inίimum. A φ -chain Y is called a strong φ-chain if:

(C 2)* φ (inf(Ϋ)) G Y for all nonempty Y C Y with inf(Ϋ) μ inf(Y).

Condition (C2)* obviously implies (C2)+. Elementary examples for
strong φ -chains are {x} and {*, φ (x)}. A strong φ -chain Y is said to be a
complete φ -chain if φ (inf (Y))G Y.

REMARK 1. (i) A totally ordered subset YCX is a complete
φ -chain iff (Cl) and

(C 2) <P (inf(Ϋ)) e Y for all nonempty Y C Y.

(ii) The intersection of a family of strong (complete) φ -chains is a
strong (complete) φ-chain.

LEMMA 1. Every strong φ-chain Y is contained in a complete
φ-chain. The complete φ -chains containing Y have a minimum Iγ with
respect to C.
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Proof. Let M be the set of strong ψ -chains containing Y. We
define φ: M-> M by φ(Ϋ) = Ϋ U {<p(inf (Ϋ))}. According to Zermelo's
fixpoint-lemma [4, Theorem 1.2.5] <p has a fixpoint, which is by definition
a complete φ-chain. Iγ is obviously given by Γ\{ΫEM\φ(Ϋ)= Ϋ}.*

A φ-invariant subset YCX is called a φ-subset if the infimum of
every strong φ -chain in Y is an element of Y. A map F: X—>X is
called φ-absorbing if:

(Al) Foφ=F
(A 2) if F is constant on a nonempty strong φ -chain Y then F is

constant on YU{inf(Y)}.

ITERATION THEOREM. There is a decreasing map It φ: X —»X suc/i
ί/iαί:

(i) It φ maps onto the ψ-fixpoints of X
(ii) It φ ° It φ =\tφ
(iii) eυβry φ-subset is It φ-invariant
(iv) /d>r efery φ-absorbing map F we have F°ltφ = F
(v) for every φ-absorbing map F with F(x)^ x φ F(x) g φ(x) we

have F(x)^x Φ F(jc)glt<,P(JC).
(vi) Itφ is φ-absorbing.
It <p is uniquely determined by φ.

Proof. We define It φ(jc) = inf(/x) where IxD{x} is the minimal
complete φ -chain given by Lemma 1. We claim that Itφ is constant
on Ix.

Proof of the claim. Let y0 £ L Then {y E Ix \ y g y0} and
{y E Jx I y ̂  y0} U Iyo are complete φ -chains D {y0} and D {x}
respectively. Hence from minimality of Jx and /^ it follows Ix =
{yE/ x |y^y 0}U/ y o .

This implies It φ(y0) = inf (/J = inf (/x) = It <p(jc).
(i) and (ii): Itφ(x) = inf(/x) is a φ-fixpoint because of inf(/x)g

<p(inf(7x))E/x. Now, let x = φ(x) then Ix = {x} (minimality). This
implies It φ(x) = inf (Jx) = x. Hence It φ maps onto the fixpoints and is
idempotent.

(iii): Let x E Y where Y is a φ -subset. Then L =
{y E/ x | {^EJ x | y ^^}C Y} is a complete φ-chain. We have x E L
because j g χ V ^ 6 / , . Hence L = Ix (minimality) and It<p(x) =
inί(Ix)eixCY.

The fixpoint-lemma is applied with respect to the following order in M:

y, < y 2 θ y, is ideal of Y2, i.e. y, C y2 and y ^ JC Vy E Y2\ Yu x E
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(iv): Consider L = { y 6 Ix\F(x) = F(£) V£ ε Ix with f δ y} where
F is φ-absorbing. L is a complete φ-chain D {x}. Hence Jx = L and
It φ (x) G fx. This implies F ° It φ (x) = F(x ).

(v): Let F be as in (v) and F(x)Sx. Then L = { y E J j y ^
F(y) = F(x)} is a complete φ-chain D{x}. This gives Ix = L and
F(x) = F(inf(Jx))^inf(Jx) = Itφ(x).

(vi): (Al) is a consequence of φ(x)Elx and the fact that Itφ is
constant on Ix. Now, let x E Y where Y is a strong φ -chain on which
It φ is constant. For x = inf(y) we show that Ix Π ίx^ 0 . This gives
the desired result because for y E Ix Π I£ we have It φ(x) = Itφ(y) =
It φ{x) = It φ(inf Y). Assume therefore that £ Π /̂  = 0 . The set
YU/i is a complete φ -chain D {x}. Hence y u ί f ^ Ix and /x must be
a subset of Y. This gives xginf(I x) (7^ because of x&Ix). Since
y D Ix is totally ordered there is some y E Y with y S inf (Ix). From this
it follows It φ(y) ^ y S inf (/x) = It φ(x) which is in contradiction to the
fact that It φ is constant on Y.

Proof of uniqueness. Let F be φ -absorbing and decreasing then
according to (v) we have F(x)^I tφ(x) for all x. Thus Itφ is the
maximum of all decreasing ^-absorbing maps. Hence Itφ is unique.

From now on Itφ is called the iteration of ψ. The reason for
choosing this name will become obvious in the next chapter. It should
be mentioned that the proof of the iteration theorem does not make use
of Zorn's lemma or the axiom of choice. The crucial tool was Zermelo's
fixpoint-lemma (see also [15]) which can be proved constructively.

II. Examples and applications.

ILL Monotony and a theorem of Tarski. First we show that Itφ
inherits monotony from φ.

LEMMA 2. Let φ be monotone.
(i) It φ(x) is the maximum of the φ-fixpoints g x.
(ii) It φ is monotone.

Proof (i) Let x0 be a fixpoint g x. We show x o ^Itφ(x) . Obvi-
ously the constant map F: X-+X given by F(y) = x0 is φ-absorbing.
x o ^y implies φ(xo)=: xo~ φ(y) because ψ is monotone. Hence F
fulfills (v) of the iteration theorem and we have xo = F ( x ) g l t φ(x).

(ii) Let y Sx then Itφ(y) is a φ-fixpoint Sx. By (i) we know
Itφ(y)^Itφ(x) . Thus Itφ must be monotone.

EXAMPLE 1. Let L be a complete lattice and μ:L~->L a
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monotone map. μ is decreasing on X = {x E L\μ(x)^x} which is not
empty because sup(L)EX.

X contains Fix(μ) (set of μ,-fixpoints).

X is μ -complete because the infimum of every chain in X is again
element of X. This yields that F i x ( μ ) ^ 0 (see [9]) because Fix(μ) is
the image of X under It μ(x.

Now, let YCFix(μ) then by Lemma 2(i) Itμ,x (inf(Y)) is the
maximum of all fixpoints ginf(Y). Hence I tμ ! x (inf(Y)) is the in-
fimum of Y in Fix(μ). So we have proved:

THEOREM (Tarski [14]). Let μ: L —» L be monotone on the complete
lattice L, then Fix(μ) is a nonempty complete lattice.

Π.2. Contracting and condensing maps. The next example is
rather trivial. Nevertheless it shows why the name iteration was chosen
for It φ. Let (Z, d) be a complete and bounded metric space. We call
T: Z-* Z a generalized contraction if there is a q < 1 such that
δ(T(A))^qδ(A) for all Γ-invariant A C Z , where δ( ) denotes the
diameter. On X = {A CZ\A closed, nonempty, T-invariant} we define
a C-decreasing map φτ by φτ(A) = closure (T(A)). Then X is in-
complete because a <pτ-chain either contains only finitely many elements
or is the basis of a Cauchy filter. It φτ(X) is a singleton because as
φτ-fixpoints it has diameter 0. Furthermore It φτ(X) contains (Lemma
2(i)) the closure of the set of Γ-fixpoints. Hence the iteration theorem
yields:

THEOREM (Banach and others). Every generalized contraction on Z
has a unique fixpoint.

Generalized contractions are for example the quasicontractions

d{T{x\T{y))

g q max{d(x, y), d(x, T(x)), d(y, T(y)), d(x, Γ(y)), d(y, T(x))}
Vx,yEZ

recently considered [3] by Lj. B. Ciric.
The contraction property in the last example was mainly used to

assure that X is <pτ-complete. But if (Z,d) is compact then X is
<pτ-comρlete for any map T. Therefore the same argument leads to:

THEOREM (M. Edelstein [5]). Every condensing map T (i.e. a map
with δ(T(A))<8(A) for every T-invariant ACZ, with δ(A)>0) on a
compact metric space has a unique fixpoint.
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For the next example let us consider a continuous map T: S -> S,
where 5 is a nonempty closed bounded convex subset of a separated
locally convex vector space. T is said to be limit-compact if every
closed M C S with co T(M)DM has to be compact. (cό~denotes the
closed convex hull).

THEOREM (Sadovski [13]). Let T be limit-compact and assume that
there is some nonempty ACS with cδ T(A) D A. Then Thas a fixpoint.

Proof. On X - {Y CS\ΈδY ~ Y) we consider the C-decreasing
map φ (Y) Φ Y Π co Γ( Y) and the constant map F( Y) Φ co (A). X is a
complete lattice with respect to C and therefore φ -complete. The
φ -fixpoint K Φ It φ (S) is compact because T is limit-compact, (v) of the
iteration theorem gives 0 ^ c o ( A ) = F(5)Clt φ(S) = K. So K is
nonempty. Finally we get T(K)CK from the fact that X =
{YEX\T(Y)CY} is a φ-subset. Hence the Schauder-Tychonofϊ
Theorem [4, Theorem, V.10.5] provides a fixpoint.

A special case of this theorem is that every continuous Δ-condensing
operator on a closed bounded convex set has a fixpoint (Δ is a measure of
noncompactness, see [12]).

Π.3. Normal structure. Throughout this chapter S will be a
nonempty weakly compact set with normal structure in a Banach space.

Normal structure means that if M is a convex subset of S which
contains more than one element then it holds that

r(M) Φ inf sup||x - z || < δ(M)Φ sup \\x-z ||.
zEM xEM z,xGM

We know that for every nonempty closed convex subset MCS the
Cebycev-centre of M with respect to S Cebs(M) =
{x €Ξ S I supz€M || x - z || ̂  r(M)} is agaiir nonempty closed and convex
(see [2], [8]). We shall write CebM(M) for Cebs(M) Π M and Ceb(M)
for CebM(M). C e b s ( M ) D M ^ 0 , or equivalently Ceb(M) = M ^ 0 ,
happens if and only if M is a singleton. We are interested in nonexpan-
sive maps Γ:5~»S. Nonexpansive means that \\T(x)- Γ(y)| |S
|| JC - y || for all x, y G S. It is well known ([6], [8]) that with additional
conditions Cebs(M) is invariant under a nonexpansive map. We need
this result in a slightly more general form.

LEMMA 3. Let /: S~->5 be nonexpansive and MCS such that
co/(M) D M = cδ(M). Then Cebs(M) is f-invariant.
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Proof. Let xEM and JC 0ECeb s(M) be arbitrary. By assump-
tion for e > 0 there are λu , λn ^ 0 with Σλ, = 1 and yu , yn E M
such that:

^ Xλ, II Xo - y, || + € (because / is nonexpansive)

This implies ||/(*0) - x || ̂  r(M) VJC G M and /(JC0) must be in Cebs(M).

THEOREM (Kirk [8]). Every nonexpansive T: S —> S has afixpoint.

Proof. X = {YCS\0έ Y = cδ(Y),T(Y)CY} is φ-complete for
every decreasing φ because it consists of weakly compact sets. We
define a decreasing φx\X-*X by φλ{Y) = ΈδT{Y). The Cebycev
centre of It φχ(Y) is Γ-invariant because of Lemma 3.

Thus <ρ2(Y)^Ceb(Itφι(Y)) is a decreasing map X->X and K =
Itφ2(S) must be an element of X with Ceb(K) = K. Hence K is a
Γ-invariant singleton. That means K consists of one Γ-fixpoint.

We close this section with a theorem of the Belluce-Kirk type. Let
T: S —> S be nonexpansive and 9 a family of nonexpansive with T
commuting maps 5 —> 5 such that for every / E 9 there is a g E ίF with
f°g = T.

THE LAST THEOREM. ^ has a common fixpoint.

Proof. Consider

Z* = {YCS|Γ(Y)CY},

Z = {Y<= Z*\f(Y)C YV/E ^}

and

The map <p(Y)== T(Y) is decreasing monotone on Z*. Since Z, is a
<p-subset of Z*, Itφ maps Z-+Z. By Kirk's theorem there is a
T-fixpoint JCM E M for every M E X. Thus {JCM} is a φ -fixpoint and
according to Lemma 2(i) we have xM Eltφ(M) and It φ(M) must be
nonempty. Furthermore we know co /(It φ (M)) D /(It <p (M)) =
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It φ(M) because of ltφ(M)= T(ltφ(M)) = /°g(It<p(M))C/(It<p(M)).
With the aid of Lemma 3 we conclude that Ψ: M—> CebMcδ(Itφ(M)) is a
map X-^X. Obviously we have Ceb(ItΨ(5)) = ltΨ(S). Hence ltΨ(S)
is a singleton consisting of a fixpoint for 3*.

COROLLARY (Belluce-Kirk [1]). Let 2Fbe a finite family of commut-
ing nonexpansiυe maps S -» S. Then 3F has a common fixpoint in S.

Proof. Use the last theoremforΓ = / 1

o / 2

o o/n, where 9consists
of all compositions of different elements of {fu •,/„}.

The last theorem is quite general because whenever a family & of
nonexpansive maps has a common fixpoint x0 E 5 then we can find a T
and a family 2F D 2F fulfilling the required conditions. For example
define T(x) = JC0VX ε S and &=&U{T} then obviously / » Γ =

There are very many other theorems which are simple applications
of the iteration theorem. One example: the fixpoint theorem of
Brodski-Milman [2]. Lim's generalization of the Belluce-Kirk
Theorem ([10], [11]) also can be simplified with the iteration
theorem. But it seems that Lim's theorem cannot be done without the
axiom of choice. All theorems of this paper are theorems of construc-
tive functional analysis although many of them are usually proved with
the aid of Zorn's lemma. This seems worthwhile to mention because
the interest in constructive analysis has grown with the discovery of
Solovay's model [7],
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