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UNIVERSAL INTERPOLATING SETS AND THE
NEVANLINNA-PICK PROPERTY IN BANACH
SPACES OF FUNCTIONS

A. K. SNYDER

1. Introduction. Let E be a Banach space of functions
on S, Wc S, and let M(E) be the multiplier algebra of E.
Consider the restriction space E |W as a quotient of E. The
space E has the Nevanlinna-Pick property relative to W if
M(E\W)=M(E)|W isometrically; E has the factorization
property relative to W if there exists u € M(Z) such that u
is an isometry of E|W onto the annihilator of S/W in E.
We consider the problem of characterizing those spaces with
the Nevanlinna-Pick property.

Theorem 1 solves this problem for suitable sequence spaces. It
is shown that the Nevanlinna-Pick property of E is equivalent to a
natural factorization property of annihilators in the series space of
E. It follows that E has the Nevanlinna-Pick property relative to
W whenever M(E) has the factorization property relative to W. A
technique is provided in Lemma 6 for applying these sequence space
results to general Banach spaces of functions. An identification of
the dual of H:W vyields a proof of the classical Nevanlinna-Pick
theorem based solely on the elementary factorization theory of the
Hardy spaces. Zero set considerations yield the failure of the Nevan-
linna Pick theorem in the Bergman spaces.

Applications are given to universal interpolating set problems in
general Banach spaces of functions. Let *(S) be the usual Hilbert
space of functions on S where S has counting measure. Let H be
a Hilbert space of functions on S. A subset W of S is a universal
interpolating set for H if there exists a multiplier from H|W onto
I¥W). We show that W is a universal interpolating set for H if and
only if M(H|W)=1~(W), the space of bounded functions on W. This
result provides a convenient definition of universal interpolating sets
for general Banach spaces of funetions. It follows that if F and F are
Banach spaces of functions on S, M(E)c M(F'), W is a universal inter-
polating set for F, and E has the Nevanlinna-Pick property relative
to W, then W is a universal interpolating set for . These results
provide generalizations of some theorems of Shapiro and Shields on
weighted interpolation in the Hardy space H? and the Bergman space
A2,

Finally, it is shown under weak assumptions that universal
interpolating sequences always exist for Hilbert spaces of functions
but may fail to exist for Banach spaces of functions.
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2. The series space. Let S be a set and let E be a family of
complex-valued functions on S which is a linear space under the
pointwise operations. For each s€ 8§ let #°(f) = f(s), feE. If Eis
a Banach space such that each #° is continuous on E, then K is called
a Banach space of functions on S. The multiplier algebra M(E) of
E is the family of complex-valued functions # on S such that wf e
E for all f e K, the multiplication being pointwise. By the closed
graph theorem each such % acts as a bounded operator on the Banach
space E of functions. In case 7° # 0 on E for each se S, then M(E)
is a Banach space of functions on S with the operator norm.

Let E be a Banach space of functions on S. For each se S let
¢’ be the function defined by e(t) = 0 for t == s, ¢°(s) = 1. Lete(s) =1
for all s. Let @ denote the linear span of {¢:se€S}. If pC FE let
the functional dual K’ of E be the family of functions g on S given
by g(s) = F(e¢*) for F in the dual E* of E. If @ is dense in K then
E’ may be identified with E*. Thus, EX may be considered as a
Banach space of functions on S with the dual space norm of E*.
If S is a countable set, then E is called a BK space.

Throughout this work assume that M(FE) and E’ have the norms
as given above.

Let E and F be Banach spaces of functions on S with ¢ dense
in E and F. It is easy to see that F = F isometrically if and only
if EX = F¥ isometrically.

If E and F are Banach spaces of functions on S let £ X F denote
the set of all functions w on S of the form w = 3, x"y" where 2" ¢
E,y*eF, and 3. ||2"|zl|9"*|lr < . Let E @ F have the norm given
by

lwllzer = Inf {3 2" iz ||y [lr: 2" € B, y" € Fy w = X 2™y}

Then E® F is the diagonal restriction of the projective tensor
product of E and F.

Let E be a BK space in which ¢ is dense. The series space
S“(E) of E consists of all functions u of the form wu = >}, z"y"
where z"c @, y*€ Ef, and >, ||2"||z||y"||z/1 < co. For ue S (K) let

lwll = inf (3. [["[z][9*]ler: 2" € @, y" € B, w = 3, a™y"} .

It follows that () is a BK space with the above norm and that
@ is dense in S/ (E). Also, &(E) = EQ E’ isometrically. See for
instance [3] for a discussion of the series space. It is known that
F(E)Y c M(E)C M($7(E)).

The BK space E in which ¢ is dense is strongly series summable
if there exists {#"} C ¢ such that lim,u"(s) =1 for each s and {u"}
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is bounded in M(E). E is series summable if & (E) = M(E) isome-
trically.

It is known that E is series summable if and only if e € 7 (E)’.
Furthermore, E is series summable if it is strongly series summable.
See [3] for details.

3. Characterization of the Nevanlinna-Pick property. Let E
be a Banach space of functions on S, WcS. For feFE let fIW
denote the restriction of the function f to W, and let E|W = {f|W:
feE}. The kernel of the restriction map is W+ = {f e E: f(w) =0
for all we W}. Therefore, the restriction map of E onto E|W induces
an isomorphism of the quotient E/W+* onto E|W. Also, W' is a closed
subspace of E since the point evaluations are continuous. Hence,
E|W becomes a Banach space of functions on W under the quotient
norm of E/W+*. Specifically, for functions g in E|W let ||g|| =
inf {|| f)]: fI|W = g}. Assume throughout that restrictions of Banach
spaces of functions have this particular norm.

Assume throughout this section that the equation K = F for
Banach spaces of functions includes the requirement that the norms
coincide.

LEMMA 1. Let E be a BK space on the set S, WCS, ¢ dense in
E. Let K be the annihilator of S\W in E, and let K' be the an-
nihilator of S\W in Ef. Then

(i) (K|W)Y = E/\W +f p|W 1is dense in K|W;

(ii) (B\W)Y = K'\W if @|S\W 1is dense in W+|S\W.

Proof. (i) Note that by the Hahn-Banach theorem G e K* if
and only if G has an extension to a member of E* and ||G|lx. =
inf{||G" ||z G =G on K}. But ge(K|W)" if and only if there
exists Ge K* with g(s) = G(e*), se W. Similarly, he E/|W if and
only if there exists H e E* such that h(s) = H(e*), se W. It follows
that (K|\W) = E/|W.

(ii) Note that (E|W)* may be identified as the annihilator in
E* of Wt ={feE:. f|W=0}. But then ge(E|W)" if and only if
there exists Ge E*, G =0 on W', such that g(s) = G(e*), s € W.
However, G = 0 on W+ if and only if G(¢’) = 0, s¢ W. This proves
that (E|W) = K'|W.

An elementary calculation involving the definitions of F|W and
E @ F establishes the following.

LEMMA 2. If E and F are Banmach spaces of functions on S
and Wc S, then (EQ F)|W = (E|W)RQ (F|W).
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LEMMA 3. Let E be a BK space on S, W S. If E s series
summable, then so is E|W.

Proof. Note first that ¢|W is dense in E|W since ¢ is dense
in E.

By Lemma 1, (E|W) = K'|W where K’ is the annihilator of
S\Win E’. Therefore, using Lemma 2, F(E|W)=E|WQ (E|W) =
EWQK'|W=(EK')|W. Thus, (& |W) may be considered as
a subspace of .&“(F) where members of .&(E|W) vanish off W. Also,
it follows that for u e L (E|W), [|ullswm = |Ullzexnw = %] zexr =

|u|lzgesr = [|%]|s@m-
Now let u € p with ||#]||szwm = 1. Then ||[%]|ls =< 1. Therefore,

[ Seewt(8)] = |le]lom- It follows that ee S (E|W)’, so E|W is series
summable.

Recall that E has the Nevanlinna-Pick property relative to W
if M(E|W)= M(E)|W. Note that this definition differs from that
given in [8]. The two definitions coincide in case E is a dual space
with weak-star continuous point evaluations. See [8], Theorem 3.

THEOREM 1. Let E be o BK space on S, WCS, and assume
that E 1s series summable. Let K' and K" be the annihilators of
S\W in E' and 7 (E), respectively. Then E has the Nevanlinna-
Pick property relative to W if and only if K" = EQ K'.

Proof. According to [3], 6.5(b), | W is dense in K" |W, since
& (F) must also be series summable. By Lemma 1, M(E)|W =
FEY|\W = (K"|W). Also, M(E\W) = S (E|\W)’ using Lemma 3.

Since K” and E @ K’ vanish off W, the condition K” = E® K’
is equivalent to K"|W = E® K'|W. By Lemmas 1 and 2, the latter
is equivalent to K"|W = E|W QR (E|W) = & (E|W). Therefore,
K"=E® K’ if and only if (K"|W) = & (E|\W)’, i.e., M(E)|W =
M(E|W), i.e., E has the Nevanlinna-Pick property relative to W.

Let E be a Banach space of functions on S and % be a complex-
valued function on S, u(s) # 0 for all s€S. Let uFE = {ux:xec E}.
Then uE is a Banach space of functions on S under the norm ||ux||,z =
ll¢||z € E. Assume throughout that such a diagonal transform of
E has the indicated norm. Of course, u then acts as an isometry
from E onto wE. Thus, the statement that wE = F' is equivalent
to the statement that w is an isometry of E onto F. It is easy to
check that if @ is dense in E, then @ is dense in uE and (wE)" =
(1/w)E’, where 1/u is given by (1/u)(s) = 1/u(s). Also routine is the
equation wW(EQ F) = EQR (uF).
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Now let E be a Banach space of functions on S, Wc S, and let
K be the annihilator of S\W in E. Then E will be said to have the
Jfactorization property relative to W if there exists b € M(E) such that
b|W acts as an isometry of E|W onto K|W, i.e., (b|W)E|W = K|W.

LEMMA 4. Let E be a BK space on S, ¢ dense in E, WCS,
and assume that o/W and @|S\W are dense in (S\W)*|W and
W+ |S\W, respectively, the annihilators taken in E. Then the fac-
torization properties relative to W for E and E' are equivalent
using the same factoring function.

Proof. If b is the factoring funection in either case, then b
vanishes at no point of W, since @|W is contained in both K|W and
K''W, where K and K’ are the annihilators of S\W in E and EY,
respectively. Also, note that M(E) = M(E’).

Now (b|W)E|W = K|W if and only if (b|W)E|W) = (K|W).
But by Lemma 1, (b|W)E| W) = 1/b|W)E|W) = 1/b|W)K’'|W and
(K|W) = E'|W. Therefore, (b|W)E|W = K|W if and only if
B|W)H)E"|W = K'|W. This completes the proof.

THEOREM 2. Let E be a BK space on S, WCS. Assume that
E is series summable and that E has the factorization property
relative to W with factoring function b. The following conditions
are equivalent:

(i) 2(E) has the factorization property relative to W with
factoring function b;

(ii) M(E) has the factorization property relative to W with
factoring function b;

(iil) E has the Nevanlinna-Pick property relative to W.

Proof. By [3], 6.5(b), the hypotheses of Lemma 4 are satisfied.
Thus, (i) and (ii) are equivalent since .Z(E) = M(E).

The equivalence of (i) and (iii) follows from Theorem 1. To see
this, note that condition (i) is equivalent to the requirement
®O|W) (E)\W = K"|W where K” is the annihilator of S\W in
(E). Let K’ be the annihilator of S\W in /. Now (b|W).Z(E)|W =
GIWYEQ ENW = b|W)E|WR E|W) =EWE O WE W=
E\lWR K'|W = (EQ K')|W, using Lemma 2 twice. Therefore, con-
dition (i) is equivalent to condition K”|W = (E® K')|W. However,
K” and E® K’ vanish identically off W, so (i) is equivalent to
K'=EXQK'.

Under certain conditions the above results on BK spaces may
be applied to the Nevanlinna-Pick problem in more general Banach
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spaces of functions. The following results indicate this possibility.
If E is a Banach space of functions, let E* be the linear span
of {xy: 2, ye E}.

LEMMA 5. Let E be a Banach space of functions on S, Wc S,
ec E, and assume that the annihilator of W in E*® is zero. Then
E has the Nevanlinna-Pick property relative to W.

Proof. Note that EcCE® since ec E, so the annihilator of W
in K is also zero. For each xc¢ E|W let 2~ be the unique extension
of  to a member of E.

Let e M(E|W) be arbitrary. Then we E|W since ec E. If
xe E|W, then "2~ ¢ E* and (ux)” € EC E®. Therefore, w2~ = (ux)”
since «"x~ and (ux)” agree on W. It follows that "z~ ¢ E, so 4~ €
M(E). Also, [|[u"2" ||z = [[(u®)" [z = [|u@ ||z, 80 (4" |xm = [ %]lxzim.
Therefore, E has the Nevanlinna-Pick property relative to W.

LEMMA 6. Let E be a Banach space of functions on S. Assume
that E s a dual space with weak-star continuous point evaluations.
Let W,c W,,, for all n and let S=U,W,. If E|W,, has the
Nevanlinna-Pick property relative to W, for all n, then E has the
Nevanlinna-Pick property relative to W,.

Proof. Let u'e M(E|W, and let ¢ > 0 be given. Let u® be an
extension of u' to M(E|W,) so that

|| xzmy = [[@azimwy + €/2 .
In general let u"™* be an extension of u" to M(E|W,,,) so that
" awwap = 10" lnzw, + /2" .

For each se S choose m so that s€ W,, and define u(s) = u™(s).

Let {s, s, -+, 8.} be an arbitrary finite subset of S. Choose m
so that {s, s, --+, 8,} ©W,. Let zn* be evaluation at s for all s€S.
Consider 3, ¢, as a member of (E|W,)*. Now

H; u(8,)6, || g« = || Za U"(8:)C % || 1w
= |l(u’”)*(§ ciﬂ:si)”wlwm)*
= lu™|xcziw,, Hzt:. T || 1w e
= (H“1|[M<EXW1> + 5)”21. e |5 .
It follows from [8], Theorem 2, that u € M(F) and

Nl = 1w lezwy + € -
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Thus,

1% sz, § 1% |acmiwy -

The reverse inequality always holds. See [8], §2.

Consider the Hardy space H” and the Bergman space 47, 1<
p < =, as Banach spaces of functions on the unit disk D= (|z| < 1).
For p < o, H? (or A?) is the space of analytic functions f on D
satisfying

171, = sup (| 1o 17a8) " < oo
(or 1l = (2, 171704) "< ) .

H~> is the space of bounded analytic functions on D with ||f]l. =
sup {| f(2)]: z € D}.

An elementary argument involving the restriction norm and
factorization by Blaschke products yields the following result.

LEMMA 7. Let S be a subset of D, WS, S\W countable, and
Sew(l — |2]) < 0. Then E = H?|S has the factorization property
relative to W.

The Nevanlinna-Pick property was demonstrated for the Hardy
spaces in [8], Corollaries 2 and 3 of Theorem 4. Using some of the
same techniques one is able to achieve the Hardy space Nevanlinna-
Pick property as a special case of the present work.

THEOREM 3. For 1 < p < oo, H® has the Nevanlinna-Pick pro-
perty relative to every subset of D.

Proof. Assume first that W c D satisfies >,,(1 — |2]) = . The
annihilator of W in (H?)® is zero, since (HP?)* is contained in the
Nevanlinna class. (See [1], p. 29, Exercise 1 and p. 18, Corollary).
Therefore, by Lemma 5, H? has the Nevanlinna-Pick property relative
to W.

According to Lemma 6, it suffices to prove for instance that
E = H*|S has the Nevanlinna-Pick property relative to Wc S, as-
suming that > s(1 — |z|) < . The elementary properties of Blaschke
products show that E is strongly series summable. By Lemma 7, E
has factorization property relative to W, so the hypotheses of Theorem
2 are satisfied. It now suffices to show that /() has the factoriza-
tion property relative to W.
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By [8], Theorem 4, E’ is a diagonal transform of H?|S where
1/p + 1/g = 1. The Hardy space factorization theory shows that
S(E) is a diagonal transform of H'|S. Using Lemma 7 again and
the fact that diagonal transforms preserve the factorization property,
one obtains the factorization property of ./(F) relative to W. The
result follows from Theorem 2.

4. Applications to zero set and universal interpolating set pro-
blems. Let E be a Banach space of functions on S. A proper subset
W of S is called an E zero set if there exists f € E such that W=
{s: f(s) = 0}. For WS, E will be said to have the multiplier ex-
tension property relative to W if we M(E|W) implies there exists
v € M(E) such that v|W = u. (The isometric part of the Nevanlinna-
Pick property is being dropped.) For the present applications this
weaker version of the Nevanlinna-Pick property is sufficient.

Observe that proper finite unions of M(FE) zero sets are M(E)
zero sets, since M(E) is an algebra. Also, a proper union of an F
zero set and an M(E) zero set is an E zero set.

THEOREM 4. Assume that

(i) Finite subsets of S are M(E) zero sets; for instance, M(E)
contains a function which s one-to-one om S;

(i) E has the multiplier extension property relative to E zero
sets.

Then each E zero set is contained in an M(E) zero set.

Proof. Let Z be an E zero set, s,eS\Z, Z, = Z U{s,}. Define
a function w on Z, by u(s,) = 1, u(s) = 0 for s #s,. Then uecE|Z,
since Z is an E zero set. Let feFE|Z, be arbitrary. Then uf =
fG)ueKE|Z, so wec M(E|Z,). If Z, =8 then Z is an M(E) zero set.
If Z, # S then Z, is an E zero set, since by (i), {s,} is an M(E) zero
set. Using (ii), w € M(E)|Z,. Therefore, Z C{s:u"(s) = 0}, an M(E)
zero set, where %~ is an extension of v to a member of M(E).

COROLLARY. Let ZC D = (|z|) <1) be an A? zero set which 1s
not an H= zero set. Then A? fails to have the multiplier extension
property relative to Z. Hence, the Nevanlinna-Pick theorem fails
for the Bergman spaces.

Proof. Since M(A?) = H>, condition (i) of Theorem 4 is satisfied.
However, Z cannot be contained in an H* zero set. Therefore,
condition (ii) of Theorem 4 must be violated. It is well known that
such sets Z exist.
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Let E be a Banach space of functions on S, WcS. Then W
will be called a wuniversal intervolating set for E if M(E|W) =
I=°(W), the family of all bounded complex-valued functions on W.

THEOREM 5. Let E be a Banach space of functions on S, W S.
Constder the following conditions on E:

(i) ME)W = 1=(W);

(ii) W 1is a universal interpolating set for M(E);

(iii) W s a universal interpolating set for E.
Then (i) and (ii) are equivalent, and each implies (iii). Furthermore,
if E has the multiplier extension property relative to W, then the
three conditions are equivalent.

Proof. M(M(E)W)=1>(W) if and only if M(E)|W = I>(W),
since e M(E)|W. Also, M(E)WCM(E|W) and equality holds under
the multiplier extension property.

In particular our definition of universal interpolating set coincides
with the usual definition ([1], p. 147) in the case E = H”,

THEOREM 6. Let E be a Banach space of functions on S, and
let W be a subset of S such that @|W is dense in E|W. Then W is
o universal interpolating set for E if and only if {e:se W} is an
unconditional basis for E|W.

Proof. By definition, {¢: s€ W} is an unconditional basis for
E|W if and only if for all x€ E|W the series >, 2(s)e* converges
unconditionally to « in E|W. As in [7], Theorem 5.1, M(E|W) =
I>(W) if and only if {¢: s€ W} is an unconditional basis for E|W,
using [2], Theorem 4, Corollary 1.

The referee has kindly pointed out that the following is essentially
a theorem of G. Kothe and O. Toeplitz. See [6], p. 529, Theorem
18.1.

THEOREM 7. Let H be a Hilbert space of functions on S with
@ dense in H. Then S is a universal interpolating set for H if
and only if H is a diagonal transform of I*(S).

Proof. Let g(s) = ||e’||z for all seS, and let E = gH. Then
lle‘]lz = 1. Also, S is a universal interpolating set for H if and only
if S is a universal interpolating set for E. Therefore, we may
assume that ||e’|[ly = 1 for all seS.

Assume that S is a universal interpolating set for H. Let f, =
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S, ce e be given. Choose u,, U, «--, u, as follows. Let u, = 1.
Assume u, has been chosen. Choose u,,, with |u,,,| = 1 so that

k
Re < Z y U;Ci€% Wppy1Crpn€t >5 = 0.
1=

Define h on S by h(s;) = u,, for k=1,2, ---, » and h(s) =1 for all
other seS. Then

hfillz = Ifills -

Also, h, 1/h e M(H) = 1=(S), so there exists a constant K independent
of f, so that

”h”M(H) = K({h”m =K

and
WL/A e < K.
Therefore,
Wil = [1Afille = Kl filla
and

Lfillz = [|L/MS|lx = KRSl = Kl fi]], -

Since ¢ is dense in H, it follows that H = I*S).
The converse is obvious.

Theorem 7 shows that the above definition for universal inter-
polating sets in Banach spaces of functions is equivalent to the usual
definition in the setting of Hilbert space. (See §1.)

COROLLARY 1. Let H be o Hilbert space of functions on S,
WS, For each we W let n*(f) = f(w), f € H, and let w(w)=1/||z"||.
Assume that H has the multiplier extemsion property relative to W,
and that @ is dense in H|W. Then W is @ universal interpolating
set for M(H) +f and only of wH|W = HW).

Proof. Let E = Qu)(H|W) = (uH|W)". Then |le“||z =1 for
each we W. By hypothesis, M(H|W) = M(H)|W. Therefore, by
Theorem 7, W is a universal interpolating set for M(H) if and only
if H|W is a diagonal transform of [*(W). But the latter condition
is equivalent to (wH|W) = E = }(W), i.e., uH|W = ¥(W).

COROLLARY 2. (Shapiro-Shields). Let W = {z,} be a sequence of
points in the unit disk D, and let u(z,) = (L — |2,|)"* for each n.
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Then W is o untversal interpolating set for H> if and only if
uHW = I}(W).

Proof. An easy calculation shows that ||z*#||, = 1/u(z,) for each
n. Also, by Theorem 3, M(H:*|W) = H*|W.

Of course, Shapiro and Shields were more interested in proving
this kind of result using only the condition of Carleson which charac-
terizes universal interpolating sets for H>, thereby obtaining a
simpler proof of Carleson’s characterization. (See [5].)

THEOREM 8. Let E and F be Banoach spaces of functions on
S, and let WcS. Assume that M(E)C M(F) and that E has the
multiplier extension property relative to W. If W is a universal
interpolating set for H, then W is a wuniversal imterpolating set
for F.

Proof. M(F|\W)D M(F)|W>ME)W = ME\W) = 1=(W).

COROLLARY. Let E be ¢ Banach space of complex functions on
the unit disk D with M(E)D H>. If WcC D is a universal inter-
polating set for H®, then W is a universal interpolating set for E.

The latter corollary generalizes part of [5], Theorem 4.

THEOREM 9. Let H be a Hilbert space of fumctions on S and
assume S contains an infinite subset W with ¢ dense in H|W. Then
H has a universal interpolating sequence.

Proof. Let W = {z,} be a countable subset of S with ¢ dense
in H|{W. Let E be the closure in H of {¢*:we W}. As usual we
may assume ||e”||z =1 for all we W. Let a,, = {e*» e¢**), for all
n, k.

Now E|WDI(W), so (B|W) cl>(W). It follows that (B|W) <
¢,(W), the space of null functions on W. Therefore, lim, a,, = 0 for
each n. Choose an increasing sequence {p,} of positive integers as
follows. Let p, = 1. Having chosen p,_, choose p, > p,_, so that

n—1
5 1@y, < 270

Then

n—1 o oo
> [a’pkmn] =3 Ia'pk,pnl + > la’pkmnl <274 3 27"
k#n k=1 k=n+1 k

=n+1 .
= 21—%
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Hence, for » = 1 we have

1

7

A result of Schur [4] yields that for x = {x,},

S a0, <

Z_ xii.’ial’r}’j = ‘1_ 2 [90, 12 .
g 2
Therefore,
2
“Z X" ’ = > |a P + D 2T e, €Yy .
H i%g
But then
1 2 Zp‘ 2 3 2
=3l = S wetP = =3 r.
2 2

Let W, = {2,,}, and let F' be the closure in H of {e":we W}. It
follows that F|W, = I}(W)).

Finally, using the first part of the proof choose a subset W, of
W such that F|W, is a diagonal transform of [*(W,), where F is
the closure in (H|WY)  of {¢: se W,}. It is easy to see that (F|W,) =
(H|W) 7| W,. Also, (H|W)f = H|W since H|W is a Hilbert space
with @ dense. Therefore, H|W, is a diagonal transform of I(W)).

Not every Banach space of functions with ¢ dense has an infinite
universal interpolating set.

ExampLE. Let E be the BK space of sequences x = {x,} such
that lim,x, = 0 and

el = o] + 2 @0 — @u] < oo

For each increasing sequence W = {p,} of positive integers, E|W is
the set of functions ¥ on W such that lim, y(p,) = 0 and

llyll = ly(py)] +§ [Y(Duss) — YD) | < o0 .

Clearly, M(E|W) = I°(W), so W is not a universal interpolating set.
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