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SEMIGROUPS WHOSE LATTICE OF CONGRUENCES
IS BOOLEAN

HOWARD HAMILTON AND THOMAS NORDAHL

The commutative semigroups whose lattice of congruences
forms a Boolean lattice are determined. They are (i) the
null semigroups of order two or less, (ii.) the discrete trees,
(iii) the groups which are a direct sum of prime order cyclic
groups in which no two factors have the same order, (iv)
the semigroups which are a one element inflation of a dis-
crete tree, (v) the semigroups which are a free product of
a discrete tree with zero and a semigroup of type (iii) amal-
gamated over the trivial semigroup, and (vi) the semigroups
which are a one element inflation of a semigroup of type
(•) .

1* Introduction* In this paper a semilattice will be considered
to be an upper semilattice (i.e., for x,yeS we have x <> y if and
only if xy = y). We say that semilattice S is a (discrete) tree if
for all x, y eS with x<>y the interval [x, y] — {z eS: x ^ z <> y) is
a (finite) chain. For any semigroup S we will let L(S) denote the
lattice of congruences of S. If T is a subsemigroup of semigroup
S and there exists a function /: S —> Γ satisfying: (i) the restriction
of / to T is the identity mapping and (ii) for x, y eS we have
xy — f(x)f(y), then S is said to be an inflation of T. We shall say
that S is a one element inflation of T if S is an inflation of T and
[S\T] — 1. Terms which are not defined may be found in [3], [9],
[12], [13] or in [1].

We now present some results which are needed for our proofs.

THEOREM 1. (Hamilton [7]) Let S be a semilattice. L(S) is a
Boolean lattice if and only if S is a discrete tree.

Let S be a semigroup and let S = \JaerSa be the greatest semi-
lattice decomposition of S. If a < β in Γ and for all aeSa and b e
Sβ we have ab = ba — b then we say that Sa and Sβ are 1-composed.
If Sa and Sβ are 1-composed for all a, β e Γ with a < β then we
say that S is 1-composed.

THEOREM 2. (Hamilton [8]) If S is a commutative seperative
semigroup with L(S) a modular lattice then S is 1-composed.

If a semigroup S is isomorphic to a subdirect product of semi-
groups T and U we shall write: S ~ T XSU. If a semigroup S is
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isomorphic (equal) to a subdirect product of a collection, {AJi6l, we
shall write S cz UfeI A,(S = Πf6/ A,).

THEOREM 3. (Tanaka [15], [2]) Let A be an algebra such that
L(A) is a distributive lattice. Then L(A) is a Boolean lattice if
and only if A is isomorphic to some A* where:

(i) ' A* = lifeiAi9 where the At are congruence simple algebras
and

(ii) any two elements of A* are equal on all but finitely many
factors At.

We wish to emphasize the difference between simple and con-
gruence simple. A semigroup is said to be simple if it has no
proper ideals. A semigroup is said to be congruence simple if c,
the diagonal relation and ω, the universal relation, are the only-
congruences on S.

We shall write G ^.^Ai&IGi to indicate that a group G is the
direct sum of groups {Gt}ieZ.

THEOREM 4. (Burris [2]) Let G be a group. L(G) is a Boolean
lattice if and only if G ~ 'ΣneiGtt where the Gt are simple groups
and the factor Zp does not occur twice for any prime p.

COROLLARY 5. Let G be an Abelian group. L(G) is a Boolean
lattice if and only if G ~ ^peP Zp, where P is a set of primes.

PROPOSITION 6. (Birkhoff [1]) The partition lattice on a set S
is distributive if and only if \S\ ̂ 2 .

COROLLARY 7. Let N be a null semigroup. L(N) is distribu-
tive if and only if N is a null semigroup of order less than or
equal to two if and only if L(N) is a Boolean lattice.

THEOREM 8. (Fountain and Lockley [5]) Let S be a semigroup
and σ a congruence on S. If L(S) is a Boolean (modular, distri-
butive) lattice, then L(S/σ) is a Boolean (modular, distributive)
lattice.

2. Preliminary results* We shall call a semigroup S a Boolean
semigroup if L(S) forms a Boolean lattice.

LEMMA 9. Let S be a Boolean semigroup. Every cancellative
congruence σ on S is a cancellative simple congruence, that is, S/σ
is a cancellative simple semigroup.
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Proof. Let σ be a cancellative congruence on S. Suppose that
S/σ has a proper ideal I. Suppose that \I\ = 1 then S/σ has a zero
and so as S/σ is cancellative we have that S/σ is trivial and so σ
would be the group congruence ω. If 11\ Φ 1 then pIf the Rees
congruence with respect to the ideal I, has complement τ e L(S/σ)
as L(S/σ) will be a Boolean lattice by Theorem 8. As τ Π pi = * on
S/σ we see that the restriction of τ to I, τ |x, is the diagonal relation
on I. Suppose that xτy and that a el. axτay and so ax = ay as
ax, ay e I. As S/σ is a cancellative semigroup it follows that x — y
and so τ is the diagonal relation on S/σ. τ clearly is not the com-
plement of pj. Hence S/σ has no proper ideals and σ is a cancellative
simple congruence on S.

It is easy to verify that a cancellative simple semigroup with
nonempty center is a group (see [11]). Combining this remark with
Lemma 9 we obtain:

LEMMA 10. Let S be a Boolean semigroup with nonempty center
then every cancellative congruence on S is a group congruence on
S. In particular for every commutative semigroup, cancellative
congruences are group congruences.

LEMMA 11. Let S be a Boolean semigroup with nonempty center.
S has a smallest group congruence. In particular, every com-
mutative Boolean semigroup has a smallest group congruence.

Proof. This follows from Lemma 10, as every semigroup has
a smallest cancellative congruence.

REMARK 12. The commutative semigroups which are congruence
simple are exactly those which are isomorphic to Zp for some prime
p, a null semigroup of order two, a semilattice of order two or a
trivial semigroup.

PROPOSITION 13. Let S be a commutative semigroup. L(S) is
a Boolean lattice if and only if L(S) is distributive and S ~
T Xs N Xs G where T is a discrete tree, N is a null semigroup of
order less than or equal to two and G ~ Σ P * P %P f°r some set of
primes P.

Proof. Let S be a commutative Boolean semigroup. It follows
from Remark 12 and Theorem 3 that S ~ (U^eΣS/σ) Xs(UfeΛS/X) Xs

(ΠferS/7) where Σ is the set of semilattice congruences on S, A is
the set of null congruences on S, and Γ is the set of group con-
gruences on S. Note: we are actually including more than "con-
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gruence simple'' congruences in this subdirect decomposition. The
intersection of semilattice congruences is a semilattice congruence.
The intersection of null congruences is a null congruence. By
Lemma 11, the intersection of group congruences is a group con-
gruence. Thus S ~ T XsNXSG where T is a semilattice, N is a
null semigroup and G is an Abelian group. By Theorem 8, L(T),
L(N), and L(G) are all Boolean lattices. It follows from Corollary
7 that \N\<>2. It follows from Theorem 1 that Γ is a discrete
tree. It follows from Corollary 5 that G ~ Σ?ep Zp for some set of
primes P.

Conversely, let us assume that S ~ TXS NXSG where T is a
discrete tree, N is a null semigroup with \N\^2 and G ~ ^P&PZP

for some set of primes P and L(S) is a distributive lattice. In
order to apply Theorem 3 we need to show that T, N, and G satisfy
the conditions (i) and (ii) of Theorem 3. As T is a discrete tree it
follows from Theorem 1 that L(T) is a Boolean lattice. By Theo-
rem 3 we have that T satisfies conditions (i) and (ii) of Theorem 3.
As N is a null semigroup of order lesβ than or equal to two, N
clearly satisfies conditions (i) and (ii) of Theorem 3. G c^.^peP Zp

also clearly satisfies the conditions (i) and (ii) of Theorem 3. It
follows that S satisfies the conditions (i) and (ii) of Theorem 3 and
so by Theorem 3 we have that L(S) is a Boolean lattice.

Let E be a semigroup and let {A^ i e 1} be a collection of semi-
groups and suppose that for each iel there exists λ< a monomorphism
of E into At. A free product of '{A*: iel} with amalgamated sub-
semigroup E is a semigroup B possessing a system of monomor-
phisms <<?<>£ 6 1 where σt maps At into B satisfying:

( i ) σlXi = σj λy for all i, j e I,
(ii) [Uiei 0i(Ai)] = B (where [X] denotes the semigroup generated

by X, and
(iii) if C is a semigroup and for each iel, φteHOM(Ai9 G) is

given so that φiKi=φ{j\>i for all i,jel, then there exists φeΉ.OM(B,
C) satisfying φt = ̂ o0\ for all iel.

Let S be a semigroup with identity, β, and let T be a semi-
group with zero, 0. Let E = {1} be the trivial semigroup. Let \:
E->S be given by λx(l) = e and let \:E-*T be given by λa(l) = 0.
Let B = S Ui T be the set union of S and T except that 0 and e
are identified. Define a product in B by:

'χosy if x,yeS, where os is the operation in S

χoτy if x, ye T, where oτ is the operation in T

X if xeS, yeT

if x e T, y e S .
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We define σ.iS-^B and σ2: T -* B by σ^s) = s and σ2(t) = ί for all
s e S , ί 6 ϊ7. Note that σx(β) = σa(0). It is easy to see that the
semigroup B is the free product of S and T amalgamated over {1},
so as to identify e and 0.

PROPOSITION 14. Let S be a semigroup with identity, e, and
let T be a semigroup with zero, 0. Let B be the free product of S
and T amalgamated over the trivial semigroup {1}. Then we have
L(B) ~ L(S) x L(T).

Proof. Let ρeL(B). We define ψ: L(B)-*L(S)xL(T) by φ(p) =
(P\s, P\τ). We define the inverse map ψ: L(S) x L(T) -* L(B) by
ψ(σ, τ) = p where:

rttΛfti -»-P

{x,yeS and xσy ,

x,yeT and #τ2/,

# 6 S, y 6 Γ and xσe, Oτy or

xeTf yeS and ccτO, eσ̂ / (recall e = 0 in B).

Let p6L(j?) and suppose xpy where a e S and /̂6 T. We see that
x = xepye — yO — 0 = β and so ί̂ oe. Also we see that Op x pi/ and
so Opy. Conversely, if xeS and yeT with xpe and (ty>2/, then we
have xpy by the transitivity of p. Thus ^ is determined by its
restrictions to S and T. We see that ψ is the inverse of <j> and so

x

3* The general case* Let S be a commutative Boolean semi-
group. By Proposition 13, we have that S ~ TXSNXSG where T
is a discrete tree, N is a null semigroup with | N\ <; 2 and G ĉ
P Σ P ^ P f° r some set of primes P. In what follows we shall consider
S to be a subsemigroup of the direct product T x N x G. Let
π: T x N x G-+ T x Gbe the projection homomorphism. Z7 = π(S)
is the greatest separative homomorphic image of S. U is a subsemi-
group of the direct product T x G which is a subdirect product of
T and G. For each a e T we let I7β = {(α, 0) 6 [a] x G: (a, g) e U}.
We see that U— \JaeT Ua is a semilattice decomposition of Ϊ7 which
is in fact the greatest semilattice decomposition of U, U is a com-
mutative separative Boolean semigroup. It follows from Theorem
2 that U is 1-composed. Suppose a, β e T with a < β and that
(α, 0), (/3, λ) e U. Then as C7 is 1-composed we see that: (β, h) =
(α, #)(/?, Λ) = (aβ, gh) = (/3, #&). Hence gh = h and as G is a group
we have that g ~ e, the identity of (?. We can conclude that if G
is not trivial that T has a zero, 0, with Uo = {(0, g); geG}~ G and
t/)ι is trivial for all other /3 e Γ. If G is trivial then U ~ T is a
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discrete tree. If G is not trivial, U is isomorphic to the free pro-
duct of G and T amalgamated over the trivial semigroup {1} so as
to identify OeΓ and eeG. By Proposition 15, L(U) ~ L(G)xL(T).
By Theorem 1, L{T) is a Boolean lattice. By Corollary 5, L(G) is
a Boolean lattice and so L(U) is a Boolean lattice. We have shown:

THEOREM 15. Let U be a commutative separative semigroup.
L{ U) is Boolean if and only if

( i ) U is a discrete tree or
(ii) U is a free product of G ~ Σ P 6 P Zp (P a nonempty set

of primes) and T, a discrete tree with zero, amalgamated over the
trivial semigroup.

We return to the general case where S is our commutative
Boolean semigroup and S is a subsemigroup of T x N x G. We
now consider the projection h: T x N x G —> T x N. A semigroup
is called group free if all of its subgroups are trivial. It is easy
to see that the intersection of group free congruences is a group
free congruence and so every semigroup has a greatest group free
homomorphic image. V = h(S) is the greatest group free homomor-
phic image of S. For each 7 e T we let Vγ^{(Ί, x) e {Ύ}xN: (7, x) e
V}. V = \Jaeτ Va is the greatest semilattice decomposition of V.
Each Va is either trivial or a null semigroup of order 2. Let aeT.
We denote the zero of Va, (a, 0) by 0α. If Va is not trivial we
denote the other element, (a, a), by aa.

LEMMA 16. Let V be a group free, commutative Boolean semi-
group and let V — \Jaeτ Va be the greatest semilattice decomposition
of V. If a, β eT and a < β then Va and Vβ are not both non-
trivial.

Proof. We can see that V is an inflation of T x {0} ~ T. For
each aeT, Va^ {0a, aa} or Va = {0a}. Suppose a, β e T with a < β
and Va = {0a, aa} and Vβ = {0̂ , aβ}. We shall see that this assump-
tion leads to a contradiction. Let us first show that Va U Vβ is a
homomorphic image of V and so L( Va U Vβ) is a Boolean lattice by
Theorem 8. Let Va = \Jr*« Vr. We define /: V-*VaUVβ as
follows:

( i ) if x e V«\{aa} then f(x) = 0β,
(i i) f(aa) = aa,
(iii) if a?e V\(Va U {α̂ }) then f(x) = 0β and
(iv) f(aβ) = aβ.
We note that {0α} is an ideal of Va and that {aa}Va= Va{aa} = {0a}

and so the restriction of / to Va is a homomorphism. We note
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that V\Va = I is a prime ideal with {aβ}V — V{aβ} Q I and so
V\(Va U {aβ}) is an ideal of V. The function / is thus a homomor-
phism and /(V) = Fα U Vβ is a Boolean semigroup. Let us define
the relations σ, ft, and ft on f(V) as follows:

(a?, ?/ G {0α, 0̂ } or
if , .

(a?, 2/ e {aa, aβ} ,

.- [Xf ye{0a, aa} or
if ,

(x = y , and

(a;, ye{0a, aa} or
if

(a?, 2/6(0,9, α }̂ .

σ, ft, and ft are clearly congruences onf(V) and σ Π ft — 0" Π ft =
£, α V ft = σ V ft — ω. So L(F α U F )̂ contains JV5, the nonmodular
lattice of order 5, which is a contradiction to the fact that L( Va U
Vβ) is a Boolean lattice. Thus Va and Vβ are not both nontrivial.

LEMMA 17. Let V be a commutative, group-free. Boolean semi-
group and let V — \Jaeτ Va be the greatest semilattice decomposition
of V. Ifa>βeT are incomparable elements of T then Va and Vβ

are not both nontrivial.

Proof. Suppose by way of contradiction that there exist incom-
parable elements a, βeT with Va = {0α, aa) and Vβ = {0̂ , aβ}. By
Lemma 16, Vaβ = {0α̂ } is trivial. We shall see that Va\jVβ\J Vaβ

is a homomorphic image of V and so L( Va U Vβ U Vaβ) is a Boolean
lattice by Theorem 8. We define /: F-> Va U Vβ U Vaβ as follows:

( i ) if xeV«\{aa} then/(a?) = 0β,
(ii) /(αα) = αα,

(iii) if x e ^{α^} then f(x) = 0̂ ,
(iv) /(α^) = α ,̂ and
(v) if x e F\(F α U Vβ) then /(a?) - 0αi9.
It follows that / is a homomorphism as V\( Va U Vβ) is an ideal

of V, {0α} is an ideal of Va, {0β} is an ideal of Vβ and as Va{aa} =
{0a} is an ideal of V% {0̂ } is an ideal of F^ and as Va{aa} = {0a}
and Vβ{aβ} - {0̂ }.

We define relations ft, ft, and σ on / ( 7 ) = F ^ U ^ U Vaβ as
follows:

fa?, ?/ e {αα, α̂ } or
if J
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(x, y e {0α, aa) or

x, ye{0β, aβ} or

x = y

x, y e {0β, aβ} or

xp,y if

χ2y if
(x = y

It is immediate that these three relations are all congruence
relations and that σp1 — σp2 = c and σpx = σp2 = ω. We see that JV8,
the nonmodular lattice, is a sublattice of L{ Va U Vβ U Vaβ) contradic-
ting the fact L(Va U ^ U Vaβ) is modular, in fact a Boolean lattice.
It follows that Va and Vβ cannot both be nontrivial.

THEOREM 18. V is a group-free, commutative, Boolean semi-
group if and only if V is either a discrete tree or is a one element
inflation of a discrete tree.

Proof. Let V be a group-free, commutative, Boolean semigroup
and let V — \Jaeτ Va be the greatest semilattice decomposition of V.
By Lemmas 16 and 17 it follows that Va is nontrivial for at most
one ae T. Hence V is either a discrete tree or a one element
inflation of a discrete tree as V is a subsemigroup of T x N.

Conversely, if V is a discrete tree we know that L(V) is a
Boolean lattice by Theorem 1. We thus assume that V is a one
element inflation of a discrete tree T (identifying T and Γ x {0}).
Then V — \Jaeτ Va where for some aeT, Va — {0a, aa} and Vβ is
trivial for all j3 e T\{a}. We note that for all x e V, xaa = xθa by
the definition of an inflation. We shall now show that L(F)^L(T)x
L(Va). Let φ: L(V)-^L(T) x L{Va) be given by φ(p) = (p\τ, p\Va).
Recall that we are identifying T with Tx{0}. φ is clearly an order
preserving map.

Let peL(V) and suppose xpaa for some xeV\{aa}. We find
that aapx — x2pa2

a — 0a. Thus xpaa implies that xpθa and 0apaa. Con-
versely, if xpθa and 0apaa we have xpaa. We see that p is determi-
ned by its restrictions to T and Va. We can now define the inverse
to φ, ψ. ψ: L(T) x L(Va) -> L(V) by ψ(σ, τ) = p where

X0ΊI if

x, yeT and xσ̂ / , or

&, 7/ 6 F α and xτy , or

xeT, y = aa and ccoΌα , 0αταα , or

.a; = a , y eT and xτθa , Ô o ̂ / .

ψ is clearly a lattice homomorphism which is the inverse of φ and
so L(V) cz L(T) x L(Va). As T is a discrete tree, L{T) is a Boolean



SEMIGROUPS WHOSE LATTICE OF CONGRUENCES IS BOOLEAN 139

lattice by Theorem 1. L{ Va) ^ {c, ω} and so is a Boolean lattice.
L(V) is a direct product of Boolean lattices and so is a Boolean
lattice.

We return again to our general case: S is a commutative,
Boolean semigroup which we can identify as a subsemigroup of
some T x N x G.

TTHEOREM 19. S is a commutative, Boolean semigroup if and
only if S is one of the following:

( i ) a null semigroup of order two or less,
(ii) a discrete tree,
(iii) isomorphic to Σ p e p Zp for some set of primes P,
(iv) a one element inflation of a discrete tree,
(v) a free product of a discrete tree with zero and a group

isomorphic to Σj>ep Zp, P a nonempty set of primes, amalgamated
over the trivial semigroup so as to identify the identity of the
group and the zero of the discrete tree.

(vi) a one element inflation of a semigroup of type (v).

Proof. Let S be a commutative, Boolean semigroup. We
assume as before that S is a subsemigroup of T x N x G. In the
case that N is trivial it follows from Theorem 15 that S is of type
(ii) or of type (v). In the case that G is trivial it follows from
Theorem 18 that S is of type (ii) or of type (iv).

Let us consider the case when N and G are both nontrivial. We
know that G cz ^peF Zp, where P is a nonempty set of primes. By
Theorem 15, T is a discrete tree with zero. Let k: T x N x G->T,
π: T x N x G -* T x G and h: T x JV x G -» T x N be the projection
homomorphisms. For each ae T we let Sa=k~\a) ft S. S= \JaeτSa

is the greatest semilattice decomposition of S. Let 0 6 T be the
zero of T. It follows from Theorem 15 that π(S0) = {0} x G ~ G
and π(Sβ) is trivial for all β e T\{0}. By Theorem 18, there exists
aeT such that h(Sa) = {(a, 0), (a, a)} and h(Sβ) is trivial for all βe
T\{cή. Thus we see that Sr is trivial for all 7 6 T\{a, 0}. We con-
sider two cases:

Case (i). We assume a Φ 0. In this case it is easy to see that
S is a one element inflation of S\{(a, a)}, which is a semigroup of
type (v). S is thus a semigroup of type (vi).

Case (ii). We assume that a — 0. We have that So is a sub-
semigroup of {0} x N x G and Sβ is trivial for all β e T\{0}. Let a
be the nonzero element and 0^ be the zero of the null semigroup
N. We note that if β Φ 0, that Sβ = {(β, 0, e)}. The set ί = Γ x
{0N} x {e} U ({0} x {()#} x G) is a proper ideal of S. Let px be the
Rees congruence on S with respect to the ideal /. S/^x CΞ ({0} x
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{a} x G) Π S U {0} is a null semigroup of order two as S/pz is a
Boolean null semigroup and so | ({0} x {a} x G) Π S \ = 1. Thus So =
({0} x N x G) Π S is a one element null extension of {0} x {0̂ } x G.
Utilizing the fact: SczTxNxGwe see that S is a one element
inflation of S\{x} where {x} = ({0} x {a} x G) Π S. S\{x} is a semi-
group of type (v) and so S is a semigroup of type (vi).

Conversely, let us assume that S is a semigroup of type (i), (ii),
(iii), (iv), (v) or (vi). We shall show that L(S) is a Boolean lattice.
By Theorem 18, semigroups of type (i), (ii), and (iv) are Boolean.
By Theorem 15, semigroups of type (iii) and (v) are Boolean. We
can thus assume that S is a semigroup of type (vi). There thus
exists xeS such that S\{x] is isomorphic to the free product of a
discrete tree T with zero, 0, and a group G, isomorphic to Σ^ep Z9

for some nonempty set of primes P, amalgamated so as to identify
the identity of G, e, and the zero of T. We shall identify S\{x}
with GUT where 0 e T is identified with e e G and if aeT, geG
we have ag = ga = g. S = \JβeτSβ where GaS0, xeSa for some
aeT and Sr = {7} if 7£{α, 0}. We consider two cases:

Case (i). We assume that a Φ 0 and so Sa = {#, α} and So =
G. We shall see that L(S) ~ L(Γ) x L(S0) x L(Sa). We define a
map 0: L(S) -> L(T) x L(S0) x L(Sa) by φ(p) = (/o|Γ, /θU0, /o|5J. Let
peL(S). As |Sα | = 2, |θ| 5 β = ί or <o |̂ α = α>. Suppose that ^ 6 for
some b e S\Sa. If beT, then α: = αήoδ"2 == bpx. If 6 6 G, then as G
is periodic, there exists n such that bn = b and so #/?& = bnpxn = α.
Hence if /t)|5β = ,̂ we have that the p class of x, [x]P = {cc} and if
/t> |̂ α = 6e>, then [x]p = [α]^. Suppose that ueS0, yeS\S0 and that
% 2̂/. As ueS0 there exists m such that %m = e, as 50 is the perio-
dic group G. If yeT, then 2/ is idempotent and so e = umpym = ypu
and so upe and β = Opy. If 7/ — a?, then we have that [ίφ Φ {x} and
so [α;]̂  = [ά\p, implying that xpa and so by transitivity of p, upa.
As a is an idempotent we have by the previous argument that
upe and 0 = epa and so noting that xpa we have that upe and 0 =
epx. We see that p is the transitive closure of p \τ U p Uo U p \Sa We
define ψ: L(T) x L(S0) x L(S)->L(S) by ψ(σ, τ,θ) = ρ where /0*is the
transitive closure of (cr U ̂ ) U (τ U ̂ ) U (0 U ̂ ) . The product on S
insures that p will be a compatible relation and so a congruence
relation. It is clear that φ and ψ are order preserving maps which
are inverse and so L(S) ~ L(T) x L(S0) x L(Sa). Γ is a discrete
tree and so by Theorem 1, L(T) is a Boolean lattice. So ^ Σ?ep Zp

and so by Corollary 5, L(S0) is a Boolean lattice. As Sa is a null
semigroup of order two, L(Sa) is a Boolean lattice. L(S) is isomor-
phic to the direct product of Boolean lattices and so is a Boolean
lattice itself.

Case (ii). We assume that a = 0 and so So — G U {#} and Sβ =
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{β} if β Φ 0. We have shown in the proof of Theorem 15 that
L(S\{x}) ~ L(S0\{x}) x L(T) is a Boolean lattice. Let e be the iden-
tity of G and let p e L(S). If [x]P Φ {x}, then xpy for some y Φ x.
If y e So, then xpy = yepxe and so [x]p = [xe]p. Suppose that y e T.
As x2 is an element of periodic group G, there exists n such that
xn = e and so we have y = ynpxn = β. We now see that xepyy =
^ox and so [cφ = [xe] .̂ Thus given a congruence relation on S\{x},
there are exactly two ways to extend to a congruence relation on
S. We can add {x} as a singleton class which poses no compatibility
difficulties as x behaves multiplicatively as though it were xe, an
element of G, or we could adjoin x to the class containing xe and
this poses no compatibility difficulties for the same reason. Thus
L(S) a L(S\{x}) x 2 ~ L(G) x L(T) x 2, where 2 is the two element
Boolean lattice. L(S) is isomorphic to a direct product of Boolean
lattices and so is itself a Boolean lattice.

COROLLARY 20. S is a commutative Boolean semigroup if and
only if S~ T Xs NXSG, where T is a discrete tree, N is a null
semigroup of order two or less, G a ^peP Zp for some set of primes
P, L(S) is a modular lattice and every null homomorphic image of
S is of order two or less.

Proof. If one examines the proofs in § 3, he will see that the
relevant half of Theorem 15 is based upon the semigroup being
1-composed which followed from modularity. The relevant half of
Theorem 18 rests upon Lemmas 16 and 17 whose proofs required
only modularity. The relevant half of Theorem 19 essentially rests
upon Theorem 15 and Theorem 18 except where we noted that a
certain null homomorphic image had order two. We thus have that
these conditions are sufficient. The necessity of these conditions
follows from Proposition 13.

ADDENDUM

LEMMA 21. Let T be a discrete tree. Then L(T) is isomorphic
to P{A), the set of all subsets of the set of atoms of L(T).

Proof. It is known (see p. 171 of [9]) that a Boolean lattice B
is isomorphic to P(A) if and only if B is atomic and complete. The
lattice of congruences of any algebra is complete. Let x, y eT such
that x covers y (i.e., x > y and there is no z satisfying x > z > y).
We define the congruence σXty by:
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(a, b 6 {x, y} or

aστ.vb if'χ,y< The set of atoms of L(T) is the set

x = y

{σx,y: x covers y; x, y e T). It is clear that every congruence contains
an atom and so L(T) is atomic. L(T) is thus isomorphic to P(A).

LEMMA 22. P(A) x P(B) ̂  P(A U B), for any two disjoint sets
A and B.

Proof. The maps are given by (C, D) -> G U D and £7 -• (JS? Π
A, JS? n 5 ) .

LEMMA 23. If S — Σ^ep Zp for some nonempty set of primes
P, then L(S) ~ P(P).

Proof. The atoms of L(S) are the congruences induced by Zp

for some p e P.

LEMMA 24. Let S be a one element inflation of a discrete tree
T. Then L{S) is isomorphic to P{A) for some set A.

Proof. We have shown that L(S) ^ L(T) x 2 in the proof of
Theorem 18. Hence by Lemmas 21 and 22 we see that L(S) is
isomorphic to P(A) for some set A.

LEMMA 25. Let S be a type (v) semigroup of Theorem 19. Then
L(S) is isomorphic to P(A) for some set A.

Proof. We have shown in the proof of Theorem 15 that L(S)~
L(G) x L(T), where G is a Boolean group and T is a discrete tree
with zero. It follows now by Lemmas 21, 22, and 24 that L(S) is
isomorphic to P(A) for some set A.

LEMMA 26. Let S be a type (vi) semigroup of Theorem 19.
Then L(S) is isomorphic to P(A) for some set A.

Proof. It is shown in the proof of Theorem 19 that L(S) ~
L{T) x L(G) x 2, where T is a discrete tree with zero, G is a
Boolean group and 2 is the two element Boolean lattice. It follows
now by Lemmas 21, 22, and 23 that L(S) is isomorphic to P(A) for
some set A.

THEOREM 27. Let S be a commutative semigroup. Then L(S)
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is a Boolean lattice if and only if L(S) ~ P(A) for some set A.

Proof. This follows from Theorem 19 and Lemmas 21, 23, 24,
25, and 26.

The authors would like to express their deep appreciation to
the referee for his many helpful suggestions. The authors would
also like to thank Professor Boris Schein for pointing out that
Zitomirski [16] has characterized inverse semigroups whose lattice
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