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ON THE STRONG COMPACT-PORTED TOPOLOGY
FOR SPACES OF HOLOMORPHIC MAPPINGS

M. BIANCHINI, O. W. PAQUES AND M. C. ZAINE

Suppose E is a separated complex locally convex space,
U is non void open subset of E, F' a complex normed space
and 22(U; F') the complex vector space of all holomorphic
mappings from U into F. On 2#£(U; F') we consider the
following topologies; a) z,,, the topology generated by the
seminorms p which are K — B ported for some KcCU com-
pact and BC E bounded. A seminorm p is K — B ported if
for every ¢ >0, with K+ ¢Bc U, there is c(¢) > 0, such that
p(f) = c(e) sup{||f(@)|; ze K + B} for all fe £(U; F); b) ,,
the compact open topology; c¢) ., the topology defined by
J. A. Barroso in “Topologias nos espacos de aplicacdes holo-
morfas entre espagos localmente convexos”, An. Acad. Brasil.
Ci, 43, 1971. The topology 7., is an generalization of the
Nachbin topology (L. Nachbin, Topology on Spaces of Holo-
morphic Mappings, Springer-Verlag, 1968). The following
results are valid: 1. Z2c 22(U; F) is t,-bounded if, and only
if, &2 is 7.-bounded. 2. ZcC 2A(U; F) is t.-relatively com-
pact if, and only if, 27 is r-relatively compact. 3. Let E
be a quasi complete space. Then 7, =17, on SZ(E;C) if,
and only if E is a semi-Montel space. Moreover, the com-
pletion of SZ(K; C) on the z,, topology and the bornological
topology associated to r, are caracterized via the Silva-
holomorphic mappings.

Throughout this article the following notations will be used. E
is a complex separated locally convex space; U is a non void open
subset of E; F is a complex normed space; 5#°(U; F') is the complex
vector space of all holomorphic mappings from U into F: Z(*E; F)
is the complex vector space Qf all continuous n-homogeneous poly-
nomials from E into F; (1/n!)d"f(t) € ZP("E; F') is the nth coefficient
of the Taylor series of f at ¢t,n=0,1,---,fe 52 (U; F); 7, is the
compact open topology on S (U; F'); 7., is the locally convex to-
pology on S#°(U; F') generated by all seminorms of the type

Prnslf) = sup {|| - d*A(®u | te K, ue B}

where n=0,1,---, K is a compact.subset of U, B is a bounded
balanced subset of E; A ("E;F) is ZP("E; F) endowed with the
locally convex topology of the uniform convergence on bounded
subsets of E. We will introduce a new locally convex topology, 7a.,
on S~ (U; F) which, in some cases, coincides  with the Nachbin

33



A M. BIANCHINI, O. W. PAQUES AND M. C. ZAINE

topology 7, (Nachbin [8]). The topology 7, has been extensively
studied in the theory of infinite dimensional holomorphy. (Nachbin
[7].) For example, z,, = 7, on &£ (E;C) = S#(E), if E is normed.
Furthermore, 7z,, = 7, (the compact-open topology) on S#°(E), if E is
a Montel space (see Corollary 1.14). In the §1, the z,,-continuous
seminorms are characterized and we generalize for locally convex
spaces a result of Dineen [5], which is true for Banach spaces. The
T..-bounded subsets and the <,,-relatively compact subsets of
SZ(U; F) are studied. In the §2, it is given a characterization of
the completion of (£ (K), 7..). In the §38, it is given a characteriza-
tion of the 7, (bornological topology associated with 7,)-continuous
seminorms on H(E). (Here, H(E) denotes the set of all functions
f+ E — C, such that there is P, in Z#("E), for n =0, 1, ---, so that,
for each K C E compact, BC FE bounded, there is @ = a(B) > 0, with
f=32,P,, uniformly on K + aB.)

For basic material on Infinite Dimensional Holomorphy we refer
to [6], [7], and [8].

1. The strong compact-ported topology.

DEFINITION 1.1. Let B be a bounded balanced subset of E and
K be a compact subset of U. A seminorm p on 5#(U; F)is K— B
ported or strongly ported by K if for each ¢ > 0, with K+ eBCU,
there is ¢(¢) > 0 such that

p(f) = e(e) sup {||f(t)|l; t € K + B}

for every fe 2#2(U; F). The locally convex topology 7., on 57 (U; F')
is generated by all seminorms which are strongly ported by com-
pact subsets of U. It is called the strong compact-ported topology.

ProrosITION 1.2. If K s a compact subset of U, B is a balanced
bounded subset of E and p is a seminorm on S#(U; F), then the
following conditions are equivalent:

(1) p ts K— B ported

(2) For each € > 0, there s c¢(e) > 0 such that

p(f) < ole) S e*sup {|| -dos)| s te K|
for all
fe2Z(U; F)||Pllz = sup{[|P(t)||; t € B}] .

If U 1is balanced 7., is generated by all seminorms p such that for
some KcCU compact and BC E balanced and bounded, for each
€ > 0 there is c(e) > 0 such that
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— d”f (0)

Q) P =e@3 |

K+eB

Sor all fez#(U; F).

Proof. Let p be a K — B ported seminorm on 57 (U; F'). Thus
for each ¢ > 0 such that K + eBC U there exists ¢(¢) > 0 satisfying

p(f) = e(e)sup {||f(®)]]; ¢ € K + ¢B}
for all fes~A(U; F). Fort =k +¢cbe K + ¢B we have

o

f0) = 5= d e =

5’; d*f (k)b

Thus
p(f) < o(e) 35 & sup {]} 1—%1!—¢i"f(lc)b H keK, be B}

gc(e)gs”sup{”-"—z—'— B;keK}

and (1) implies (2).
Conversely, suppose that p is a seminorm on S#(U; F') as in
(2). Then

p(f) = o(e) 3, sup {}]%1T dnf (k) (eb) || heK beB|.

Let ¢ > 0 be such that K +¢BCU. Let ¢ =¢/2>0. By the Cauchy
integral formulas we get

sup {H_nl_!&wf(k)(e'b) H keK, be B}
< E]‘;sup{ilf(lo + D) ke K, beB, |\ = 2)

= 21— sup {|fw)|;; ¥ € K + ¢B} .
Hence

p(f) = o(-£) 3,2 sup (/W) y ¢ K + <)

= 2(£) sup {|lf@); y e K + <B)

and (2) implies (1).

Now we suppose that U is balanced and that p is K B ported.
Thus for every ¢ > 0, with K + eBc U, we have the existence of
¢(e) > 0 such that
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o(f) = c(e) sup {|[f(®)||; t € K + eB}
for all fe 52 (U; F'). Since U is balanced

fl + &b) = go—;—'ﬁ“f(O)(k + eb)

for ke K, be B. Hence
sup {[[f(®)]; t € K + ¢B}
< g‘osup {”;ﬁ—&“f(O)(k + eb)} ;keK,be B}

and it follows that

P S 0@ 3| 2-d0)| .
n=0 'n,! . K+¢B
Conversely let » be a seminorm satisfying (*). Let o> 1 be
such that pKcU. For each ¢ >0 such that pK + ¢oBcCU, we
have by Cauchy inequalities

K+4eB

H%l!—&”f(())
1

%sup UIAD; € o + 0B)

= — sup {[|f(M + Neb)||; ke K, be B, |M| = o}

where K is the balanced hull of K. Hence

o(f) < e(e)—2 - sup {1/l t€ oK + 0B}

p pa—
and p is pK — pB ported.

LEMMA 1.3. Let f= 32, (d*f(0)/n!) e S£2(U; F), where U C E is
balanced. Then for each KU balanced compact, BC E balanced
bounded and (a,)3-, € Ci, we have

)

d"f(0)
n!

*

< o0

7=0 K+ay,B

Proof. Let f, K, B and (a,)7_, as above. By @ Proposition 1.8,
there is € > 0 such that K+ eBcCU and >3, ||d"f(0)/nl]lgrs < <.
Since (@,)7-,€Cy, let n, be a positive integer such that «, < ¢ for
n = n,. Then, we get
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“ d"f(0) < H_@"_ﬂ_o_)_ for n=n,.
n! K+ayB - n! K+¢B - ’
Hence
> || df(0) < oo .
n=un( ’n! E+ayB
Since
n0—1(| Jn
d*f(0) < oo,
=0 rn! K+ayB .

we have (*).

LemMMA 1.4. If fes#Z(U; F) and U is balanced, then the Taylor
series of f at 0 converges to [ in (£ (U; F), T,).

ProPOSITION 1.5. If U s balanced, the topology 7., in 22 (U; F)
18 generated by all seminorms of the tyve

(1) p(f) = 3 |[4 1O

=0 rn!

’
K+ayB

Jor all fe 5Z(U; F), where (@), Cs, KU s balanced compact
and BC E is bounded and balanced.

Proof. By Lemma 1.3, all seminorms of this type are well
defined. Then, it is obviously a seminorm on 25#(U; F'). Now, we
show that p is 7,,-continuous. Given e >0, choose 7, a positive
integer such that a, < ¢ for all » = n,. As Lemma 1.4, we get

d"f(0) d"f(0)
n! n!

o o0

2=mng K+ayB _—n=no K+¢B

for all fe 22 (U; F). ‘
For n=0,1, -+, m, — 1, there is ¢ > 0 such that é(K + «,B) C
K+ ¢eB. So, for all feSZA(U; F) and 0 =0,1, «+-, n, — 1,

| drf(0) < o ||8@)
Il letas = nl llxies
Therefore
= [ d2/(0) < (supo) 5|24
n=0ll @! E+ta,B isng a=oll n! K+eB

Hence p is continuous on (£ (U; F')z,,). Now let p, be a continuous
seminorm on (& (U; F), t,,). We show that p, is dominated by a
norm of the form (1). By Proposition 1.2, for some K cU compact
and balanced and Bc E balanced and bounded, p, satisfies: for each
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e > 0, there is ¢(¢) > 0 such that

for all fe 22 (U;F).

K+4¢B

p(H) = o0 |20 drf(0)

Let 6 >1 such that 6 KcU. For P,e F("E; F), p,(P,) = c(&)||Pollg ez
For each n and ¢ > 0, let K,(¢) be the smallest positive number or
zero such that p,(P,) < K,(¢)||P,|lxss for all P,e P(*E; F). Since
K, (e) £ c(e) for all n, we get lim,_,, sup K,(e)V* < 1 < 4.

Now choose a positive integer %, such that (K,(1))Y" < é for all
n = n, and by induction take n, such that n, > n,_, and (K,(1/k))"" <2
for n = n;. Let

a = {1 for n <mn,
1/k for n, =<1 < Mgy «

Then (&,),- € Cy and K, (a,)’" <6 for n = n,. Hence there is C> 0
such that K,(a,)<C.6" for all n. Therefore by Lemma 1.4, we get

p.(f) = p1<§0ﬁ(0—)) < %ﬁ(@%’@l)

= 3 K. (@) :{f‘” o
s g0
=C i.:fy :{50) 3K +4da,B :

PROPOSITION 1.6. Let 27 be a subset of SZ(U; F). 2 18 Tep
bounded if, and only if, 2 s t.-bounded.

Proof. It is suffices to show that if .2° is z,-bounded then .2~
is 7,,--bounded. Suppose 2 is 7,-bounded. By [2], Proposition 4,
for all KcU compact and Bc E bounded, there are C =0 and
¢ = 0 such that

sup{”-’,—b—ﬁ”f(w)HB;meK and fe %’} < Ce*, for all neN.

Therefore, for any p seminorm on S#(U; F'), K — B ported, given
¢ > 0, there is ¢(¢) > 0 such that

sup {p(f); fe 2} = dé)éﬁ sup {H—q—@l—'— d"f() IB; re K and fe 2’}

= c(e) i‘, e"Ce" .
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Choose ¢ > 0 so that ec < 1, we obtain

sup {p(f); fe 2} < e,
that is, 2 is 7.,-bounded.

ReEMARK 1.7. By [3] Example 3, and above proposition we get
Tes & To IS general.

PRrOPOSITION 1.8. Let 27 C 5 (U; F) be tybounded. Then the
uniform structures associated with ©,, and 7., induce the same
uniform structure in 25 In particular, ., and 7., induce on 2
the same topology.

Proof. Let us assume first that 0€ 2 and prove that a subset
of # is a neighborhood of 0 in the topology on 2 induced by 7.,
if, and only if, it is a neighborhood of 0 in the topology on .2°
induced by 7.,. One half of this assertion is clear from 7., < T...
Conversely, let p be any seminorm on Z£°(U; F') K — B ported. Then,
given ¢ > 0, there is c(¢) > 0 such that

p(f) 5 ofe) 55" sup {|| -3 | e K]
Since 2 is r,-bounded, there are C = 0 and ¢ = 0 such that
sup {”i—rﬁ“f(w)”}g; xe K and fe %’} < C.c",

for all ne€ N. Next choose ¢ > 0 so that e¢ < 1 and n,e N by

Cole) 3 (e0)™ < % )

m>ng

Define the 7., continuous seminorm ¢q by
%o 1 ~
q(f) = c(e) X, e™ sup {“—-—-d"‘f(w)“ jxe K} .
m=0 m! B

It is then clear that, if fe 2" and ¢(f) < 1/2, then p(f) < 1. This
proves that 7,,|s = Tws 2.

If we next consider any subset 2° bounded for 7, the set
& — & is bounded for 7,, and it contains 0. Since the neighbor-
hoods of 0 in the topology on 2 — 2 induced by z,, and 7., are
identical, it follows that the uniform structures on .2~ induced by
the uniform structures associated to 7., and 7., are identical.

COROLLARY 1.9. Let f,e 5Z(U; F) for allce N and fe 57 (U; F),



40 M. BIANCHINI, O. W. PAQUES AND M. C. ZAINE
then f,— f for t,, as ¢— o tf, and only if, f.—f for T., as t— co.

COROLLARY 1.10. Let 22 C 2#(U; F). Then 7 is T,,-relatively
compact if, and only i1f Z s T.,-relatively compact.

PROPOSITION 1.11. Let F be complete and 27 < 2°(U; F) lacally
boundeg. Then 27 18 tT..-relatively compact +f, and only if,
{A/ ) f(t); fe 2} is relatively compact in Z("E; F), Yne N,
vteU.

Proof. First we assume 2° is 7,,-relatively compact. For each
e U and ne N, the mapping

¢€: (y/(U; F)r Tws) — xqés(nE; F)
f— Lawse
n!

is continuous. In fact, ¢(f) = l(1/n))d*f(E))l5 is a seminorm {6} — B
ported. - Choose p» a seminorm on Z7("E; F') such that p(P) = || P||s
for every Pe Z("E; F'), we obtain p(¢.(f)) = q(f). Hence the image
of 27 is relatively compact in Z,("E; F') for every me N, that is,
{(l/n!)ci”f(t);f € 27} is relatively compact in ZZ("E; F)¥ne N, vte U.

Conversely, suppose that {(1/n!1)d"f(t); fe &} is relatively com-
pact in F,("E; F)Vne N, and te U. Since 2° is locally bounded, it
is 7,,-bounded and Z7es = 2=, Hence to prove that 2= is rela-
tively compact for z,, we shall show that .2 is relatively compact
for z,, topology. Let '

6 S7(U; F) — 1'1 27 (U; P("E; F))

1 A'n
F—(57%).., -
On 2#(U; F') consider the topology 7., and on I3, 52(U; & ("E; F))
we consider the product of the topologies 7, on each factor. By [2],
Proposition 2.5, ¢(S£(U; F)) c Ile 22(U; A("E; F)). ¢ is a con-
tinuous linear injection and ¢~ is also continuous.

To show that 2 is 7., relatively compact it.is. equivalent to
show that ¢(2°) is relatively compact for the product topology. It
is enough to show that [[,#(2) = {(1/n])d"f; fe &}, that is, the
projection in each (£ (U; & ("E; F)), 7,) is relatively compact.

By the assumption that .2° is locally. bounded, we have 27
equicontinuous by [1], Proposition 3.4, and then IT, #(:2°) is equi-
continuous. So we have by assumption that T[], ¢(.2°) is pointwise
relatively compact. Hence by the Ascoli’s theorem (Bourbaki-cap. X)
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II. #(2°) is z,relatively compact.

Since F' is complete the closure of ¢(.2°) for the product to-
pology is contained in #(SZ(U; F')), so we have 2= is compact
for 7., topology.

The next proposition belongs to J. A. Barroso, [1], where the
proof contains some small mistakes and here they are corrected.

PROPOSITION 1.12. Suppose F =+ {0} and E be a locally convex
space such that corresponding to every bounded subset BC E there
8 a compact subset K C E such that B is contained in the closure
of the absolutely convex hull of K, I'(K). Then 7, = 7., on 52 (U; F).
Conversely, if 7, = 7., on Z(U) = 2 (U;C), then corresponding
to every bounded subset B C E, there is a compact subset K C E such
that B is contained in I'(K).

Proof. We prove the first part. Thus let E be a locally convex
space such that corresponding to every bounded subset B E there
is a compact subset K CFE such that B is contained in I'(K). Since
To S Ty it is enough to show that 7., < 7, on S2(U; F'). Let p be

a 7., continuous seminorm, K, U compact, B, such that
Iz,
n! s}’

for all fe 27Z(U; F), where J is a finite subset of N.
For each » €N, we have that '

p(f) = sup
reR,

sup {20 } < sup |20 1
< e (% o)
= o {5 )

By the polarization formula, we have for K (K be the balanced
hull of K), that

OZ"TJTQ(% cee, ) @q{—gt—)(x)“} .

,n'n
n!  tek,
LEK+ oen +%

aup |
te Ky
z e Kit=1,-2,0

By the Cauchy formula, we obtain

df(t)
.n!

J=2L1 s .

n
Nl O yerpro@EitB

If we take 0 > 0 such that K, + p(K + --- + K) = L is contained

sup {

teKq
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in U, we obtain a compact subset of U and

n'll
»(f) = sup n!pnllfIlL

therefore 7., < 7, on 2Z(U; F').

Conversely, if 7, = 7., on 22 (U), then 7,/E' = t.,/E'. There-
fore, the 7,-topology of uniform convergence on bounded subsets
of E is induced by 7., in E’ and 7,/E' = 74;,. Hence if BC E is a
subset bounded of F, B°is the polar of B, there is a compact subset

K of E and ¢ > 0, such that if
V={TecE;||T|lx =sup{ T)|;xc K} < ¢},

then V£ B°. Therefore BC BYcC V' But if xe V° we claim
1 T(x)| < e!||T||lx for all Te E’. In fact if 6 >0 and T e E’, then
for G = eT/(||T||lx + 0), we have ||G|lx<¢ and so GeV and so
|G(x)| £ 1. This gives |T(x)] < (]| T]|x + d) and as 4 is arbitrary,
it follows that |T(x)| < ¢Y|T]|x for all TeE'. So if L is I'K)
then |T(ex)| £ || Tl =S| Tz, if € V° and T e E'. This implies, via
the separation theorem, that exe L for xe V°. Thus V°ceL. So
BcV°cetL. This completes the proof.

REMARK 1.13. In the second part of this proof it is enough to
suppose that 7, = 7,, where 7,, is the locally convex topology generated
by all seminorms of the type:

p(f) = sup | df®) |l ,

for all fe 2#(U; F), where KCU is compact and BC E is bounded.

COROLLARY 1.14. Let E be a locally convexr space so that the
closure of the absolutely convex hull of every compact is compact.
Then T, = To, o0 SZ(E) of, and only if, E is a semi-Montel space.

One part of the proof of the Corollary 1.14 is given more di-
rectly by considering seminorms of the type

f — sup {||d'A(0)||; 2 € B},

for all fe 5~ (¥), where BC E is bounded. This seminorm is z,,-
continuous, thus 7,,-continuous and, by hypothesis, 7,-continuous.
Therefore for all Te E' and ze€ B, |T(x)| <¢||T|x = ¢|| Tllra, for
some KU compact and ¢ > 0. Then, via the separation theorem,
we obtain that BcCe. I'(K). Sence I'(K) is compact by hypothesis,
this implies that E is a semi-Montel space.
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2. The completion of (52 (¥), T,,). In here, the completions
are considered as subspaces of the space of the G-holomorphic fune-
tions in E. We denote by S#(F) the set of all functions f: E—C
such that there is P, in the completion of Z#,("E), forn =0,1, ---,
so that for each K — E compact, BC E bounded there is a = a(BlZO
with f = 3, P, uniformly on K + aB. XVe\use the notation SZ(F)
for the completion of (S#°(K), z',,,,)/aﬂd Z("E) for the completion of
Z,("E). Here we prove that S5#(E) = 97 (E). For this we need
the following lemma. :

o~ ~

LemmA 2.1. If feo#(R), there s P, e 2 ("E), forn=0,1, ---,

such that f(t) = 32, P,(t) for each tc E. Furthermore, if » is a
Tos-COntinuous seminorm on S (E), such that

d"£(0)
n!

)

o(f) =2,

n=0

K+ayB

for all fe s#Z(R), for some KCU balanced compact, BC E bounded

S
balanced and (a,)c..c Ci, then the extension P of p on SFA(E) is
given by:

P(F) = 31 Pallsse,s for all fe SH(E) .

Proof. Let fe ;7?,(\1'7) and (f.).es @ Cauchy net in (SZ2(H), T.,)
such that lim,.,f.,=/f. Note that in particular, for each tec E,
lim,., fo(t) = f(t). Then, if p is a 7,,-continuous seminorm on
(S#(R), T.,) given K C E compact balanced, B C E bounded balanced,
(@,)2-,€Ci and € > 0, there is M€ 4 such that, for @, 8> A,

o(fa — fa) = f; H d”ﬁ(m _ drf(0)

n!

<eg.

K+a,B

Hence for any positive integer m and «, 8 =\, we have

d"f.(0) _ d*fy(0)
n! n!

<e.
K+tayB

(1) s

n=0

Since (f3)pes is a Cauchy net in (S£(E), 7..), for n=0,1, ---,
(C/i”fp/n!)pe,t is a Cauchy net in Z#(*"E). For each n=0,1, ---, let
P, = lim;.,d*f5(0)/n]. If we take a = and the limit in (1) for
Bed, we get

(2) s

#=0

<e,

K+ayB

d"fu(0) _ p)|
n!

for any positive integer m.
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In particular we get

i ”Pn”K+a,,,B = i d fZ(O) +&.
n=0 n=0 K+a,B
Thus
(3) S P en s S ELO | oo
n=0 2=0 n! K+a,B

By (38) we have in particular that >, P,(¢) is finite for each te E.
If we take the limit in (2) for m — -, we get in particular for
each t ¢

idfa(o)(t) P”(t)l <efora=xand e>0,

n=0

that is,

ity = S P <.

Therefore, for each teFE, lim,.,f.(t) = S, P.(t), that is, f(t) =
S o PJ(t). This proves the first part of the lim\ma.
By (8), wehave p(f) is finite for each fe S5#(E). Now, to prove

that P(f) = D=0 l| Pullxsa,s it is enough to prove that, for ¢ > 0
there is n,e N and » €4, such that for m = n, and a = ),

d"f.(0)

n!

<eg.

n }K+a,,,B

K+ayB
But by (2), for a =), me N and ¢ > 0,

S 1P, sy — 3 [ £Le0)
n=0 ’)’(,'

<3 |||P,,11K+a,,3 - | &£

K+ayB

K+ayB

=3[P - £LO

<eg.

K+ay,B

REMARK 2.2. On 2#(F) we may define the z,,-topology and
show in the same way as Proposition 1.5 that this topology is equi-
valent to the topology defined by the seminorms of the type used
there. Furthermore as /13 the Lemma 1.4, we obtain that if fe
S#(H), there is P, in Z,("E) for each n =0, 1, -+, so that >7, P,
converges to f in (SZU(E), Tus)-

S
- PROPOSITION 2.3. SA/(E) = SA(H).
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Proof. By definition, we have %)cyé(E). /I.ft now fe
S#(K). Then by the remark above, there is P, e &2 ("E) for each
n=0,1, --., such that >\, P, converges to f in (s#(E), t.,). For

o~ o~ P
each k=0,1, .-+, n, P,e F,("E)Co#,(E). Therefore >i_, P,€ 5#(K).
Since (35, P.)x-, is a Cauchy sequence in (2#(KE), z,,) we have by
the remark above and /tée previous lemma, that (32, Py, is a
Cﬂl&hy sequence in 29#(E). Therefore, f= 32 ,P, belongs to
(B,

3. The 7, topology on H(E). We denote by H(E) the set of
all functions f: E — C such that there is P, in Z#(*E) forn =0,1,---,
so that for each K C K compact, BC E bounded, there is @« =a(B) >0
with f = 3, P, uniformly on K + @B. §"f(0)/n! denotes the mth
coefficient of the Taylor series of f at 0, n =0, 1,-.-, for each fe
H(E). We may define the 7,,-topology on H(E) as in 1, and obtain
similar results to Propositions 1.2 and 1.5. 7, denotes the bornological
topology on H(E) associated with z,.

PROPOSITION 3.1. Let f= Y7, P, pointwise, with P,ec F("EK),
n e N. Then the following three conditions are equivalent:

(1) feH(E).

(2) For each KCE compact balanced, B CE bounded balanced
and (a)g-. € Cy, we have

Zf, HP-nllK+anB < oo

(8) For each KCE compact balanced, B CE bounded balanced
and (@,)3, € Cy, we have

hm || P, ||¥%a,2 = O .

LEMMA 38.2. 2 C H(E) s trbounded if, and only if, 18 T,
bounded.

LEMMA 3.8. Let (f,)y be a bounded subset of (H(E), T.,), then

ﬂ=0

LEMMA 3.4. Let # be a bounded subset of (H(E), T,,) then the
set (m26"f(0)/n!) 0, s » 18 bounded in (H(E), 7).

The proof of the Lemma 8.2 is the same as Proposition 1.6.
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Proposition 3.1 and Lemma 3.3 are proved in the same way Dineen
proves Proposition 2 and Lemma 5 [4] with minor modifications.
Lemma 3.4 is proved in a similar way as Lemma 1.2 [5].

PROPOSITION 8.5. Let p be a seminorm on H(E) with the fol-
lowing properties:

(1) For each n=0,1,---,p induces on F("E) a topology
weaker than or equal to the T,-topology.

(2) i p@f(0)nl) < o for every f= 3.3.,6"(0)/n! e H(H).
Then, »,(f) = 2. 000"f(0)/n!) is a continuous seminorm on
(H(E), To)-

Proof. Since 7, is a bornological topology it is suffices, to show
that for each bounded set .27 on (H(E), 7,), We have sup;.. 0,(f) < o=.
By condition (1), we get for each » that

*) sup p< ”f(0)> < oo

fer

Now suppose sup;.. ,(f) = . By (*) and the definition of p,,
we thus have for each positive integer =,

sup 3, (20 =

fez n=ng
Choose f, such that S, p(6"f,(0)/n!) = 2 and take m, such that
50 o
Zp< py ) =

n=0

By induction, choose for each k, f, such that

3 p(afk«») -

n=ny_1+1 'n,'

and take =, such that

S (M) zy ez,

n=np_y+1 71,'
Let
_ {f, for 0=n=<mn,,
9= fi for my, <n=mn, (k= 2).
By Lemma 3.3,

g=35920 cgm)
n!

72=0
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But X
p(e) = 3, p(TLD) = oo

n=0 'n!

which contradicts (2). Then sups.. p.(f) < < and p, is a continuous
seminorm on (H(E), Ty)-

PROPOSITION 3.6. Let p be a continuous seminorm on (H(E), ty).
Then:

(i) For each n=0,1,---,p induces on F("E) a topology
weaker than or equal to the T, topology.

(ii) If f = 3.0 6"(0)/n! € H(E), then S5, p(@"f(0)/n!) < .

LeMMA 3.7. If fe H(E), then the Taylor series of f at 0 con-
verges to f in (H(H), Ty).

Lemma 3.7 is proved in the same way Dineen proves Proposi-
tion 7, [4] with minor modifications.

PROPOSITION 3.8. The topology t,, on H(E) is generated by all
seminorms which satisfy the following conditions:

(1) »(f) = S, p@*A(0)/n!) for all fe H(E).

(2) For each n=20,1,---,p induces on F("E) a topology
weaker than or equal to the T,-topology.

Proof. By Proposition 3.5, if p satisfy (1) and (2), then p is
Ty-continuous on H(E).

Let g be a t,-continuous seminorm on H(E). Proposition 3.6
gives that

o

EQ<3—?-;(TQ—)) < oo for each f = Zgnf(o)eH(E)

n=0

By Proposition 3.6,
o) = £,4("10)

is a continuous seminorm on (H(E), 7). Lemma 3.7 gives

o) = lim( 3, 710)

n=0

= tim 5 o("10) — (7).

m—oo n=0

Hence every continuous seminorm on (H(E), t,) is dominated by a
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continuous seminorm with satisfies the required conditions. This
proves the proposition.

REMARK 3.9. If U is an open balanced subset in E, we obtain
the same results on H(U).

PROPOSITION 3.10. The topology 7, on S#°(E) is generated by
all seminorms which satisfy the following conditions:

(1) o(f) = 2w, p(@"f(0)/nl) for all fe H(E).

(2) For each n=0,1, .-, p induces on F("E) a topology
weaker than or equal to the T,-topology.

Proof. If p is a seminorm on S#(K) satisfying (1) and (2) then
it can be defined in H(E) and, by Proposition 8.8, p is 7,-continuous.
Hence p is bounded on the 7,-bounded subsets of H(E), thus on the
7,-bounded subsets of 57Z°(F). This implies that p is 7,-continuous
on &~ (KE). Now, if p is t,-continuous seminorm on S#(F), then
it is clear that (2) holds. If fe H(E), &2 = {f} is t-bounded in

H(E). By Lemma 3.4, (n¥5"f(0)/n!))z-, is To—bounded in H(E), hence
in SZ(KE). Thus

sup p<5 ,J: (0)) = ﬁ—{
and
s (3°(0) 2l o
nz='op( n! )é Z‘rn :
Therefore

p(f) = ip(%)

defines a seminorm on SZ(F) satisfying (1) and (2), hence z,-con-
tinuous (by first part of the proof). Thus, since p < p,, 7, can be
defined by seminorms satisfying (1) and (2).

We wish to thank professor M. C. Matos for the suggestions and
fruitful discussions at all article. '
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